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ABSTRACT 45 

Objective 46 

Recent advances in deep learning show significant potential in analyzing continuous 47 

monitoring electronic health records (EHR) data for clinical outcome prediction. We aim 48 

to develop a Transformer-based, Encounter-level Clinical Outcome (TECO) model to 49 

predict mortality in the intensive care unit (ICU) using inpatient EHR data.  50 

Materials and Methods 51 

TECO was developed using multiple baseline and time-dependent clinical variables 52 

from 2579 hospitalized COVID-19 patients to predict ICU mortality, and was validated 53 

externally in an ARDS cohort (n=2799) and a sepsis cohort (n=6622) from the Medical 54 

Information Mart for Intensive Care (MIMIC)-IV. Model performance was evaluated 55 

based on area under the receiver operating characteristic (AUC) and compared with 56 

Epic Deterioration Index (EDI), random forest (RF), and extreme gradient boosting 57 

(XGBoost). 58 

Results 59 

In the COVID-19 development dataset, TECO achieved higher AUC (0.89–0.97) across 60 

various time intervals compared to EDI (0.86–0.95), RF (0.87–0.96), and XGBoost 61 

(0.88–0.96). In the two MIMIC testing datasets (EDI not available), TECO yielded higher 62 

AUC (0.65–0.76) than RF (0.57–0.73) and XGBoost (0.57–0.73). In addition, TECO was 63 

able to identify clinically interpretable features that were correlated with the outcome. 64 

Discussion 65 

TECO outperformed proprietary metrics and conventional machine learning models in 66 

predicting ICU mortality among COVID-19 and non-COVID-19 patients.   67 
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Conclusions 68 

TECO demonstrates a strong capability for predicting ICU mortality using continuous 69 

monitoring data. While further validation is needed, TECO has the potential to serve as 70 

a powerful early warning tool across various diseases in inpatient settings. 71 

  72 
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LAY SUMMARY 73 

In intensive care units (ICUs), accurately estimating the risk of death is crucial for timely 74 

and effective medical intervention. This study developed a new AI algorithm, TECO 75 

(Transformer-based, Encounter-level Clinical Outcome model), which uses electronic 76 

health records to continuously predict ICU mortality after admission, with the capability 77 

to update predictions on an hourly basis. TECO was trained on data from over 2,500 78 

COVID-19 patients and was designed to analyze multiple types of continuous 79 

monitoring data collected during a patient’s ICU stay. We tested TECO’s performance 80 

against a widely used proprietary tool, the Epic Deterioration Index (EDI), and other 81 

machine learning methods, such as random forest and XGBoost, across three patient 82 

groups: COVID-19, ARDS (acute respiratory distress syndrome), and sepsis. TECO 83 

consistently showed better performance and was able to predict death risk earlier than 84 

other methods. Additionally, TECO identified key health indicators associated with ICU 85 

mortality, making its predictions more interpretable for clinicians. These findings suggest 86 

that TECO could become a valuable early warning tool, helping doctors monitor patients’ 87 

health and take timely action in a range of critical care situations. 88 

  89 
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BACKGROUND AND SIGNIFICANCE 90 

Modern medical and information technologies increasingly produce massive amounts of 91 

electronic health record (EHR) data. However, there still exists a gap between the rapid 92 

digitization of healthcare and the development of analytic tools capable of informing and 93 

guiding real-world clinical practices.[1, 2] Intensive care unit (ICU) is one area ripe for 94 

improved predictive analytics.[3] The COVID-19 pandemic posed unprecedented 95 

challenges to the provision of ICU care due to a lack of bed capacity, clinical care staff, 96 

and necessary analytics for resource allocation.[4] While the contemporary ICU medical 97 

devices and systems collect vast amounts of time-stamped data (e.g., vital signs, lab 98 

tests, and medication administrations), these rich continuous data streams are often not 99 

used to their full extent to develop analytics tools that assist clinicians to predict clinical 100 

outcomes. 101 

One reason for this failure has been the analytics applied to such data. Conventional 102 

statistical models are limited in processing multivariate, time-dependent datasets and 103 

analyzing relations between different variables and different timestamps. Commercial 104 

analytics tools often lack technical transparency and interoperability across EHR 105 

platforms. For instance, the Epic Deterioration Index (EDI)[5, 6], a proprietary machine 106 

learning-based metric only available on Epic systems, was designed to quantify the 107 

level of deterioration patients experience at a point in time. The EDI utilizes data such 108 

as age, vital signs, laboratory tests, yet without considering patients’ overall 109 

comorbidities.[7, 8] The detailed design and parameters of EDI’s model have not been 110 

publicized, and EDI has not been validated in routine clinical practice.[8] Moreover, the 111 
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threshold of EDI that calls for intervention has been differentially implemented among 112 

healthcare systems, rendering its actual usage dependent on local standards.[8]  113 

As an alternative, machine learning models have been proposed to predict clinical 114 

outcomes or procedures in critically ill patients. For example, researchers employed a 115 

random forest (RF) classifier to predict COVID-19 disease severity at hospital 116 

admission,[9] applied an extreme gradient boosting (XGBoost) based algorithm to 117 

predict invasive mechanical ventilation,[10] and implemented PICTURE (Predicting 118 

Intensive Care Transfers and Other Unforeseen Events) to predict deterioration.[11] 119 

However, these algorithms face limitations when dealing with long series of time-120 

dependent data with high dimensionality and irregular time intervals, as commonly 121 

encountered in inpatient monitoring data.  122 

Recent advancements in deep learning have demonstrated preliminary success in 123 

managing multi-dimensional sequential EHR data, effectively capturing complex 124 

temporal patterns and interrelated features. Among these advancements, transformer 125 

models have shown promise by leveraging attention-based mechanisms to enhance 126 

both performance and efficiency in clinical settings.[12] Transformers employ multi-head 127 

attention and skip connections, removing the recurrent dependencies characteristic of 128 

earlier architectures like recurrent neural networks (RNNs) and long short-term memory 129 

networks (LSTMs),[13] while using positional embeddings to encode temporal 130 

information directly. Transformer-based architectures have since been adapted for 131 

various clinical applications. For example, Wu et al. developed a transformer model to 132 

forecast influenza prevalence from public health data, [14] while ClinicalBERT predicts 133 

30-day hospital readmissions from clinical notes.[15] Models such as BEHRT [16] and 134 
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Med-BERT [17], pre-trained on sequences of diagnosis codes, have been used to 135 

predict future diagnoses, with Antikainen et al. expanding this approach to incorporate 136 

different types of medical events for long-term mortality prediction in cardiovascular 137 

patients. [18] 138 

In an ICU setting, MeTra integrates chest radiographs with clinical data for mortality 139 

prediction, though it restricts data input to the first 48 hours and may pose a high 140 

computational burden due to the Vision Transformer component.[19] Similarly, Cheng et 141 

al. used transformers for image data to predict COVID-19 mortality, but did not apply 142 

transformers to the clinical data component of their model.[20] Song et al. proposed the 143 

SAnD architecture for ICU tasks, including mortality prediction; however, they restricted 144 

data input to the final 24 hours of the ICU stay, requiring prior knowledge of the 145 

outcome time, which limits the model’s applicability to real-world scenarios.[21] 146 

Furthermore, none of these ICU mortality prediction models have been benchmarked 147 

against the widely-used commercial tool EDI, which limits the assessment of their 148 

clinical utility and relevance as a trans-platform tool.  149 

OBJECTIVE 150 

In this study, we propose the Transformer-based Encounter-level Clinical Outcome 151 

(TECO) model, which fully utilizes continuous ICU monitoring data alongside patient-152 

level baseline characteristics for mortality prediction after ICU admission, with the 153 

capability to update predictions on an hourly basis. We developed TECO using EHR 154 

data from a cohort of COVID-19 patients and validated the model on two external non-155 

COVID-19 cohorts. We benchmarked TECO against the EDI, RF, and XGBoost to 156 

evaluate its performance in an ICU setting across different disease profiles. 157 
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 158 

MATERIALS AND METHODS 159 

Study setting and design 160 

In this study, the model development dataset contained EHR data from Texas Health 161 

Resources (THR), a large faith-based, nonprofit health system in North Texas, 162 

operating 20 acute care hospitals and serving 7 million residents in 16 counties. The 163 

THR cohort included 2579 adult patients with laboratory-confirmed COVID-19 (age ≥ 164 

18), who were admitted into ICUs during their first COVID-19 hospitalization. Dates of 165 

patient hospitalization ranged from March 3, 2020 to August 13, 2021. Patients who had 166 

more than one ICU admission during the hospitalization were excluded. 167 

The external validation dataset was extracted from the Medical Information Mart for 168 

Intensive Care (MIMIC-IV), a large, publicly available, de-identified clinical database for 169 

critically ill patients admitted to the emergency department of the Beth Israel Deaconess 170 

Medical Center in Boston, MA from 2008 to 2019.[22] We identified two patient cohorts 171 

admitted to ICU, one diagnosed with acute respiratory distress syndrome (ARDS) and 172 

the other with sepsis. If a patient had multiple ICU or hospital admissions, only the first 173 

ICU visit of the first hospital admission was included. ARDS was defined in accordance 174 

to the Berlin definition[23] with the MIMIC-specific positive identification method.[24] 175 

Sepsis was defined in accordance with the Third International Consensus Definitions for 176 

Sepsis and Septic Shock,[25] quantified by the Sequential Organ Failure Assessment 177 

(SOFA) score.[26, 27] Detailed definitions and query methods for identifying these two 178 

cohorts in the MIMIC-IV database are provided in the Supplementary Materials. 179 
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In this study, the models were designed to predict a binary outcome: death versus non-180 

death in the ICU. In this context, the non-death outcome refers to conditions not at 181 

immediate risk of death and includes a range of states, from requiring continued ICU 182 

care to being ready for ICU discharge. We included two types of variables in the model: 183 

baseline variables and time-dependent variables. Baseline variables include age at 184 

hospital admission, sex, ethnicity, and race. Time-dependent variables include ICU 185 

monitoring measures, each recorded at a different and irregular pace: body temperature, 186 

respiration rate, pulse oximetry (SpO2), mSOFA (modified Sequential Organ Failure 187 

Assessment) overall score,[28] mSOFA respiratory sub-score, and SF ratio (SpO2/FiO2, 188 

where FiO2 is the fraction of inspired oxygen). Body mass index (BMI) was included as 189 

a time-dependent variable in the COVID-19 dataset. In the MIMIC-IV dataset, where 190 

time-dependent BMI was unavailable, the BMI recorded at hospital admission was used 191 

as a baseline variable. 192 

The institutional review boards at THR and UT Southwestern Medical Center approved 193 

this study (Protocol #STU-2020-0786; activated on 8/24/2020). All patient identifiers 194 

were removed before EHR data extraction.  195 

Development of TECO Model 196 

The TECO model employs a Transformer-encoder architecture. The overall algorithm 197 

design and data processing are illustrated in Figure 1. First, we aligned the time-198 

dependent variables by taking the mean of each variable in every 15-minute interval. If 199 

a 15-minute mean value was missing, the value from the previous interval was carried 200 

forward. Then, we concatenated the aligned time-dependent variables with baseline 201 

variables, creating a feature set for each 15-minute interval, and embedded these 202 
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features into a 512-dimension vector. The baseline variable input values remained static 203 

across the entire time range. The timestamps of these 15-minute intervals were 204 

encoded into another representative vector by positional encoding. We applied relative 205 

positional encoding to avoid imputing large amounts of default values for time points 206 

without measurement. The variable value vector and timestamp vector were fed into a 207 

feed-forward network with 6 Transformer-encoder layers. Each Transformer-encoder 208 

layer was equipped with 8 multi-head attention modules. The model outputs probability 209 

of death using a linear classification layer with the Softmax activation function.  210 

We developed the TECO model using the THR COVID-19 dataset. We used the holdout 211 

method by creating 20 different data splits, where in each split the COVID-19 dataset 212 

was randomly split into a training set (80%) and a validation set (20%) on the patient 213 

level. During the training phase, we included only the data ranges that led to the 214 

eventual outcome at the ICU endpoint. This setup ensures a clear representation of 215 

both death and survival cases, while maintaining a balanced distribution between the 216 

two outcomes (36% death, Table 1). In this particular context, the non-death outcome 217 

corresponds to ICU discharge. In total, we trained nine TECO sub-models, each 218 

designed to predict the outcome at a specific future time point: 0, 12, 24, 36, 48, 60, 72, 219 

84, and 96 hours. Each sub-model was provided with training data from a specific time 220 

interval (Supplementary Table 1). The algorithm does not require data to be fully 221 

available throughout the entire time interval. Records with incomplete time intervals 222 

were included in model training to ensure the model’s applicability in a clinical setting. 223 

To select hyperparameters, we performed a grid search on the hyperparameters on one 224 

training-validation split. The hyperparameter set yielding the highest area under the 225 
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receiver operating characteristic (ROC) curve (AUC) from that split was selected, 226 

resulting in a model with 6 encoder layers, 8 attention heads, an embedding dimension 227 

of 512, and a total of 18,928,130 trainable parameters (Supplementary Table 2). 228 

The Transformer model for developing TECO was implemented in PyTorch (Version 229 

1.8.1)[29] and trained on an NVIDIA Tesla V100 Tensor Core GPU with 32 GB of 230 

memory. TECO was allowed to train for a maximum of 500 epochs with a batch size of 231 

32. The SGD optimizer with momentum (0.9) was used to update model parameters. 232 

The learning rate was set to 0.01 and reduced by a factor of 2 every 50 epochs. We set 233 

the dropout rate to 0 and use the Gaussian Error Linear Unit (GELU) as the activation 234 

function in the transformer layers. The training process would stop early if the validation 235 

loss did not change by more than 10-4 after 100 epochs. Gradient clipping was set to 1.0 236 

to avoid gradient exploding (Supplementary Table 2).  237 

Development of Other Models for Comparison 238 

To develop RF and XGBoost models using the same THR COVID-19 dataset, we 239 

followed the same data preparation procedure as described above for TECO. The time-240 

dependent variables were aligned and averaged in 15-minute intervals, and 241 

concatenated with the baseline variables. The models were trained using the same 20 242 

data splits as for TECO. Hyperparameters were selected through a grid search using 243 

the same one training-validation split as for TECO (Supplementary Table 2). RF and 244 

XGBoost were implemented in scikit-learn (Version 1.0.2).[30] 245 

To use EDI for outcome prediction, we used the mean EDI value from the preceding 24 246 

hours of each data input time interval. The EDI models predict the binary outcome 247 

solely based on a threshold on the continuous EDI values so no hyperparameter tuning 248 
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was involved.  249 

Internal and External Validations 250 

We evaluated the prediction performance of the TECO model based on AUC and 251 

compared it with the EDI, RF, and XGBoost models. Performance was evaluated 252 

separately for each of the nine TECO sub-models. For the internal validation based on 253 

the THR COVID-19 dataset, we reported the median AUCs on the validation sets 254 

across all 20 training-validation splits. To plot ROC for the EDI-based models, we used 255 

all possible thresholds within the range of the EDI data.  256 

For external validation based on the MIMIC-IV dataset, we reported the AUCs and real-257 

time probability of death on the ARDS and sepsis cohorts for each involved model, 258 

respectively. The EDI was evaluated only in the internal validation due to unavailability 259 

of EDI data in the non-Epic-based MIMIC-IV. To validate TECO externally in a manner 260 

more akin to a clinical setting, we positioned each model at varying time points after ICU 261 

admission and utilized a rolling window of the most recent available data to predict 262 

patient outcomes at future time points, as defined by each TECO sub-model’s task. For 263 

example, the 24-hour sub-model, which utilizes data from the preceding 96 hours 264 

(Figure 1), was employed to predict mortality at 120, 132, 144, and up to 240 hours after 265 

ICU admission (Figure 2).    266 

Feature Importance and Ablation Study 267 

To determine the feature importance of the ICU monitoring measures, we performed a 268 

feature elimination analysis on TECO with 20 random splits of training and validation. 269 

For each feature, the importance score was determined using the AUC information 270 

gained between the original model and the model without the feature. In addition, we 271 
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calculated the impurity scores for RF and compared feature importance consistency 272 

between TECO and RF. 273 

To assess the impact of baseline variables on model performance, we conducted an 274 

ablation study by comparing the AUCs of the full models to those of models using only 275 

time-dependent variables.  276 

RESULTS 277 

A total of 2579 patients were included in the THR model development cohort. All 278 

enrolled patients had COVID-19, and of these, 925 (35.9%) expired in the ICU. The 279 

characteristics of the baseline variables are presented in Table 1. Among these patients, 280 

the median age was 63.0 years, and a majority were male (1499, 58.1%), white (1909, 281 

74.0%), non-Hispanic (1723, 66.8%), and overweight to obese (BMI ≥ 25) (1657, 282 

64.3%). The MIMIC ARDS validation cohort included 2799 patients, of whom 471 283 

(16.8%) expired in the ICU. The MIMIC sepsis validation cohort included 6622 patients, 284 

of whom 1031 (15.6%) expired in the ICU. These two external validation cohorts 285 

presented similar trends in the distribution of baseline variables, with the majority being 286 

elderly, male, and white (Table 1).  287 

Table 1. Baseline characteristics in the COVID-19, ARDS, and sepsis cohorts.   288 

�  COVID-19  MIMIC-ARDS MIMIC-Sepsis 

Number of 
patients/encounters, 
n 

2579 2799 6622 

Age (years) 
   

Median (Q1, Q3) 63.0 (51.0, 
74.0) 

66.0 (54.0, 
76.0) 

66.0 (54.0, 
77.0) 

Sex, n (%)    
Male 1499 (58.1) 1595 (57.0) 3782 (57.1) 
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Female 1080 (41.9) 1204 (43.0) 2840 (42.9) 

Race, n (%)    
White 1909 (74.0) 1749 (62.5) 4155 (62.7) 

Black 401 (15.5) 217 (7.8) 530 (8.0) 

Other 125 (4.8) 168 (6.0) 470 (7.1) 

Unknown 144 (5.6) 665 (23.8) 1467 (22.2) 

Ethnicity, n (%)    
Hispanic 713 (27.6) - - 

Non-Hispanic 1723 (66.8) - - 

Unknown 143 (5.5) - - 

BMI, n (%) 
   

Underweight 53 (2.1) 53 (1.9) 160 (2.4) 

Normal 379 (14.7) 535 (19.1) 1451 (21.9) 

Overweight 698 (27.1) 652 (23.3) 1673 (25.3) 

Obese 959 (37.2) 792 (28.3) 1540 (23.3) 

Unknown 490 (19.0) 767 (27.4) 1798 (27.2) 

Outcome, n (%)    
Death 925 (35.9) 471 (16.8) 1031 (15.6) 

Discharge 1654 (64.1) 2328 (83.2) 5591 (84.4) 
(MIMIC: Medical Information Mart for Intensive Care. ARDS: acute respiratory distress 289 

syndrome.)  290 

Internal Validation 291 

In the COVID-19 model development cohort, AUCs on the validation sets across the 20 292 

data splits are summarized in Supplementary Figure 1 and Supplementary Table 1. In 293 

general, all models’ performance improved as the targeted prediction time window was 294 

shortened, with the median AUCs ranging from 0.86 to 0.97. The median AUC of TECO 295 

model, ranging from 0.89 to 0.97, was higher than that of EDI (0.86–0.95), RF (0.87–296 

0.96), and XGBoost (0.88–0.96) at every prediction time window, demonstrating its 297 

overall advantages. On the other hand, the median AUC of EDI-based prediction was 298 

consistently lower than that from the other models at every prediction time window. It is 299 
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noteworthy that the median AUC achieved by TECO when predicting 60-hour mortality 300 

(0.93) matched with that based on EDI when predicting 12-hour mortality 301 

(Supplementary Table 1), showcasing the advantage in early warning capability for 302 

TECO. 303 

External Validation 304 

In the two external validation cohorts, similar trends of AUC were observed across 305 

different time intervals for each model (Table 2; Supplementary Figure 2). Using the 306 

sub-model for prediction of 24-hour mortality as a demonstration, for the ARDS cohort, 307 

AUCs for all three models improved from the earliest time point of prediction (120 hours 308 

since ICU admission), where the AUCs were 0.66 for TECO, 0.60 for RF, and 0.60 for 309 

XGBoost, to the latest time point (240 hours), where the AUCs were 0.76 (TECO), 0.73 310 

(RF), and 0.72 (XGBoost), respectively. Similarly, for the sepsis cohort, AUCs of the 311 

same 24-hour sub-model improved from 0.65 (TECO), 0.57 (RF), and 0.57 (XGBoost) 312 

at the earliest prediction time point to 0.75 (TECO), 0.73 (RF), and 0.72 (XGBoost) at 313 

the latest time point (Table 2). Based on AUC, the TECO model consistently 314 

outperformed RF and XGBoost throughout a 5-day monitoring period in both cohorts. 315 

This advantage of TECO was particularly apparent at earlier lookout time points (e.g. 316 

120 through 216 hours since ICU admission).  317 

As expected, the performance of all models in the external validation was generally 318 

lower than that in the internal validation. TECO’s performance in the ARDS cohort was 319 

slightly better than that in the sepsis cohort, especially at earlier lookout time points 320 

(Supplementary Figure 2).  321 

Table 2. Model performance on the external validation cohorts to predict 24-hour 322 
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mortality. At each time point after ICU admission, the models use the most recent 96 323 

hours of data to predict mortality in the next 24 hours. For example, at 156 hours after 324 

ICU admission, the models use data from 60 to 156 hours to predict outcomes at 180 325 

hours after admission. Model performances are presented as AUC [95% CI]. 326 

Confidence intervals (CIs) are estimated by bootstrapping with 500 iterations, sampling 327 

the whole dataset with replacement. Statistical significance was assessed using 328 

DeLong’s test to compare RF or XGBoost with TECO (* p < 0.05, *** p < 0.001). 329 

Cohor
t 

Hours 
since ICU 
admission 

TECO RF XGBoost 

ARDS 

120 0.66 [0.60,0.71] 0.60 [0.53,0.67] * 0.60 [0.54,0.67] 
132 0.70 [0.65,0.74] 0.62 [0.57,0.68] * 0.62 [0.57,0.68] * 

144 0.73 [0.69,0.76] 0.67 [0.63,0.71] 
*** 0.66 [0.62,0.70] *** 

156 0.75 [0.72,0.78] 0.71 [0.67,0.74] * 0.70 [0.66,0.74] * 
168 0.76 [0.72,0.79] 0.73 [0.69,0.77] * 0.72 [0.67,0.75] * 

180 0.76 [0.72,0.78] 0.71 [0.67,0.74] 
*** 0.70 [0.67,0.74] *** 

192 0.77 [0.74,0.80] 0.72 [0.69,0.76] 
*** 0.72 [0.68,0.75] *** 

204 0.76 [0.73,0.79] 0.71 [0.67,0.74] 
*** 0.70 [0.67,0.74] *** 

216 0.76 [0.74,0.79] 0.72 [0.69,0.75] 
*** 

0.72 [0.68,0.75] *** 

228 0.76 [0.73,0.79] 0.73 [0.70,0.76] * 0.72 [0.69,0.75] *** 
240 0.76 [0.72,0.79] 0.73 [0.70,0.76] * 0.73 [0.69,0.76] * 

Sepsis 

120 0.65 [0.62,0.70] 0.57 [0.53,0.61] 
*** 0.57 [0.53,0.61] *** 

132 0.68 [0.65,0.71] 0.60 [0.57,0.63] 
*** 0.59 [0.56,0.62] *** 

144 0.71 [0.68,0.73] 0.63 [0.60,0.66] 
*** 0.62 [0.59,0.65] *** 

156 0.72 [0.70,0.75] 0.67 [0.65,0.69] 
*** 0.66 [0.64,0.69] *** 

168 0.73 [0.71,0.75] 0.68 [0.66,0.71] 
*** 0.67 [0.65,0.70] *** 

180 0.73 [0.70,0.75] 0.69 [0.66,0.71] 
*** 0.67 [0.64,0.69] *** 

192 0.74 [0.72,0.76] 0.70 [0.68,0.72] 0.68 [0.66,0.70] *** 
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*** 

204 0.75 [0.73,0.77] 0.71 [0.68,0.73] 
*** 0.69 [0.67,0.71] *** 

216 0.76 [0.74,0.78] 0.72 [0.70,0.74] 
*** 0.71 [0.68,0.73] *** 

228 0.76 [0.74,0.78] 0.73 [0.71,0.75] 
*** 0.72 [0.70,0.74] *** 

240 0.75 [0.73,0.78] 0.73 [0.71,0.75] * 0.72 [0.70,0.74] *** 
(AUC: area under the receiver operating characteristic curve. TECO: Transformer-330 

based Encounter-level Clinical Outcome. RF: random forest. XGBoost: Extreme 331 

Gradient Boosting.  ARDS: acute respiratory distress syndrome.) 332 

Monitoring of Patient Deterioration 333 

TECO can be used to provide real-time estimation of mortality probability throughout the 334 

ICU stay. An illustration of this feature is shown in Figure 2, where results from external 335 

validations of the 24-hour sub-model are presented. TECO demonstrated that, at the 336 

cohort level, patients who ultimately survived their ICU stay exhibited a consistently 337 

lower probability of mortality throughout the 5-day monitoring period compared to those 338 

who eventually died in the ICU. Moreover, TECO displayed a decreasing trajectory in 339 

mortality probability for the surviving patients, a trend consistently observed across two 340 

external validation cohorts. Similar findings were observed with all nine TECO sub-341 

models (Supplementary Figure 3). For an illustration of TECO-generated deterioration 342 

monitoring at the individual patient level, the mortality probability projection of eight 343 

representative patients from the ARDS and sepsis cohorts are shown in Supplementary 344 

Figure 4. 345 

Feature Importance and Ablation Study 346 

In the feature importance analysis, SF ratio appeared to be the most important feature 347 

for TECO, especially at later time points closer to the outcome (Figure 3). The mSOFA 348 
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demonstrated the second highest importance. Similarly, the mSOFA and SF ratio 349 

showed higher importance for RF, where the importance of SF ratio gradually increased 350 

towards the time of the outcome. 351 

Removing the contribution of baseline variables led to a performance decrease across 352 

all models (TECO, RF, and XGBoost) in the two external validation cohorts 353 

(Supplementary Table 3). This performance drop was consistent across models and at 354 

different time points when the predictions were made. Notably, the contribution of these 355 

baseline variables appears to be independent of the timing of prediction. Importantly, 356 

even without baseline variables, TECO remained the top-performing model, particularly 357 

at earlier prediction time points, underscoring its intrinsic capability to effectively handle 358 

dynamic, time-dependent data. 359 

DISCUSSION 360 

In this study, we developed and validated a novel deep learning algorithm, TECO, for 361 

mortality prediction in the ICU. Some existing methods for ICU mortality prediction also 362 

utilize transformer architecture and continuous monitoring data, particularly those 363 

available from the MIMIC-III and -IV databases.[19, 21] In contrast to these approaches, 364 

TECO is a lightweight transformer model specifically tailored to handle time-dependent, 365 

irregularly recorded features and time-independent baseline features in a joint manner. 366 

Unlike MeTra or Song et al. models, TECO does not presume a fixed time range of 367 

either the input data or the outcome. [19, 21] Instead, it can leverage the most recent 368 

ICU data to make predictions at future time points. 369 

Our work benchmarks TECO against the commercially available EDI, a closed-source 370 

metric exclusive to Epic platforms. The robust performance of TECO, in comparison to 371 
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EDI, highlights its potential as a better outcome prediction tool that is not confined to a 372 

single EHR system provider. The EDI was developed prior to the COVID-19 pandemic 373 

but was widely used for clinical decision support and ICU triage during the pandemic.[6, 374 

8] In this study, we demonstrate that the EDI had relatively lower predictive performance 375 

beyond the 24-hour window prior to the outcome. In contrast, all three non-proprietary 376 

models—RF, XGBoost, and TECO—showed advantages especially at time points 377 

further from the ICU outcome. According to limited public information, the EDI model 378 

does not appear to use SF ratio in its development. [5, 6] Our feature importance 379 

analysis demonstrates that SF ratio could be of high importance, which may explain the 380 

limited performance of EDI. Besides SF ratio, mSOFA also had a high impact on the RF 381 

and TECO. This is consistent with the findings that SOFA is a reliable indicator for 382 

mortality among COVID-19 patients,[31-33] and that mSOFA has an equivalent 383 

performance in mortality prediction.[28]  384 

Compared with RF and XGBoost in each external cohort, TECO outperformed the non-385 

transformer models throughout a 5-day monitoring period, especially on the earlier days 386 

in the ICU. Calibration plots also reveal a stronger separation of outcomes based on 387 

TECO-estimated mortality probabilities (Supplementary Figure 5).  TECO’s multi-head 388 

attention modules overcomes a bottleneck in traditional recurrent neural networks to 389 

learn long-range dependencies in sequences by linearly projecting the dimensions and 390 

queries of the input embedding.[12] The validation of TECO in these non-COVID-19 391 

external cohorts underscores its generalizability in various severe diseases. It is also 392 

worth noting that TECO’s performance is comparable to several well-established ICU 393 

and in-hospital mortality prediction algorithms.[34-40] Some of these algorithms, while 394 
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showing better predictive capabilities,[36, 37, 39], are limited by some essential factors 395 

such as a lack of external validation, a significantly smaller development sample size, 396 

challenges in real-time monitoring implementation, or a combination of these.  397 

We demonstrate TECO's practical utility in the ICU setting by highlighting its ability to 398 

monitor patient deterioration. The TECO-estimated mortality risk was consistently 399 

elevated among patients who eventually expired in the ICU, reflecting their heightened 400 

illness severity (Figure 2). To exclude the possibility that such trends were systemically 401 

introduced due to model artifacts, we examined and compared the mortality probability 402 

of individual patients (Supplementary Figure 4). Importantly, we observed different 403 

patterns among these patients, especially in the earlier days in ICU. Some of these 404 

patterns (e.g., Patients D, F, I) differ significantly from the aggregate trends observed at 405 

the group level (Figure 2), highlighting TECO’s ability to capture real-time, patient-406 

specific details.  407 

Developing an algorithm that can leverage the longitudinal time course of inpatient EHR 408 

data may improve prediction accuracy and enable earlier detection. In this study, the 409 

median AUC achieved by TECO using data up to 60 hours before the outcome (0.93) 410 

matched with that based on EDI at 12 hours before the outcome. With the successful 411 

validation of the external cohorts, this may suggest that TECO could signal a 412 

deterioration alert a full 48 hours before EDI. For ICUs with heavy workloads such as 413 

those observed during the COVID-19 pandemic, this improvement could substantially 414 

facilitate hospital resource planning, clinician communication with patient families, and 415 

play a vital role in future public health emergencies.  416 
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LIMITATIONS AND FUTURE DIRECTIONS 417 

This study has several limitations. Firstly, the usage of COVID-19 data to develop the 418 

TECO model was primarily motivated by the large sample size accumulated over the 419 

pandemic in our EHR systems. In addition, this Epic-based dataset included the 420 

proprietary EDI as a benchmark to evaluate our model—an option not available in other 421 

public ICU data sources. Ideally, external validation could have been conducted on a 422 

COVID-19 cohort from a different health system. Unfortunately, such data were not 423 

available at the time of this study. When validating TECO in the two external, non-424 

COVID-19 cohorts, we found the model’s performance decreased compared with that in 425 

the COVID-19 cohort. While a performance drop from the training setting onto the 426 

independent testing setting is frequently observed [41, 42], it is important to note that 427 

the two external validation cohorts in this study represent two distinct diseases that 428 

differ from COVID-19 and the models were not trained on these diseases. Another 429 

potential contributor to the observed performance drop may stem from the fact that, 430 

when training TECO using the COVID-19 cohort, we only utilized patient outcomes at 431 

the ICU endpoint (i.e., death or discharge). This approach was intended to ensure 432 

representation of the two extreme scenarios across a broad spectrum of patients’ 433 

physiological conditions in the ICU. However, when evaluating TECO in the external 434 

cohorts over a moving time scale (120-240 hours since ICU admission), patients who 435 

are not at immediate risk of death may not necessarily present a health status that is 436 

ready for discharge. While TECO demonstrates proof of concept as a potential ICU 437 

monitoring tool, further validation across a broader range of disease states and ICU 438 

settings could significantly improve its performance and generalizability.  439 
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Nevertheless, our study demonstrates the feasibility of directly using structured EHR 440 

data, especially ICU monitoring data, to empower deep learning-based outcome 441 

prediction. The current version of TECO incorporates only 11 variables among which 6 442 

are typically measured in the ICU in real time. Future work will need to consider whether 443 

more complex models using additional variables could influence the models’ 444 

performance and generalizability, especially given TECO’s intrinsic advantages in 445 

handling long-range, high-frequency data. However, operational costs associated with 446 

more complex and computationally intensive models must be thoroughly evaluated 447 

when considering these potential improvements. The TECO model in this study remains 448 

a lightweight transformer, which should not present significantly greater implementation 449 

challenges than the more conventional RF and XGBoost models. Moreover, with the 450 

advancement of large language models, clinical notes may also be used as additional 451 

features to provide valuable insights.[43-46] 452 

Secondly, missing data and inconsistent data quality across different health systems or 453 

sites may significantly limit the applicability of a data-intensive model like TECO. For 454 

example, erroneous data due to instrument or human operations are frequently 455 

captured in the ICU data. More comprehensive data quality screening and control could 456 

benefit the implementation of TECO in real-world settings.  457 

Lastly, it is worth noting that patients diagnosed with ARDS could potentially meet the 458 

sepsis criteria. Despite the absence of these cohorts in the training data for TECO, 459 

ensuring no information leakage, this scenario may still introduce a degree of bias and 460 

pose challenges to the implementation of TECO in the ICU and the interpretation of its 461 

outputs. 462 
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CONCLUSION 463 

We developed TECO, a transformer-based model, to analyze multi-dimensional, 464 

continuous monitoring data for ICU mortality prediction. In internal validation, TECO 465 

outperformed EDI-based prediction and other conventional machine learning methods. 466 

In two external validation cohorts (where EDI was not available), TECO outperformed 467 

other conventional machine learning methods. TECO may be further tailored as a 468 

disease-generic early warning tool in the ICU or inpatient settings. 469 
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FIGURE LEGENDS 489 

Figure 1. The TECO algorithm design. This figure demonstrates a 24-hour mortality 490 

prediction example, utilizing data from the preceding 96 hours to predict the binary 491 

outcome (death vs. non-death). Time-dependent, ICU monitoring variables were aligned 492 

and concatenated with baseline variables, then embedded into 512-dimensional feature 493 

vectors. These feature vectors were combined with positional timestamp vectors and 494 

fed into a multi-layer Transformer-encoder. (BMI: Body Mass Index. mSOFA: modified 495 

Sequential Organ Failure Assessment score. mSOFA-resp: mSOFA respiratory sub-496 

score. Resp Rate: respiratory rate. SpO2: pulse oximetry, SF ratio: SpO2/FiO2 ratio. 497 

FiO2: fraction of inspired oxygen.) 498 

 499 
Figure 2. TECO-based monitoring of mortality probability in two external 500 

validation cohorts. The green line represents patients who were eventually discharged 501 

alive from ICU, while the orange line represents patients who died in ICU in the ARDS 502 

(left) cohort and sepsis (right) cohort, respectively. Probability of mortalities are 503 

aggregated over repeated hours since admission to show the mean and 95% 504 

confidence interval. 505 

Figure 3. Feature importance analysis in the COVID-19 cohort. The left panel shows 506 

the information gain calculated through feature elimination for TECO. Each bar 507 

represents the AUC loss from 20 different validation splits. The right panel shows the 508 

random forest impurity importance for each feature with score > 0.05. 509 

  510 
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