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Abstract

Infectious disease outbreaks with pandemic potential present challenges for mitigation and
control. Policymakers make decisions to reduce disease-associated morbidity and mortality while
also minimizing socioeconomic costs of control. Despite ongoing efforts and widespread recog-
nition of the challenge, there remains a paucity of decision tool frameworks that integrate epi-
demic and macroeconomic dynamics. Here, we propose and analyze an econo-epidemic model to
identify robust planning policies to limit epidemic impacts while maintaining economic activity.
The model couples epidemic dynamics, behavioral change, economic activity, and feasible pol-
icy plans informed by respiratory disease threats of pandemic concern. We compare alternative
fixed, dynamic open-loop optimal control, and feedback control policies via a welfare loss frame-
work. We find that open loop policies that adjust employment dynamically while maintaining a
flat epidemic curve in advance of the uncertain arrival of population-scale vaccination outperform
fixed employment reduction policies. However, open loop policies are highly sensitive to mises-
timation of parameters associated with intrinsic disease strength and feedback between economic
activity and transmission, leading to potentially significant increases in welfare loss. In contrast,
feedback control policies guided by open loop dynamical targets of the time-varying reproduction
number perform near-optimally when parameters are well-estimated, while significantly outper-
forming open loop policies whenever disease features and population-scale behavioral response
are misestimated – as they inevitably are. These findings present a template for integrating princi-
pled economic models with epidemic scenarios to identify vulnerabilities in policy responses and
expand policy options in preparation for future pandemics.

Key words: Macroeconomics of epidemics, GDP loss, health outcomes, optimal and feedback
control, pandemic response.

1 Introduction

The COVID-19 pandemic caused more than 700 million documented cases and more than 7 mil-
lion documented fatalities worldwide between 2020-2023 [1]. The actual number of infections and
fatalities has been far higher, e.g., total infections are unknown but likely in the billions, while ex-
trapolation from subnational level reports of excess mortality suggest that > 20 million individuals
died of COVID-19 from 2020-2022 [2, 3]. This catastrophic level of impact was anticipated, in part,
through assessment of early data on outbreak strength and severity in the Wuhan province in China
[4]. In the absence of immediate and effective interventions, infectious individuals could generate
R0 ∼ 3 secondary infections [5] with infection fatality rates of ∼ 0.5–0.8% [6]. Together, mathe-
matical models of epidemic dynamics combined estimates of human-to-human transmission and
age-dependent hospitalization/fatality risk [7, 8] to project cumulative fatality rates on the order
of 60 per 100,000 in the absence of large-scale interventions – equivalent to ∼2M fatalities in the
United States and ∼300K in the United Kingdom [4].

In response to the potential catastrophic threat of COVID-19, governments rapidly imposed so-
cial distancing and/or lockdowns to reduce contacts between susceptible and infectious individuals
(including those who may be unaware they are infected [9]) as a means to reduce rates of new in-
fections [10–12]. As but one example, model-inferred estimates suggest that ∼ 3.1 million deaths
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were averted in 11 European countries between February-May 2020 due to national lockdowns [13].
Likewise, related analysis of social distancing policies in China, South Korea, Italy, Iran, France,
and the United States estimated that policy directives and restrictions led to more than 61 million
averted cases between February-April 2020 [14]. However, such counterfactuals come with signifi-
cant caveats. First, baseline epidemic models do not typically integrate behavioral change (and/or
alternative mitigation steps) that could lead to reduction in transmission and fatalities [15]. Second,
even if early transmission is averted, subsequent relaxation of policies can lead to rapid resurgence
of infections and fatalities, e.g., China’s late 2022 re-opening likely led to more than 1.4 million fa-
talities in a 3 month period between December 2022 and February 2023 [16]). Third, societal scale
lockdowns impose health costs, decreasing the frequency of regular clinical care visits including
screening for cancers [17], while increasing social isolation that impacts the mental health of chil-
dren and adults [18].

Local, regional, and national lockdowns also come with substantive socioeconomic costs. In
macroeconomic terms, lockdowns reduce economic activity due to production declines and de-
creases in productivity, losses of revenue, and business closures that ripple across different eco-
nomic sectors. People and policymakers are still dealing with the aftermath of lockdowns. For
example, lockdowns are hypothesized to have driven a burst of inflation [19] driven, in part, by
supply-chain disruptions. Likewise, changes in the labor market induced by the pandemic, includ-
ing increases in remote work, shifts in jobs, industries, and occupations employment pattens, and
shifts in market demand have continued to impact economic productivity and gross domestic prod-
uct worldwide [20–22]. In a March 8, 2024, public event at the London School of Economics [23], the
Federal Reserve Bank of New York President John Williams expressed dissatisfaction with econo-
epidemic models. Despite significant effort, the failure to integrate principled economic models
with epidemic scenarios generates vulnerabilities in policy responses that prioritize one of health
or economic outcomes at the expense of the other. As a result, there are unresolved questions on
the link between epidemic dynamics, policy response, and economic impacts spanning increases in
inflation, supply chain dilemmas, and changes in the labor market [19–22].

This paper addresses the lacuna between public health policies that aim to decrease the mor-
bidity and mortality associated with disease outbreaks, and social planning policies that aim to
stimulate and sustain economic activity. In doing so, we integrate both sets of goals in a common
valuation framework and ask: what feasible policies minimize health impacts while maximizing
economic activity? To address this question, we develop a social planning policy analysis frame-
work that (i) includes realistic, feasible policy plans that account for lags in implementation and
discrete policy periods; (ii) utilizes a common ‘value of reduced mortality risk’ (VRMR) framework
for jointly evaluating the macroeconomic and public health effects of policy objectives – VRMR
quantifies the equivalent substitution between averted deaths and money [24]; (iii) accounts for be-
havioral response and the lack of precise information on (re)emerging diseases. By integrating a
common valuation framework and iteratively updating policies through commonly measured in-
dicators of disease impact, we explore when and how policy planners can feasibly achieve nearly
optimal population-scale epidemic and economic objectives in the face of persistent uncertainty
regarding transmission and responses at individual scales.

2 Results and Discussion

2.1 Econo-Epidemic Modeling framework

We developed an integrated econo-epidemic modeling framework amenable to a social planning
problem that can be used to identify ‘optimal’ policies given variation in disease transmission, be-
havioral response, and economic output (Figure 1). To do so, we utilize a Susceptible-Exposed-
Infectious-Recovered/Removed (SEIR) epidemic modeling framework to represent disease spread
at population scales (full equations in Supplementary Information (SI) Text A). The time varying
incidence, βtSI, given the susceptible fraction S and infectious fraction I is modulated by the trans-
mission rate

βt = βW − βN

(
1 − nt

nSS

)α

+ βΛ exp (−Λt) (1)
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Figure 1: Schematic of the econo-epidemic modeling framework with epidemic dynamics, macroeconomic model of wel-
fare loss, endogenous response, and feedback with a social planning problem. The top section provides an overview of the
underlying econo-epidemic model. The bottom section provides an overview of the social planning process that integrates
economic and public health impact as a means to develop optimal policies (both open- and closed-loop) to minimize welfare
loss through modification of employment reduction policies. Full specification of the epidemic model dynamics, economic
model structure, control theoretic approach, policy planner optimization, and disease parameters are found in Supplemen-
tary Text A.

which is driven by a combination of factors: (i) baseline interactions when the economy is open
(βW + βΛ); (ii) rapid behavioral adaptation of the population over a short time scale (1/Λ) uncou-
pled to employment levels that reduces transmission by βΛ; (iii) endogenous behavioral response
arising from individual-level decisions not necessarily mandated by policy (e.g., working from
home, masking, and improved ventilation in the case of respiratory diseases); (iv) policy-induced
dynamic reduction in transmission. The realized employment level nt relative to the steady-state
economy nSS leads to a reduction in transmission parameterized by βN and an exponent α. The
resulting time-dependent effective reproduction number is therefore Rt = St

βt
γ , where γ is the

removal rate of infectious individuals.
The disease model is coupled to a macroeconomic model in which the gross domestic product

(GDP) is driven by a linear production function tied to employment, assuming constant wages and
that output is fully consumed (see SI Text A). Employment is influenced by (i) individual-level
economic activity guided by utility maximization linked to the severity of the disease outbreak,
b(Ḋt, t), which we refer to as the endogenous behavioral response, and (ii) a social planner that
imposes a level of preferred employment reduction, Lt. We assume that the realized employment
reduction is the maximum of these two effects, i.e.,

nt = 1 − max{b(Ḋt, t), Lt}). (2)

In this combined econo-epidemic modeling framework, the objective of the central planner is to
minimize welfare loss WL(Lt) caused by the disease, balancing the death toll with the economic
costs (i.e., cumulative work hours, see SI Text A). Welfare loss is a function of the policy Lt equiv-
alent to the fractional employment reduction – which typically exceeds the endogenous response.
Welfare loss is measured by economic utility/welfare units and is nonlinearly related to wages,
level of economic utility, the death toll, and the disutility from working. Throughout, we consider
the social planning problem over a time horizon T in which we expect the large-scale dissemination
of effective vaccines (Supplementary Table S5).
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2.2 Evaluation of fixed employment reduction policies to minimize welfare loss
during a pandemic

In the absence of social planning interventions, an initially small fraction of infected individuals
will catalyze an outbreak leading to transient reduction in employment due to utility maximization
via the endogenous behavioral response. This scenario (Supplementary Figure S1) leads to large-
scale outbreaks and significant loss of life. It also provides the baseline for evaluating alternative,
fixed economic reduction policies intended to reduce welfare loss. To generate the baseline dy-
namics associated with basic reproduction number R0, we consider variation in fixed employment
reduction policies across a continuum ranging from fully open to a maximally restricted economy
(econo-epidemic model parameterization in Table S5). Employment reduction reduces cumula-
tive fatalities while increasing economic loss. We identify an optimal, intermediate lockdown level
corresponding to a fixed policy that minimizes welfare loss compared to viable alternatives (see
minima in welfare loss in the top panels of Figure 2). Variation in either the intensity of baseline
transmission (due to differences in disease features leading to changes in R0) or the efficacy of em-
ployment reduction on transmission lead to different optimal, fixed employment reduction policies
(Figure 2 bottom). Typically, increases in disease intensity and/or decreases in the efficacy of em-
ployment reduction on transmission increase the welfare loss associated with fixed, optimal policy
responses. Hence, insofar as disease intensity and the link between employment reduction and
transmission are known with certainty, there exists an optimal fixed response that can be planned in
advance.

2.3 Open loop control policies outperform fixed lockdown policies in minimiz-
ing welfare loss during pandemics

We sought to identify and characterize optimal open loop, time-dependent policies given continuous
variation in employment reduction levels nt, rather than fixed employment reduction policies as
explored in the previous section. To do so, we pose and solve an optimal control problem using a
robust steepest-descent algorithm based on the maximum principle (detailed in the Supplementary
Information). We utilize the employment reduction level, nt, as the control variable accessible by
the policy maker which influences transmission and the effective reproduction number. Figure 3
panels (a-c) and (d-f) compare consequences for welfare loss and optimal control solutions noc(t)
for low, medium, and high basic transmission cases, spanning R0 ≈ 2.6, 2.9, and 3.2 respectively. In
each case, the optimal control algorithm identifies time-dependent changes in employment reduc-
tion (see Figure S2 for disease dynamics, Re f f , and welfare loss). Initially, the economy is restricted
with significant economic cost. Given low prevalence (and low mortality), the rapid learning period
reduces transmission (e.g., via masks, social distancing, and crowd avoidance), leading to a reduc-
tion of Re f f close to, but slightly above 1. Then, exponential increases in disease burden drives a
second phase of reduced employment that exceeds employment reduction expected through the
endogenous response alone. Hence, the open loop optimal control policy reduces Re f f slightly be-
low 1. Finally, the expected arrival of an effective vaccine disseminated at high coverage allows the
optimal planner a means to reduce restrictions. These three phases appear most evidently in the
high disease scenario, but are present in each of the low, medium, and high transmission scenarios
in the optimal continuous policy. The equivalent total welfare loss for the optimal time-dependent
policy is shown as a function of R0 in panels (a)-(c). We also confirm that these time-dependent
policies could be implemented feasibly, i.e., by restricting the interval length during which a policy
could be changed. In practice, we offer the planner limited flexibility, showing that 3 policy regimes
are sufficient for an 18-month intervention period. The optimal piecewise constant curves (i.e., ‘op-
timal stepwise policies’) are paired with each optimal continuous policy in panels (d)-(f), closely
mimicking the optimal continuous policy both in shape and in performance. Notably, the optimal
time-dependent policies (whether continuous or stepwise) each identify nearly the same level of
employment reduction. However, the time at which the optimal control algorithm identifies the ap-
propriate moment to shift between policies (initial, restricted, relaxed) varies with the underlying
disease strength (see Figure S2). This variation also suggests that misestimation of disease strength
during the planning policy could lead to mismatched responses.
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Figure 2: Policy frontier for different disease states  

• Plots (a)-(c) show diseases with 3 basic transmission levels (βw)- 0.3, 0.376 and 0.45.  

• Plots (d)-(f) show diseases with 3 employment impact levels (βN)- 0.4, 0.53 and 0.6. 

• The death toll is very high in the absence of employment reduction policies, falls sharply 

with intermediate employment reduction, and stabilizes at low levels under intervention (see 

a and d). 

• GDP loss accrues steadily with employment reduction, except in cases whereby the workers’ 

endogenous response is greater than the policy (see b and e). 

• Harm, Unlike the death toll and GDP loss, is not monotonic with respect to employment 

reduction. This fact highlights the trade-off between the economic consequences of limiting 

employment and the public health consequences of limited intervention (see c and f). 

 

 

d 

a b c 

e f 

Figure 2: Optimal fixed employment reduction policies reduce welfare loss, balancing impacts of cumulative fatalities and
reduction in GDP. Panels (A)-(C) show the outcome of fixed employment reduction (on the x-axis) in terms of fatalities (per
100,000), GDP loss (%), and % welfare loss), respectively. The three curves in each panel denote outcomes given baseline
(black, R0 = 2.86, βW = 0.376), elevated (red, R0 = 3.156, βW = 0.45), or reduced (blue, R0 = 2.556, βW = 0.3) disease
transmission conditions, consistent with variation in early estimates of COVID-19 strength [5] The minimal WL∗ associated
with the optimal, fixed employment reduction policy, n∗ corresponds to the point at which welfare loss is at its minimum.
Likewise, Panels (D)-(F) show modulation of the impact of employment reduction on transmission using the disease param-
eters in the black curve conditions in Panels (A)-(C), given more impactful (pink, βN = 0.6), and less impactful (orange,
βN = 0.4) conditions. The baseline employment impact is when βN = 0.53.

2.4 Fragility of optimal control policies given uncertainty

Optimal control problems can be sensitive to misspecification of parameters, especially when ap-
plied to nonlinear dynamic systems with the potential for (transient) exponential growth [25].
Hence, we set out to evaluate the sensitivity of performance, as measured in terms of welfare loss,
given solutions of the optimal control algorithm for parameters θre f when the disease outbreak
is characterized by θ⃗alt ̸= θ⃗re f . As above, the optimal control problem is solved using a model-
based, open loop, offline computation yielding time-dependent policies for transmission that can
be mapped to equivalent employment reduction policies nt. Figure 4 highlights the sensitivity of
the optimal time-dependent policy to misspecification of parameters. The purple curves in panels (b)-
(d) show the difference between the death toll, GDP loss, and welfare loss relative to the optimal
time-dependent policy given a reference basic reproduction number (x-axis, vertical dashed line).
When the pathogen is less transmissable, then the optimal policy will be overly cautious, leading
to modest decreases in the death toll, substantial increases in GDP loss, and substantial increases
in welfare loss, jut as fixed policies are prone to misspecification errors (as in Figure 2). Likewise,
when the pathogen is more transmissable, then the optimal policy will be insufficiently cautious,
leading to substantial increases in the death toll, modest improvements in GDP loss, and substantial
increases in welfare loss (Figure 2).
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Figure 3: Policies over time and their outcome  

• Each disease has corresponding optimal fixed, stepwise, and continuous policies, designed to 

minimize harm from the epidemic and the employment reduction. 

• The fixed policy maintains a constant employment reduction.  

• The continuous policy allows for policy changes at any time. 

• Though easier to implement, the fixed policy is too crude, while the continuous is ideal but 

impractical. 

• The stepwise policy allows two employment adjustments and offers a middle ground. 

• Plots (d)-(f) show the policy trajectories for diseases with basic transmission rates (βw) of 0.3, 

0.376, and 0.45 respectively 

 

 

c 

e d f 

b a 

Figure 3: Performance of open loop, optimal control policies across disease transmission conditions. Three optimal poli-
cies are contrasted with no intervention and maximal intervention options. The optimal policies include an optimal fixed,
continuous, and stepwise policy. Panels (a)-(c) show the cumulative welfare loss for all five cases, in each case the optimal
policies outperform either no intervention or full restrictions. Panels (d)-(f) show the employment reduction over time for
the three optimal policies. Each of the three plots in the 2 panels denotes the policies and outcomes for 3 different disease
transmission conditions: Low (R0 = 2.56), medium (R0 = 2.86), and high (R0 = 3.16). Across conditions, the optimal
stepwise policy closely resembles the continuous optimal policy, and consistently outperform fixed policies.

2.5 Robust feedback control in econo-epidemic models

Identifying optimal, time-dependent planning policies via open loop algorithms leads to improve-
ments in welfare loss compared to fixed policies (see Figure 3) provided they rely on accurate dis-
ease parameter estimates (see Figure 4). However, a comparison of optimal time-dependent policies
did yield a dynamical insight – despite differences in employment reduction associated with varia-
tions in underlying disease strength, the target levels of Re f f were relatively robust. For example,
when varying R0 from 2.556 to 3.156, while we found approximately 400% relative differences in
employment reduction during the restricted phase, the Re f f relative difference was around 6%
(See Figure S2) . In this restricted phase, we observe an emergent feature of disease transmission
dynamics – the disease is controlled at levels where Re f f < 1, but only slightly so. Maintain-
ing the effective reproduction number below 1 constrains exponential increases in incidence with-
out paying the economic cost of more restrictive measures. Hence, we implemented a feedback
control planning algorithm that tracks Re f f (note that real-time estimates of the effective repro-
duction number are increasingly accessible [26]). We implement the feedback control using the
proportional-integral-derivative (PID) control technique [27] (the algorithm is detailed in Supple-
mentary Text B.2). Figure 4a specifies the resulting feedback control policy when optimized for the
correct and mismatched disease parameters (both stronger and weaker than the reference param-
eters). Note that despite the mis-specification, the feedback control policy identifies similar (albeit
slightly lagged) shifts in the timing between initial, restricted, and relaxed phases. Moreover, the
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Figure 4: outcomes of policies when disease transmission is different from assumed 

• The stepwise policy without feedback control (purple dots) relies on a priori assumptions 

about the disease characteristics.  

• Thus, assuming a wrong transmission level yields increasingly undesirable outcomes.  

• When the actual transmission level is higher than assumed, the death toll is significantly 

higher than optimal (see b). Conversely, when the actual transmission level is lower than 

assumed, the economic impact is too severe (see c).  

• The harm measure reflects these discrepancies, indicating that as the true basic transmission 

level diverges further from the estimate, the resulting harm increases substantially (see d).  

• In a, the feedback policy trajectories are presented next to the continuous policies for basic 

transmission rates (βw) of 0.3, 0.376, and 0.45. 

• When the feedback control policy is used (green dots), the consequences of incorrect 

assumptions about the transmission level are considerably milder across all three outcome 

measures (see b-d).  

b c d 

a 

Figure 4: Comparison of epidemic outcomes given social planning policy guided by feedback control vs. open loop
control. (a) Employment reduction policies in the case of low, medium, and high disease transmission respectively. The
policies contrast the optimal continuous policies given accurate knowledge of the disease state (dashed line) with a feedback
control policy that does not use direct information about the disease state (solid line). Impact of mis-specification of disease
parameters given variation in the basic transmission level, βW , given differences in (b) death toll, (c) GDP loss, and (d)
relative change in WL. The optimal policy is highly sensitive to misspecification of disease transmission rates, whereas the
feedback control policy approach is not. The feedback policy maintains low levels of death, GDP loss, and overall welfare
loss across different estimates of disease strength during planning.

welfare loss under the feedback control policy is robust to mis-specification of parameters (also see
robustness with respect to the link between employment and transmission in Figure S4). This ro-
bustness of policy response contrasts with the extreme sensitivity of the optimal time-dependent
employment reduction policy identified through an open loop, optimal control algorithm (contrast
green, feedback control with purple open loop, optimal control in Figure 4d).

3 Discussion

We developed and analyzed a social planning problem centered on an econo-epidemic model that
couples transmission dynamics between individuals with changes in employment. Our objective
was to identify a suite of feasible and robust social planning policies that could minimize welfare
loss as measured in terms of the value of reduced mortality risk, i.e., accounting for fatalities averted
during the pandemic as well as GDP decreases arising from employment reduction. In doing so, we
considered a fully coupled model such that changes in disease severity would decrease employment
through endogenous feedback which, in turn, would lead to decreases in transmission. The social
planner then has the opportunity to go beyond endogenous response and restrict economic activity.
As we show, although it is possible to devise an optimal, dynamic policy with reduced employment
that outperforms any fixed policy (e.g., lockdowns or otherwise), such optimal dynamic policies can
be extremely sensitive to misestimation of disease transmission parameters and/or the impact of
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economic activity on disease transmission. Indeed, implementing the incorrect ‘optimal’ dynamic
policy can lead to mismatched timing of interventions and significant increases in welfare loss.
Instead, we show that such optimal dynamic policies can be used as a guide for a feedback control
policy, leveraging robustness properties and implementation principles of proportional-integral-
derivative (PID) controllers. As a result, a social planner can implement a feedback control policy
that is feasible (i.e., is implemented via a combination of fixed policy blocks), nearly-optimal (i.e.,
performs nearly as well as the optimal dynamic policy with perfect information), and robust to mis-
specification (i.e., continues to perform nearly as well as the optimal dynamic policy even when
parameter estimations are misaligned with reality). If prepared in advance, such social planning
policies could counter false dichotomies surrounding prioritization of public health or the economy.

The COVID-19 pandemic is unlikely to be the last. Increasing mobility that enables long-distance
transmission, changes in climate that facilitate expansion of pathogen geographic ranges, and in-
creasing stress placed at human-zoonotic interfaces can each contribute to increasing the pandemic
potential of endemic and emerging pathogens. Specific threats include COVID-19, H5N1 (and other
avian influenza variants), as well as vector-borne viruses with pandemic potential (Zika, Nipah,
and others) [28–32]. These diseases pose an increasing and critical threat to global health and eco-
nomic security. The June 2021 report of a high-level G20 panel posits that “We are in an age of
pandemics.... There is every likelihood that the next pandemic will come within a decade — arising
from a novel influenza strain, another coronavirus, or one of several other dangerous pathogens.
Its impact on human health and the global economy could be even more profound than that of
COVID-19.” Hence, response to pandemic threats requires planning scenarios that address the joint
problem of mitigating transmission risk while minimizing socioeconomic impacts. For example,
a study preceding the COVID-19 pandemic estimated that pandemic impacts might approach 500
billion dollars per year (0.6% of global income) [33]. In fact, GDP decreased by ≈3% in 2020, or
approximately 2.5 trillion dollars [34], consistent with interquartile range estimates of 2.6%-4.2%
total GDP loss per year due to global warming by 2050 under a 1.5◦C increase scenario [35]. There
is a clear need to leverage lessons learned from the COVID-19 response and improve public health
infrastructure. However, social fatigue, the spread of misinformation, and politicization of public
health response each presents challenges to coordinated responses if a novel threat were to arise.

Here, the social planning response is guided by an idealized model of disease spread coupled
to an economic model. Both the economic and epidemic model come with caveats. The economic
model is simplified. It can be extended by modeling the heterogeneity of individuals [36] and
of firms or sectors [37], explicit modeling of costs to policy implementation, and the formulation of
learning mechanisms [38]. Likewise the epidemic model includes a relatively simplified representa-
tion of outbreak dynamics. The model neglects differences in asymptomatic, presymptomatic, and
symptomatic transmission, does not account for age-structure or heterogeneous mixing, stochastic-
ity, evolution of strains, nor spatially explicit dynamics arising from a combination of long-distance
travel and local mobility patterns. Nonetheless, the framework presented here could be adapted to
variations of both the economic and/or epidemic components of the model. In doing so, it will be
essential to consider to what extent social planning is feasible, improves upon expected endogenous
responses to epidemics, and does not unintentionally induce increases in welfare loss.

Consistent with prior work focusing on control strategies to manage COVID-19 epidemic dy-
namics (in the absence of socioeconomic feedback [25, 39] we find that optimal dynamic control
policies are highly sensitive to misspecification of dynamics, lead to mistimed interventions, and
increases in welfare loss. Although feedback control policies are robust to the assumptions and
feedback in the present econo-epidemic framework, it will be essential to evaluate robustness to
structural and parameter uncertainty moving forward. Implementing policies that reduce welfare
loss also depends on the extent to which individuals take steps to reduce interactions rationally
in response to perceived risk of infection. Increasing polarization [40] could limit endogenous re-
sponses, thereby increasing the need for intervention policies, while at the same time undermining
the effectiveness of policies. We recommend that efforts to communicate optimal feedback control
policies prioritize communication of the benefits and rationale behind policies – both in terms of
public health and socioeconomic benefits. Doing so will not just require development of more so-
phisticated models, but an increasing willingness to collaborate across social sciences, economics,
and public health.
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20. Amiti, M., Heise, S., Karahan, F. & Şahin, A. Inflation strikes back: The role of import competi-
tion and the labor market. NBER Macroeconomics Annual 38, 71–131 (2024).
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Supplementary Information for Integrating Macroeconomic and Public Health Impacts in Social
Planning Policies for Pandemic Response

A Econo-Epidemic Model Framework

A.1 The Planner Objective Function

A central social planner aims to minimize welfare loss WL caused by the disease, balancing the
death toll with economic cost. This is done by using a policy tool – employment reduction (Lt) –
which restricts economic activity in order to reduce the spread of the disease. By economic activity,
we mean employment (hours of work), though this can be generalized.

The objective function of the controlled variable Lt, to be minimized, is given by:

WL(Lt) =
∫ T

TV=0
f (TV) ·

∫ TV

0
e−rt [(Dt + ϕIt)WLD + (1 − Dt − ϕIt)WLL + χ · Ḋt

]
dt · dTV (S1)

where

(i) f (TV)− PDF of vaccine arrival time TV .
(ii)

∫ T
0 e−rt−discounting of future values with interest rate r. Time T is the planner horizon.

(iii) The fraction of the population (itself normalized to 1) who do not work (including the in-
fected who are isolating) is given by Dt + ϕIt, where WLD is the loss of welfare associated with a
person not producing.

(iv) The fraction of the population working is given by (1 − Dt − ϕIt) and WLL is the loss of
welfare associated with a production level below an endogenously preferred level (more on this
below).

(v) The contribution to welfare loss from the death toll is given by χ · Ḋt with χ > 0 is the value
of reduced mortality risk and Ḋt is the flow of deaths.

Welfare loss is measured by economic utility/welfare units, where we follow the modeling
precedents of previous research [37]. For welfare itself we use W ≡ ln wn − n5

5 where n is the level

of economic activity (fraction of daily hours worked), w is the daily wage, and n5

5 is the disutility
from working, further explained below.

Specifically:
a) WLD =

(
ln w − 1

5

)
is the welfare from working full time; this is lost for people not working,

Dt + ϕIt.

b) WLL = −
(

ln
(

nt
1−b(Ḋt ,t)

)
+ 1

5

(
1 −

(
nt

(1−b(Ḋt ,t))

)5
))

is the loss of welfare when employ-

ment nt is restricted by policy to be below the level endogenously chosen by individuals, discussed
below.

c) The level of economic activity is restricted by nt = 1−max( b(Ḋt, t), Lt)) where Lt is the policy
tool and b(Ḋt, t) captures the endogenous response of individuals, which expresses both fatalities
awareness (being a function, b, of the flow of deaths, Ḋt) and issues related to time, such as fatigue
(dependence on t).

d) Both Lt and 1 − b(Ḋt, t) are bounded from above by L capturing the maximum attainable
restriction on economic activity.

Planner’s horizon T is set so that the probability of vaccine arrival before that day exceeds 99%.

The idea of a social planner has been used extensively in studying social welfare. The latter
concept has been discussed since the early 20th century (see for example [41–43] ). A social planner
is a hypothetical decision-maker who attempts to maximize some notion of social welfare. The
planner is a fictional entity who chooses allocations for every agent in the economy that maximize
a social welfare function subject to certain constraints. The welfare loss function used here serves
this purpose and has been widely used in studying COVID 19, as for example in [44] .
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A.2 Epidemic Dynamics

We use the SEIR model framework while explicitly tracking deaths. The following equations de-
scribe the nonlinear dynamics of this model, in which each variable represents a fraction of the total
population.

Ṡt = −βt ItSt (S2)

Ėt = βt ItSt − σEt (S3)

İt = σEt − γIt (S4)

Ċt = δγIt − θCt (S5)

Ḋt = θCt (S6)
·
Rt = (1 − δ)γIt (S7)

where R is the fraction of the infected that recover and C is the fraction who become severely sick
and eventually die. Throughout, β denotes a transmission rate, σ is the incubation rate, γ is the
removal rate of which 1 − δ recover and δ transition to a severely sick state leading to new fatalities
given a death rate θ given severe illness. In this model, the basic reproduction number R0 is given
by:

R0 =
β0

γ
(S8)

and the time-varying effective reproduction number is given by:

Re(t) ≡ Rt = St
βt

γ
(S9)

We model the transmission rate βt as a function of three factors:

βt = βW − βN

(
1 − nt

nSS

)α

+ βΛ exp (−Λt) (S10)

where nt is the employment reduction relative to the maximum nSS. The formulation is motivated
as follows:

a. βW is the transmission rate when the economy is open, i.e., production and employment are
not restricted.

b. βN parametrizes the scale of the decline in transmission as activity falls (decline in nt
nSS

, em-
ployment relative to its steady state), using a power function with parameter α.

c. βΛ exp (−Λt) expresses the decline in transmission due to rapid learning over time by indi-
viduals after the outbreak begins over a characteristic time scale 1/Λ.

Thus, at time t = 0, when nt
nSS = 1 we get:

β0 = βΛ + βW (S11)

which is the transmission at the initial stage and corresponds to R0 = β0
γ .

After a period of time, which depends on the rate of decline Λ, individuals change their be-
havior, and when exp (−Λt) ≪ βW we get that the transmission rate (and hence Rt) rises with
employment:

βt = βW − βN

(
1 − nt

nSS

)α

(S12)

A.3 Macroeconomic model

The economy is modeled via a linear production function, with constant wages, and output is fully
consumed, where all state variables are monitored per-day. In the model, yt is GDP and ct is con-
sumption. The government imposes a lockdown policy Lt. Steady state (SS) employment (fraction
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of daily hours worked) is 1, i.e., nSS = 1. Total population is also normalized to 1. The following are
the key relations:

yt = Ant (S13)
w = A (S14)
yt = ct = wnt (S15)

Next, we provide details on the factors that set employment nt.

Individual Utility Maximization Individual utility is given by:

Ut = u(ct)− v(nt) (S16)

There is positive utility from consumption and disutility from labor. Prevalent functional forms are:

u(ct) = ln ct (S17)

v(nt) = θ1+ζn
n1+ζn

t
1 + ζn

(S18)

We use an empirically based value of Frisch elasticity ζn = 4. In the optimal solution nt = 1
θ ; as

nSS = 1
θ = 1, we get θ = 1.

At steady state where nSS = 1 we get:

v(nSS) =
1
5

(S19)

such that

USS = ln cSS −
1
5

(S20)

= ln w + ln nss −
1
5

= ln w − 1
5

Out of steady state we have:

Ut = ln w + ln nt −
n5

t
5

(S21)

In the outbreak, there is an endogenous response of individuals to incident fatalities, Ḋt, so the
utility function is modified as follows:

Ut = ln w + ln nt −
1
5

(
nt

1 − b(Ḋt, t)

)5
− ln

(
1 − b(Ḋt, t)

)
(S22)

where b is the endogenous response.

Consequences for Employment The macroeconomic model assumes that employment is deter-
mined in two ways:

a. the planner imposes lockdowns Lt. This is set by equation (S1), i.e., by minimizing social harm
subject to all of the constraints.

b. the individual sets desired employment by utility maximization as discussed in sub-section
A.3.

We posit that the stricter reduction in employment – by lockdown or by the individual response
– dominates. Employment thus behaves as follows:

nt = 1 − max{b(Ḋt, t), Lt}). (S23)
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A.4 Computing Welfare Loss In Equivalent Consumption Terms

We wish to convert welfare loss to equivalent consumption loss. Consider steady state and period
t welfare. Using Eqs. S20 and S21 we define welfare loss WL0 (nt) to be:

WL 0 (nt) = Uss − Ut = ln w − 1
5
−
[

ln w + ln nt −
n5

t
5

]
= − ln (nt)−

1
5

(
1 − n5

t

)
(S24)

So the inverse function WL0
−1 (WLt) converts welfare loss terms into an equivalent loss in

employment and consumption terms.
For example WL −1

0 (0) = 1, so nt = 1. There is no reduction in welfare; this corresponds to full
employment.

As WLt rises WL0
−1 (WLt) falls, so we define the corresponding employment and consumption

reduction, CL, as:

CL (WLt) = 1 − WL0
−1 (WLt) (S25)

This function maps WLt to the corresponding equivalent reduction in consumption (in %).
In our model WLt is the welfare loss, which is the integrand of the objective function :

WLt = (Dt + ϕIt)WLDt + (1 − Dt − ϕIt)WLLt + χ · Ḋt (S26)

In order to compute the equivalent consumption terms loss we compute

PDV CL =
∫ T

0
e−rt

(
1 − WL0

−1 (WLt)
)

dt =
∫ T

0
e−rt

1 − WL0
−1

 (Dt + ϕIt)WLDt
+ (1 − Dt − ϕIt)WLLt

+χ · Ḋt

 dt

(S27)

B Optimal Policy Identification

B.1 Optimal control algorithm

In line with formalism from theories of optimal control [45], the state equation has the form

ẋ(t) = f (x(t), u(t)), (S28)

where t ∈ [0, t f ] is the time-variable for a given t f ∈ (0, ∞), x(t) ∈ Rn is the state variable and
u(t) ∈ Rk is the input-control variable. We assume that an initial condition x(0) := x0 ∈ Rn is
given and fixed. The optimal control problem is to compute a control {u(t) : t ∈ [0, t f ]} which
minimizes the following cost functional,

J :=
∫ t f

0
L(x(t), u(t))dt, (S29)

for a suitable cost function L : Rn × Rk → R, subject to pointwise constraints of the form u(t) ∈
U (t), where U (t) ⊂ Rk is a time-dependent compact, convex set. Additional constraints on the
input-control signal may be imposed such as piecewise continuity in the time-variable t. If the
input control u(·) satisfies all of those requirements, it is said to be admissible. The costate variable
p(t) ∈ Rn is defined by the following equation,

ṗ(t) = −
(

∂ f
∂x

(x(t), u(t))
)⊤

p(t)−
(

∂L
∂x

(x(t), u(t))
)⊤

, (S30)

with the boundary condition p(t f ) = 0. We remark that the boundary condition p(t f ) is specified
at the final time t f , and not at the initial time t0 := 0 as for the state equation (S28). Therefore,
numerical computations of the costate have to be performed backwards in time after the state x(t)
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has been computed for all t ∈ [0, t f ]. Throughout the forthcoming discussion, the time variable
t ∈ [0, t f ] is continuous. The term “computation of a time-dependent variable for all t ∈ [0, t f ]” im-
plicitly assumed computation over a given approximation grid.

A key element in the characterization of an optimal control is the Hamiltonian function H :
Rn × Rk × Rn → R, defined as

H(x, u, p) := p⊤ f (x, u) + L(x, u). (S31)

Given an admissible control u(·), let x(·) and p(·) be the state trajectory and costsate trajectory,
respectively, associated with u(·). Given another admissible control, v(·), define the function J̃ :
[0, 1] → R in the variable λ as

J̃(λ) := J(u + λ(v − u)). (S32)

Then under suitable assumptions [46], the one-sided derivative dJ̃
dλ+ (0) satisfies the following in-

equality,
dJ̃

dλ+
(0) ≤

∫ t f

0

(
H(x(t), v(t), p(t))− H(x(t), u(t), p(t))

)
dt; (S33)

we note that here x(t) and p(t) are the state variable and costate variable, respectively, correspond-
ing to the input control u(·). This result implies the maximum principle whereby if u(·) is an
optimal control, then at almost every t ∈ [0, t f ], u(t) is a minimizer of H(x(t), v, p(t)) over v ∈ U (t).
The reason for this is that if the maximum principle is not satisfied at u(·), then a descent direction
for J(·) can be obtained from u(·) by v(·) satisfying the inequality

H(x(t), v(t), p(t)) ≤ H(x(t), u(t), p(t))

for all t ∈ [0, t f ], and

∫ t f

0

(
H(x(t), v(t), p(t))− H(x(t), u(t), p(t))

)
dt < 0

contradicting the supposition that u(·) is an optimal control. In the special case where v(t) is a
pointwise minimizer of H(x(t), v, p(t)) for all t ∈ [0, t f ], v(·) is a steepest descent direction.

The maximum principle leads us to the following iterative algorithm for the optimal control
problem.

Hamiltonian-based algorithm.
Fix a constant λ > 0 (to be used as a stepsize) and an initial control, u0(·).
Given a control uk(·), k = 0, 1, 2, . . . , compute the next control, uk+1(·), as follows.
Step 1: Compute (numerically, via an approximation) the state trajectory xk(·) defined by (S28), and
the costate trajectory pk(·) defined by (S30).
Step 2: For each t ∈ [0, t f ], compute a point vk(t) ∈ Rk satisfying

vk(t) ∈ argmin{H(xk(t), v, pk(t)) : v ∈ U(t)}. (S34)

Step 3: Set uk+1(·) = uk(·) + λ(vk(·)− uk(·)). □

For the step size we chose λ = 0.01. In making this choice we err on the side of simplicity of
coding the algorithm while slowing down its convergence rate as compared to larger, variable step
sizes without guarantees of convergence but a faster approach towards regions of optimal control.
This choice was based on the realization that in a practical setting of pandemic management the
optimal control program would be executed, off line, once per several days or weeks.

B.2 Feedback control algorithm

Due to the fragility of open-loop optimal control, it is a common practice in applications to first
compute an open-loop optimal control solution, use it to compute a corresponding output, then use
that output as the reference signal to be tracked in real time by the feedback control. Observe that
the formulation of the optimal control problem defined by Eqs. S28 and S29 makes no reference to a
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system’s output, and it is up the the feedback-controller’s designers to choose an output according
to practical considerations including the effectiveness and efficiency of the control law.

A schematic for the closed-loop system is depicted in Figure S3. The reference signal r(t) is
the object of tracking by the output of the econo-epidemic system, yt. The input to the econo-
epidemic system, u(t), is the output of the secondary controller, which has two inputs: the error
signal e(t) = r(t)− y(t), and the output error u(t)− uc(t), the latter the output of the PID controller.
The objective of the controller is to ensure that lim supt→∞ ||e(t)|| be small to within specifications.

The optimal control problem considered in this paper has the particular constraint that the input
signal u(t), representing a policy, be piecewise constant with a limited number of value-switchings
and lower bounds on the dwell-times (i.e., lengths) of constant-value periods. This constraint clas-
sifies the problem in the category of hybrid switched-mode optimal control [47], whose solution,
typically by computational means, may be complicated and time consuming due to the presence
of large numbers of local minima. An alternative approach is to migrate the task of guaranteeing
the constraint from the optimal-control’s algorithm to the design of the feedback control. What
makes this approach reasonable is the fact that for the considered optimal control problem, a suit-
able choice of the system’s output, y(t) = Rt, computed from an optimal control solution, has a
near-constant value throughout a large part of the time horizon for the problem. Furthermore, the
value of that constant is robust with respect to tested model-parameter uncertainties.

The feedback control law that we chose is founded on a version of the Proportional-Integral-
Derivative (PID) controller [27]. In continuous-time systems, the commonly-used PID control has
the following form,

u(t) = KPe(t) + KI

∫ t

0
e(τ)dτ + KD ė(t). (S35)

The designations “proportional”, “integral” and “derivative” refer to the three respective relation-
ships between e(t) and u(t) defined by Eq. S35. Thus, the first term, KPe(t), is the proportional
term, the second term is the integral control, and the third term is the derivative element; the con-
stants KP, KI and KD, all positive, are their respective gains. An improvement of the PID controller
may be achieved by directly controlling u̇(t) instead of u(t) [48]. Taking derivatives with respect to
time in Eq. S35, the resulting control has the form

u̇(t) = KP ė(t) + KIe(t) + KD ë(t). (S36)

While the various terms in Eq. S36 are functions of continuous time t, they may have to be computed
via discrete-time approximations. We use the following approximation due to its computational
efficiency:

uk − uk−1 = KP(ek − ek−1) + KIek−1∆t + KD(ek − 2ek−1 + ek−2)/∆t, (S37)

k = 1, 2, . . . , K f ; here ek := e(k∆t), ∆t is a fixed sampling period, and uk acts to approximate u(k∆t).
The range of k is {0, . . . , K f } where K f := [t f /∆t] is the largest integer not exceeding t f /∆t, u0 is a
given initial condition, and it is assumed that ek, k = 0, 1, . . . , [t f /∆t] can be read from the system at
time k∆t. We applied the discrete-time PID controller defined in Eq. (S37) with ∆t = 0.01.

In applying the PID controller (Eq. S36) via the approximation defined by Eq. S37 to the epi-
demic social planner problem, we took the input control to be the employment relative to its pre-
pandemic steady state, namely u(t) := nt (see Eq. S10 with nSS = 1), and the system’s output y(t) to
be the effective reproduction number of the epidemic, Re(t). The choice of u(t) is reasonable since
it provides the planner with a direct policy control influencing both the mortality rate and welfare
loss. Regarding the choice of the system’s output, simulation-based evidence has shown that ac-
cording to the open-loop optimal control, Re(t) converges to and then maintains a near-constant
value slightly less than 1, for a significant part of the simulation horizon.

The configuration of the feedback system is depicted in Figure S3. Note that the PID controller
is not used directly to shape the input u(t) of the econo-epidemic system, but rather serves to
compute uc(t) from the tracking-error signal of the econo-epidemic system, e(t) := r(t) − y(t).
This computation, performed in real time, is defined by Eq. S36 and approximated by Eq. S37.
The resulting signal uc(t) typically is continuous, or at least piecewise continuous, in contrast with
the input to the econo-epidemic system, u(t), which has to satisfy the aforementioned piecewise-
constant constraint. This constraint is ensured by the controller in the lower loop of the figure,
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marked as the “secondary controller”. It is a time-varying system with two inputs, the tracking-
error signal e(t) := r(t)−Re(t) as well as the input-error signal u(t)− uc(t), and a single output,
u(t+).
Definition of the secondary controller
The purpose of the secondary controller is to ensure that the input signal to the econo-epidemic
system, u(t), satisfies the piecewise-constant constraint. To describe its dynamics, we denote by Pj,
j = 1, 2, . . . , the jth maximal time-interval (period) during which u(·) has a constant value, labeled
a constant-value period. Let tj ∈ [0, t f ) denote the starting time of Pj, and observe that Pj = [tj, tj+1].

The constant value of u(t) throughout t ∈ Pj, and the end time-point of Pj, tj+1, are defined as
follows. Given a t-dependent function Eu(t) > 0, a constant Eτ > 0, and a t-dependent function
Ed(t) > 0, respectively labeled as input-error threshold, tracking-error threshold, and dwell-time thresh-
old. Consider the starting time of Pj, tj, for some j = 1, 2, . . ., such that tj < t f . Recall that the PID
controller runs in real time (or, better to say, approximates a real-time computation by using a given
finite grid). We set u(tj) = uc(tj), which determines that u(t) ≡ uc(tj) ∀t ∈ Pj. Meanwhile, uc(t)
keeps on changing according to the computations by the PID controller. The constant-value period,
Pj, is terminated in response to one of the following two events, whichever occurs first:

For t ∈ Pj,

1. |u(t)− uc(t)| ≥ Eu(t) and |e(t)| ≥ Eτ and t − tj ≥ Ed(t),

2. t = t f .

In case of Event 1, we set tj+1 = t and reset u(tj+1) = uc(tj+1), while in case of Event 2, we set
tj+1 = t f . Observe that the input error u(t) − uc(t) is reset to zero at the starting time of every
constant-value period Pj, j = 1, 2, . . ..

We chose the time-dependent function Eu(t) to be reset at the start of every constant value period
Pj, namely at time tj, to a given base value bu := Eu(0) that is independent of j = 1, 2, . . .. Thereafter
Eu(·) is monotone decreasing during an early part of Pj, and monotone non-increasing throughout
Pj, thereby guaranteeing that Eu(t) jumps upwards to the value bu at every time tj, j = 1, 2, . . .. This
form of the input-error threshold Eu(·) is designed to require larger input errors for terminating Pj
sooner rather than later after its starting time. This, in turn, would tend to limit from below the
dwell times (lengths) of constant-value periods hence potentially limiting from above their total
number throughout the interval t ∈ [0, t f ]. On the other hand, the time-dependent function Ed(t)
was chosen to be monotone increasing throughout the interval [0, t f ], and have no resets. This was
designed to permit more frequent switchings of constant periods early in the interval [0, t f ] rather
than late, which may be useful shortly after the outbreak of the pandemic, when the effects of
modeling errors on loop signals can be large and costly as compared to later stages of the epidemic.

The specific functions Eu(·) and Ed(·) as well as the value of Eτ were chosen based on simula-
tions of the system with various parameters. The resulting parameters of the PID controller are

KP = 0.05, KI = 0.6, KD = 0.00001. (S38)

For the secondary-control parameters, the threshold function Eu(·) has the form

Eu(t) = bu − au(t − tj) (S39)

throughout the first part of Pj, where bu := Eu(tj) is the base level at the start of Pj and au > 0 is
a given constant. Eu(·) is switched to a constant mode in the event that it reaches a given lower
threshold level θu > 0, and it maintains that level until the end of Pj. Thus,

Eu(t) = max{bu − au(t − tj), θu}

throughout Pj, for given bu > 0, au > 0, and θu > 0. We used the parameters bu = 0.1, au = 0.001,
and θu = 0.03, and Eτ = 0.03. Further, the threshold function Ed(t), t ∈ [0, t f ] is a affine function of
the form

Ed(t) = adt + bd, (S40)
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for a constant ad > 0 and a base level bd > 0. We chose ad = 0.1 and bd = 14.
The basic time unit for the problem under consideration is a day, and the end time is t f = 630

days. We used the discretized PID controller defined by Eq. S37 with ∆t = 0, 01, hence it, performs
a computation every 14.4 minutes. The secondary controller performs on the same schedule as the
PID controller.

Regarding other quantities of the model, by Eqs. (S8) and (S9) the output of the econo-epidemic
system is

y(t) := Re(t) = St
βt

γ
,

where St is the susceptible fraction of the population, βt is the pandemic’s transmission rate defined
by Eq. S10, and γ, the inverse of infectiousness period, taken at γ = 0.25 (see Supplementary
Table S5). The total duration of the simulated epidemic is t f = 630 days. The simulation results,
depicted in Figure 4, indicate a substantially better tracking of the feedback control over an open-
loop control.

C Calibration

To provide a recent, familiar baseline, we calibrate the model to fit the U.S. economy as impacted
by COVID19 [49]. Throughout, we work in daily terms. We calibrate the baseline used for simula-
tion, while noting that calibrated parameters represent a plausible benchmark for our exploration
of social planning policies for future pandemics. As a result, our evaluation of optimal policies
includes simulations in parameter regimes that depart from this benchmark – sometimes in sub-
stantial ways. We then evaluate the extent to which social planning policies function effectively in a
broad range of parameter choices while evaluating the possibility that the planner is uncertain and
likely incorrect in their estimation of parameters before designing policy rules.

C.1 Calibration of the Epidemiological Model

Estimates of the latency period (1/σ) and the infectiousness period (1/γ) rely on studies from early
in the COVID-19 pandemic [50, 51] . Their findings are confirmed by studies on infector-infectee
pairs [52]. The Infection Fatality Rate (IFR), denoted δ, is based on estimates from the Imperial
College COVID-19 Response Team [13] and a meta-analysis findings [6]. These sources estimate
the IFR at 0.8%. The meta-analysis reports that the IFR of the disease across populations is 0.68%
(0.53%− 0.82%), though it is noted that due to high heterogeneity, this might be an underestimate of
the true IFR [6]. The typical duration of transitions from I to D is set at 11 days such that the average
time between infection to death is 18 days, including both the incubation and infectious periods; we
note that this period is consistent with but somewhat shorter than estimates for COVID-19 of closer
to 21 days when including the distribution from infection to onset of symptoms and from symptoms
to death [53].

C.2 Estimation-based Calibration of Transmission

We employ daily U.S. data to estimate key relations and use the point estimates to calibrate the
model. The data series used are daily deaths, daily employment, lockdown measures, and the
derived transmission rate. We estimate the equation for βt :

βt = βW − βN

(
1 − nt

nSS

)α

+ βΛ exp (−Λt) (S41)

The results are shown in Table S2. The estimates imply the following. When Nt
NSS = 1 i.e., the

economy is not locked and there are no sick or dead, at time t = 0:

β0 = βΛ + βW = 0.339 + 0.376 = 0.715

and so R0 = β0
γ = 2. 86 Given the estimated rate of decline, Λ = 0.12, in a little less than a month

individuals adjust their behavior to the presence of the disease; subsequently, when exp (−Λt)
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≪ βW we get:

βt = βW − βN

(
1 − Nt

NSS

)α

This implies βt drops endogenously below βW as a function of employment, yielding reproduction
parameter Rt variation between 1.5 and 0.8.

C.3 Calibration of the Economic Model

C.3.1 Discounting.

We posit a 4% annual discount rate (r = 0.04), converted to daily terms (used by individuals and
consequently by the social planner).

C.3.2 The value of ϕ.

As assumed in prior work [54], we assume that anyone who has any symptoms self-isolates and
does not work (ϕ = 1).

C.3.3 The endogenous response, lockdown policy, and employment

First, we follow the functional form proposed by previous work [11, 55] and postulate that the
endogenous response function g(Ḋt, t) is given by:

g(Ḋt, t) = κtḊt (S42)

where

κt = κ (1 − (1 − φκ) · ft) (S43)

ft = normal cd f

(
t − µ f

σf

)
(S44)

where normal cd f is the CDF of the normal distribution, κt is the time-varying parameter of the ef-
fects of the individual response on employment, and the parameters µ f , σf , φκ , and κ are estimated.
The parameter κt express the idea that the endogenous individual response exhibits time decay ft.

Next, we note that there is an overlap of compliance with lockdown and the endogenous re-
sponse, so we use the maximal response as follows:

Nt

Nss
= 1 − max(Lt, κtḊt) + εt (S45)

We non-linearly estimate equation S45 using U.S. data on Nt
Nss , L, and Ḋt in the period from

March 1, 2020 to February 28, 2021. The results are as follows:

Nt

Nss
= 1 − max(Lt, κtḊt) + εt

Finally, we take into account that without restrictions, employment would drop significantly.
This can even reduce employment to levels below what is usually regarded as essential employment
plus work from home. Empirical estimates for the U.S. indicate that the minimum employment
level under the most stringent lockdown measures was around 0.65 − 0.70 of full employment [56,
57]. We therefore calibrate this level of employment to be 0.68 and set L = 0.32.
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C.3.4 Employment, Wages, and the Utility Function.

For the planner problem and the simulations we further need to calibrate w and A. To do so we use
two U.S. data points, as in a prior research [58]: the representative person earns an annual income
of $58,000, using the 2019 estimate from the U.S. Bureau of Economic Analysis.

Thus, pre-epidemic, which we call steady-state (SS), when g(Ḋt, t) = 0 we get that the daily
income w e is:

w =
58000
365

= 158.9 (S46)

We set A = w.

C.3.5 Value of reduced mortality risk.

The planner objective includes the term PSS · Ḋt · VRMRU , where VRMRU is the value of reduced
mortality risk. We determine its value and show how it fits in the social welfare function.

The central estimate for the monetary value of reduced mortality risk lost to COVID-19, VRMRUSD,
is 3.81 million USD, based on the EPA estimate of 270, 000 USD per year and an estimate of 14.1 years
of remaining life on average [59].

To include these values in the social welfare function, we apply an oft-used methodology [60],
as follows: denote the value of reduced mortality risk in utility terms by VRMRU , so that the
event of death in the model is associated with utility loss of VRMRU . Individuals are indifferent
between paying SHAREC of their flow consumption and avoiding the risk ε of losing VRMRU , and
not paying SHAREC of their flow consumption and carrying the ε risk of losing VRMRU . Given
the no-epidemic steady-state utility, this logic means that VRMRU should satisfy the following
indifference condition:

ln ct − n5
t

5
r

− εVRMRU =
ln ((1 − SHAREC)c)−

n5
t

5
r

(S47)

where

SHAREC =
εVRMRUSD × r

CUSD

365

(S48)

The representative agent would be willing to pay SHAREC so as not to lose VRMRU with an ε
risk of death; the payment, SHAREC, is given by equation S48, paying εVRMRUSD × r each day,
where r is the daily discounting rate is r.

Assuming SHAREC ≪ 1 we get − ln (1 − SHAREC) ≃ SHAREC and using our modelling of
C = Y (which we have taken to be 58, 000 USD), we get:

εVRMRU =
SHAREC

r
=

εVRMRUSD×r
YUSD

365

r

VRMRU =
VRMRUSD × 365

YUSD (S49)

Thus the VRMRU value we get is 23, 977 ≃ 24, 000 (also denoted χ) for the baseline VRMRUSD

value of 3.81 million USD.

C.3.6 Vaccine Arrival Rate

The term f (TV) is the probability density function of the availability of a vaccine at time TV . This is
an important term as it sets the horizon for the problem, acting as a hazard rate for leaving the state
of the pandemic. It is an expression of the essential risk and uncertainty embodied in the planner
problem. Note that were we to model an arrival time known with certainty, not only would an
important real world aspect be removed, but such modelling might create an artifact in the optimal
plan. The planner may enable an outbreak shortly before vaccine arrival, relying on the vaccine to
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eradicate it. Such a plan is not robust to delays in the arrival time. Relative to the interest rate r,
expressing time preference, f (TV) plays the major quantitative role in discounting future streams.

We assume the Gumbel distribution, justified by the following logic. We assume that the arrival
of the vaccine is a result of simultaneous competition among many firms. The time of arrival is the
minimum development time across these firms. Note that over the course of 2020-2022 over 110
vaccines were in clinical trials and dozens more in pre-clinical evaluations. The distribution of ar-
rival time is then well approximated by a Gumbel distribution [61], which is a member of the family
of extreme value distributions. Specifically, it is used for modeling the minimum of a sample from
many distributions, including exponential, logistic, and normal distributions. Under mild regular-
ity conditions, it is suitable to be a model for a sample minimum even when the distributions from
which the sample is drawn are unknown. In our setting, we remain agnostic about the distributions
of vaccine development time by individual firms.

In terms of the model, TV refers to the time of sufficient vaccination. With logistics, production
times, gradual take-up rates, etc. an ex-ante expected 540 days seems reasonable relative to the
March 2020 start date of the epidemic in the U.S.

The cumulative distribution function G (x) of a Gumbel distribution is defined over the real
numbers and parametrized by a location parameter µG and a scale parameter σG :

G(x; µG, σG) = 1 − exp
(
− exp

(
x − µG

σG

))
(S50)

We anchor the distribution’s parameters (µG, σG), by positing that the mean of the distribution
is 540 days, and that the probability of sufficient vaccination before day 360 is only 1%. These
assumptions engender two linear equations:

E(Gumbel (µG, σG)) = µG − EulerGamma · σG = 540
Q(Gumbel (µG, σG) , q) = µG + log (− log (1 − q)) · σG = 360

where E is the mean and Q is the quantile function. Targeting a mean of 540 and Q(q = 0.01) = 360
leads to the solution of µG = 565.83, σG = 44.74.
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D Supplementary Tables

function description formal representation

f (TV) Gumbel distribution for vaccine arrival f (TV ; µTV , σTV ) = 1 −
[
exp

(
− exp

( x−µTV
σTV

))]
b(Ḋt, L, t) employment response max(κtḊt, L)

κtḊt endogenous response κtḊt = κ (1 − (1 − φκ) · ft) Ḋt

ft = normal cd f
(

t−µ f
σf

)
Lt lockdown policy constraints L ⩾ Lt ⩾ 0

Table S1: Econo-epidemic functions to coupled vaccine arrival, employment, endogenous response,
and constraints.

βΛ Λ βW βN α

0.339∗∗∗ 0.12∗∗∗ 0.376∗∗∗ 0.53∗∗∗ 0.69
(0.05) (0.01) (0.05) (0.12) (0.31)

Table S2: Estimates of transmission relevant parameters given model fits, such that R2 = 0.74,
RMSE = 0.0307, and n = 351 – complete details of model fitting are available in [49]. Elements
are point estimates with standard errors in parentheses, and significance noted as ∗p < 0.10,∗∗ p <
0.05,∗∗∗ p < 0.01.

Parameter Description Numerical value

Eu(t) Input error threshold
max{0.1 − 0.001(t − tj), 0.03}, t ∈ Pj,

for every constant period Pj, j = 1, 2, . . .
Ed(t) Dwell time time threshold 0.1t + 14

Eτ Tracking error threshold 0.03
KP Proportional control gain 0.05
KI Integral control gain 0.6
KD Derivative control gain 0.00001

Table S3: Parameters for the PID control algorithm. Data presented here was mentioned following
the discussion of the PID algorithm (the space between equations S38 and S40, inclusive) and it is
provided here in order to complete the summary discussion.

κ φκ µ f σf

30, 500∗∗∗ 0.18∗∗∗ 245∗∗∗ 27.5∗∗∗

(0.0001) (0.01) (2.36) (2.68)

Table S4: Economic model parameterization based on U.S. data during the period of March 1, 2020-
February 28, 2021. The tables report point estimates with standard errors in parameters in paren-
theses, noting that R2 = 0.99, RMSE = 0.0139, and n = 365. Significance levels are noted as
∗p < 0.10,∗∗ p < 0.05,∗∗∗ p < 0.01. The complete model fits are available in [49].
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parameter description numerical value source
r daily interest rate 0.04

365 prevalent assumption
ϕ fraction of ill not working 1 assumption
χ weight assigned to death flows 24, 000 VRMR est.
γ inverse of infectiousness period 1

4 epi lit
σ inverse of latent period 1

3 epi lit
δ death rate 0.008 clinical lit
θ inverse of period I to D 1

11 clinical lit
βW baseline transmission rate 0.376 est.
βn employment effects scale parameter 0.53 est.
α power of employment effects function 0.69 est.

βΛ time effects scale parameter 0.339 est.
Λ exponential parameter in time effects 0.12 est.

w = A daily wages, productivity 158.9 data
κ scale parameter endogenous response 30, 500 est.
φκ parameter endogenous response 0.18 est.
µ f mean of fatigue function 245 est.
σf std of fatigue function 27.5 est.

µTV location parameter of Gumbel distribution 565.83 est.
σTV scale parameter of Gumbel distribution 44.74 est.
L maximum restriction of economy 0.32 epi lit
T planner’s horizon 630

Table S5: Estimated disease parameters used in the econo-epidemic model derived in part from [49].
Note that the text uses the variables t f and T interchangeably to denote the planner’s horizon.
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E Supplementary Figures

 

a b 

d c 

Figure S1: Baseline outbreak dynamics, endogenous response, and fatalities in the absence of optimal, policy-driven
employment reduction. Dynamics depict cases of R0 = 3.156 in a no employment reduction context (panels (a) and (b)) and
with relaxed employment reduction (panels (c) and (d)). In both context, as death rates rise, individuals reduce interactions,
sometimes more stringently than government-imposed employment reduction (whenever the blue curve is higher than the
black curve). In (a)-(b), no reduction policy is imposed, leading to rapid spread and increasing deaths until the population
reacts. In (c)-(d), the imposed restrictions are insufficient, prompting tighter individual measures as death rates escalate.
Over time, the anticipated arrival of vaccines weakens the individual response, evident in both scenarios, where later larger
death spikes elicit a diminished endogenous reaction. The cumulative fatalities per 100,000 in the two scenarios are 378.08
per 100,000 in case (a)-(b) and 280.02 per 100,000 in case (c)-(d).
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Figure S1: Time series  

• The policies outlined represent the optimal stepwise approach for basic transmission rates 

(βw) of 0.3, 0.376, and 0.45, assuming accurate knowledge of disease parameters. 

• As the basic transmission rate increases, the disease spreads more rapidly, necessitating a 

more stringent optimal policy.  

• However, even with these measures, increased rates of infection and mortality may still occur 

as the basic disease transmission rises, due to the severe economic repercussions of overly 

aggressive employment reductions. 

• The optimal policy aims to maintain the effective reproductive number (R) close to 1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S2: Econo-epidemic dynamics given optimal stepwise response policies. The policies outlined represent the opti-
mal stepwise approach for basic transmission rates (βW ) of 0.3, 0.376, and 0.45, respectively for low, medium and high cases
assuming accurate knowledge of disease parameters. As the basic transmission rate increases, the disease spreads more
rapidly, necessitating a more stringent optimal policy. However, even with these measures, increased rates of infection and
mortality may still occur as the basic disease transmission rises, due to the severe economic repercussions of overly aggres-
sive employment reductions. The optimal policy appears to maintain the effective reproductive number (Re f f ) close to 1.

Figure S3: The relationship between the feedback controller and the controlled system.

  

 

 

 

 

 

 

 

 

Figure S4: outcomes of policies when disease employment impact is different from 

assumed 

This Figure presents similar ideas to Figure 4, but with respect to variations in  

 

b c a 

Figure S4: This Figure presents similar results to as in Figure 4, but with respect to variations in βN instead of variations
in βW . The optimal policy is sensitive to misspecification of the impact of employment on the spread of the disease, whereas
the feedback policy approach is not. The policy using feedback control maintains death toll (a), GDP loss (b) and WL (c) in
levels that are close to optimal across all levels of employment impact.
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