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Abstract 

Artificial intelligence (AI) is increasingly applied to clinical trial risk assessment, aiming to improve safety and 

efficiency. This scoping review analyzes 142 studies published between 2013 and 2024, focusing on safety (n=55), 

efficacy (n=46), and operational (n=45) risk prediction. AI techniques, including traditional machine learning, deep 

learning (e.g., graph neural networks, transformers), and causal machine learning, are used for tasks like adverse 

drug event prediction, treatment effect estimation, and phase transition prediction. These methods utilize diverse 

data sources, from molecular structures and clinical trial protocols to patient data and scientific publications. 

Recently, large language models (LLMs) have seen a surge in applications, representing over 20% of studies in 

2023. While some models achieve high performance (AUROC up to 96%), challenges remain, including selection 

bias, limited prospective studies, and data quality issues. Despite these limitations, AI-based risk assessment holds 

substantial promise for transforming clinical trials, particularly through improved risk-based monitoring 

frameworks. 
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Introduction 

Clinical trials are key for evaluating the safety and efficacy of novel drugs and therapies1,2. Recent estimates of 

clinical trial failure show an increase for various phases and the average cost of a successful molecular entity has 

trended significantly upward for decades3–5. However, navigating the intricate landscape of potential risks associated 

with the execution of clinical trials can be a daunting6, nevertheless required task. Clinical trial risks encompass not 

only the well-being of participants (safety) and the ability of the intervention to deliver intended benefits (efficacy) 

but also the smooth and efficient execution of the trial itself up to drug approval (operational effectiveness)4,7,8. 

Identifying and mitigating these diverse risks throughout the trial process is crucial for improving patient safety as 

well as ensuring the integrity and ultimate success of the research enterprise. 

Assessing risks in clinical trials presents several challenges both before and during the research process9,10. Firstly, 

ensuring adequate participant safety and informed consent remains paramount, requiring thorough evaluation of 

potential adverse effects and mitigation strategies11. Secondly, maintaining trial integrity amidst evolving scientific 

knowledge and external factors demands continuous monitoring and adjustment of risk assessments to uphold data 

validity and ethical standards11,12. Lastly, meeting regulatory and compliance obligations adds a layer of intricacy, 

necessitating careful adherence to protocols and guidelines to minimize legal and reputational risks while facilitating 

meaningful research outcomes5. Balancing these concerns is essential for effective risk management in clinical 

trials, safeguarding both participant well-being and scientific integrity throughout the research journey. 

Research shows that artificial intelligence (AI) holds significant potential to enhance risk assessment in clinical 

trials13 by leveraging data-driven insights to improve safety, efficacy14, and operational effectiveness15 throughout 

the research lifecycle. AI algorithms can analyze vast amounts of data from various sources, including electronic 

health records, genomic data, and real-world evidence, to identify potential safety concerns, such as adverse events 

or drug interactions, more efficiently than traditional methods16. Additionally, AI-driven predictive models can 

assess the efficacy of interventions by analyzing complex patterns in patient data, aiding in the identification of 

promising treatments and patient subpopulations for targeted therapies17. Furthermore, AI-powered tools hold 

significant potential to streamline operational processes by optimizing trial design, patient recruitment, and data 

collection. These advancements increase the efficiency and cost-effectiveness of clinical research18. 

Several reviews address the emerging potential and challenges of using AI in clinical trials from various 

perspectives. The works of Askin et al.19 and Harrer et al.20 offer comprehensive overviews of opportunities of AI 

for improved efficiency, recruitment, and faster trial design, while also acknowledging ethical concerns, data 

limitations, and regulatory hurdles. Weisller et al.21 take a multi-stakeholder approach, exploring machine learning 

applications across various trial phases. They acknowledge the need for more evidence and address ethical and 

philosophical barriers. Zame et al.22 focus on the specific challenges of health emergencies caused by pandemics. 

They demonstrate how machine learning can aid in predicting outcomes, repurposing drugs, and optimizing trial 

design in these urgent contexts. Other reviews, such as the works of Paul et al.23 and Patel and Shah24, either broadly 

discuss AI and machine learning in drug discovery, development, repurposing, clinical trials, and more, or focus on 

intervention safety14, such as the work of Basile et al.25. Finally, the review of Feijoo et al.15 analyzed specific 
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operational risks within trials. Still, the literature lacks a scoping review highlighting the specific role of AI in the 

assessment of risks in clinical trials at large, particularly in light of recent advances in the field of machine learning. 

To bridge this gap, this work reviews the scope of the current literature on the application of AI methods in clinical 

trial risk assessment. More specifically, we aim to answer the following research questions: 

1. What types of risks in clinical trials can AI methods be used to predict? 

2. During which clinical trial phases and for which conditions are AI methods used to predict risks? 

3. What are the dominant AI algorithms and data sources employed in clinical trial risk assessment? 

4. How effective are AI methods in evaluating risks in clinical trials? 

5. What are the key limitations of AI methods in predicting clinical trial risks? 

The scoping review includes peer-reviewed articles published in English and was conducted in electronic databases, 

including PubMed, Web of Science, and Google Scholar. The review focuses on studies that apply AI algorithms to 

predict risks in clinical trials, including safety-, efficacy-, and operational-related risks, as in the framework 

proposed by Badwan et al.14. Overall, it provides a comprehensive overview of the current state of AI in clinical trial 

risk prediction and our findings could contribute to the development of more effective and efficient risk prediction 

strategies for clinical trials. 

 

Results 

The initial search yielded 4'328 records from PubMed (n=1'605), Web of Science (n=1'086), and Google Scholar 

(n=1'628). After removing 1'026 duplicates, 3'302 records were evaluated for eligibility, with 3'108 being excluded 

and 2 not retrieved for full-text analyses. Of the remaining 192 records, 50 were excluded after full-text assessment, 

resulting in a final selection of 142 studies. The study selection flowchart is shown in Figure 1. 

 
 

Figure 1 - PRISMA flowchart describing the source of evidence retrieval and selection process. From the 4,328 

manuscripts identified during the search phase, 3'302 titles and abstracts were screened after de-duplication, and 194 

full texts. A total of 142 studies were included for full text analysis. 

 
What types of risks in clinical trials can AI methods be used to predict? 

After the full-text analysis of the included articles, we categorized AI applications based on the type of clinical trial 

risk they address (Figure 2). To do so, we followed the framework proposed by Badwan et al.14, which describes 

three main phases in which AI methods can be used for risk prediction in clinical trials: toxicity, efficacy, and 

approval. In our analysis, we generalize the toxicity application to overall safety risk and consider operational risk 

instead of approval so that more fine-grained risk analysis can be taken into account, such as phase transition. An 

overview of the studies included in the review categorized by risk type is presented in Table 1. 

 

 

Figure 2 - AI applications for risk assessment in clinical trials. AI applications can be categorized into safety, 

efficacy, and operational risk assessment. They follow a typical three-step analysis approach: representation, 
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learning, and prediction (or inference). In the first step, clinical trial-related information, such as compound, 

participants, and protocol, are encoded as vectors. In the second step, models are learned to infer risks. In the last 

step, different risk types are predicted and performance metrics are obtained.  

 

Safety: As experimental treatments are being tested for the first time in humans, there may be unknown safety risks 

that are not fully understood until the trial is underway. The safety risk assessment category (Figure 2 - left) 

encompasses AI applications that, given a drug or compound, predict safety risks that can cause unexpected or 

severe adverse events to study participants, ranging from mild discomfort to serious health complications before the 

execution of a clinical trial26–80. Safety risk studies can be further subdivided into three predictive application use 

cases: adverse drug event (ADE), severity, and toxicity. In ADE prediction26–43, AI models are designed to predict 

the occurrence of ADEs, that is, injuries resulting from the use of a drug81. These methods are usually multi-class, 

multi-label classifiers that infer the occurrence of adverse event categories, such as those proposed by MedDRA 

terminology82. Differently, methods for ADE severity prediction43–49 are usually binary classifiers that aim to infer 

the severity of ADEs, such as serious vs. non-serious or death vs. non-death events. Similarly, toxicity prediction 

methods50–80 are often binary classifiers that predict whether a drug or compound will be toxic for an organ, such as 

methods for predicting drug-induced liver injury (DILI)51,56,59,61,63–68,70,73,79. 

Efficacy: Efficacy risk assessment in clinical trials is the process of evaluating potential risks that could hinder the 

successful demonstration of a drug or treatment's effectiveness (Figure 2 - center). AI applications within this 

category focus on predicting drug response, outcome, survival, and treatment effect47,83–127. In drug response 

applications, methods predict the potential for a drug to exhibit varying levels of efficacy across different patient 

populations or under specific conditions, often evaluated using in vitro models like cell lines to predict drug 

concentration and response83–93. In outcome prediction, the likelihood of a patient achieving a desired clinical 

outcome (e.g., disease remission, improved quality of life) following treatment is estimated94–106. These methods are 

typically assessed using binary classification tasks that predict the probability of response or non-response. In 

survival (or time-to-event) prediction, methods are specifically designed to analyze time-to-event data, such as time 

to death, disease progression, or recurrence47,86,90,92,107–118. They are particularly suited for risk prediction in the 

presence of censored data, where the event of interest might not have occurred for some individuals within the study 

period. Lastly, methods for treatment effect estimation128 quantify the differential impact of treatment on patient 

outcomes compared to a control group47,85,107–109,114,116,119–127. Unlike survival analysis, which explicitly models time-

to-event data and competing risks, treatment effect estimation can be applied to a variety of outcomes, such as 

binary outcomes (e.g., disease remission vs. no remission) or continuous outcomes (e.g., blood pressure). 

Operational: Operational risk in clinical trials refers to the potential for disruptions, delays, or failures that can 

impact the successful execution and completion of a study, and ultimately the approval by regulatory agencies 

(Figure 2 - right). This category includes AI applications that assess the risk of the phase's success, the likelihood of 

regulatory approval, or other operational factors, such as enrollment, duration, and site selection risk as well as 

informativeness of the protocol15,38,43,51,129–169. We categorized papers in the first subcategories following the 

approach of Feijoo et al.15. In the likelihood of approval risk, AI applications aim to estimate the overall probability 
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of a drug receiving regulatory approval, often based on the study protocol15,38,51,129–141. In phase success prediction, 

AI applications are designed to estimate the probability of advancing a specific phase (e.g., from phase I to 

II)15,43,142–162. In practice, methods predict whether a clinical trial will complete the study graciously or terminate 

before completion. Lastly, we include in the other subcategory, the remaining operation risks, such as enrollment, 

duration, informativeness, etc., as their number of references was limited 148,150,163–169. 

 

Table 1 - Overview of the studies identified, classified by risk and application. 

Risk Application References n 

Safety ADE 26–43 18 

Safety severity 43–49 7 

Safety toxicity 50–80 32 

Efficacy drug response 83–93 11 

Efficacy outcome 94–106 13 

Efficacy survival 47,86,90,92,107–118 16 

Efficacy treatment effect 47,85,107–109,114,116,119–127 16 

Operational likelihood of approval 15,38,51,129–141 16 

Operational phase success 15,43,142–162 23 

Operational other 148,150,163–169 9 

 

In Figure 3, we provide a high-level overview of the studies included in the analyses according to their publication 

date (Figure 3a), scientific subject area (Figure 3b), country of publication (Figure 3c), and type of publication 

venue (Figure 3d). We notice a growing interest in risk assessment of clinical trials based on AI, following an 

exponential growth trend (Figure 3a). The research in the field has an increasing trend since the past decade, with an 

important jump between 2020 and 2021. While between 2013 and 2020, the majority of studies focused on safety 

risk assessment (safety: n=18, efficacy+operational: n=18), from 2021 onwards there is a more even distribution in 

the three high-level risk categories (safety: n=37; efficacy: n=36; operational: n=37). Studies are published in 

multidisciplinary journals, in the fields of Medicine, Computer Science as well as Biochemistry, Genetics and 

Molecular Biology, which ranked in the top 3 subject areas of journals and conferences (Figure 3b). When 

considering the affiliation of the first author as the origin of the study, we notice a clear dominance of US 

institutions (n=53), followed by China (n=16) and the UK (n=10); South Korea (n=9) and Switzerland (n=7) 

complete the top 5 (Figure 3c). Lastly, 90% of the studies are published in peer-reviewed scientific journals, and the 

remaining 10% in peer-reviewed conferences (Figure 3d). The conference manuscripts were identified through 

Google Scholar searches. Out of the 14 manuscripts, three were presented at ICML workshops and three at EMNLP 

(n=2) and ACL (n=1) conferences. All the conference papers were classified within the "Computer Science" subject 

area but also included multidisciplinary conferences like the MLHC, which spans both "Computer Science" and 

"Medicine." Consequently, about one-third of the publications in the "Computer Science" category were presented at 

conferences. 
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Figure 3 - Trend of AI risk prediction for clinical trials. Distribution of manuscripts a) over time, and categorized by 

study b) subject area, c) country, and d) venue type. 

 

During which clinical trial phases and for which conditions are AI methods used to predict risks? 

Since clinical trials face unique challenges depending on the phase and condition being investigated, we analyzed 

the distribution of studies based on these factors (Figure 4). Operational risk assessment methods are distributed 

across phases I-IV (Figure 4a) and tend to be phase-specific (n=37) (Figure 4b). In contrast, only a small fraction of 

safety risk assessment studies are phase-specific (n=10 vs. n=45 non-phase-specific), while efficacy risk studies are 

concentrated in phase III (n=21 vs. n=13 for phases I, II, and IV altogether). Regarding the condition studied in the 

clinical trial, most condition-specific risk assessment methods focused on neoplasms (n=29) followed by mental 

disorders (n=6) and infections (n=5) (Figure 4c). The majority of disease-specific studies focused on efficacy risk 

assessment (n=41 out 64). Figure 4d shows the distribution of adverse event-specific studies. All adverse event-

specific studies are related to safety risk assessment (n=55). Studies predicting the risk of hepatic disorders (i.e., 

DILI) (n=16) together with those focused on multiple adverse events (n=16) represent 52% of the safety works. 

 

 

Figure 4 - Distribution of studies according to phase, condition, and safety concerns. a) Number of studies focused 

on phases I-IV. b) Number of phases per study. c) Conditions in condition-specific studies. d) Safety categories in 

safety-specific studies. 

 
What specific AI methods and datasets are currently used to assess risks in clinical trials? 

In Figure 5, we show the AI methods used for risk assessment in clinical trials. Based on the algorithm and 

prediction task, they can be categorized into six classes of machine learning analysis paradigms (a): 

 

 

Figure 5 - Machine learning models used in risk assessment of clinical trials. a) Trends of the different types of 

machine learning approaches for risk prediction of clinical trials. b) Approaches used for the different risk 

assessment tasks. c) Algorithms with results published in at least 10 risk assessment studies. d) Trends in utilizing 

large language models for clinical trial risk assessment. 

 

Traditional machine learning includes algorithms that learn patterns from data to make predictions or decisions. 

These methods are often used with structured data extracted using feature engineering and are available from out-of-

the-box toolkits, such as scikit-learn and caret in Python and R programming languages, respectively. As shown in 

a, traditional machine learning has been the dominant approach used in clinical trial risk assessment (safety: n=39; 

efficacy: n=28; operational: n=22). They are used across all the clinical trial risk prediction tasks (b). Examples of 

traditional machine learning algorithms used in clinical trial risk assessment include random forest, which is the 
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most used algorithm (n=63), followed by support vector machines (SVM) (n=32), and extreme gradient boosting 

(XGBoost) (n=27) (c).  

Deep learning is a subset of machine learning that uses artificial neural networks with multiple layers to learn 

complex patterns. Importantly, they can handle complex data types, such as free-text, images, graphs, etc., and 

extract features from the data automatically within a unified learning pipeline170. Together with traditional machine 

learning, deep learning is the main approach used in operation risk assessment (n=22) (b). Examples of deep 

learning algorithms used in clinical trial risk assessment include graph neural networks (GNNs) (n=16), 

transformers (n=12) convolutional neural networks (CNNs) (n=10), and recurrent neural networks (RNNs) (n=10) 

(c).  

Survival analysis is a statistical learning method used to analyze time-to-event data, such as death or clinical trial 

termination, and includes methods such as the Cox proportional hazards model171. While survival analysis is often 

not considered a machine learning category in itself, we created a specific category for manuscripts including 

survival analyses as it accounts for time-to-event and for censoring data, which is an important feature in clinical 

trial risk analyses. Traditional and deep learning approaches can be combined with survival loss functions to provide 

survival curve predictions. Recent advances in deep representation learning have been expanded to include survival 

estimation, such as the DeepSurv model, which replaces the log-linear parameterization in classic models with a 

multi-layer perceptron172. Thus, approaches categorized into this category for clinical trial risk assessment47,86,92,107–

111,113–118,137,151,161,169 can be based originally on traditional statistical learning as well as on deep learning. Most 

survival analysis works use traditional methods (n=12; the remaining n=6 are based on deep learning) and are 

applied to efficacy risk assessment (n=12) (b). 

Causal machine learning is a specialized subset of AI that aims to identify cause-and-effect relationships between 

variables. This is distinct from traditional machine learning, which often focuses on identifying correlations. Causal 

models are used in clinical trial risk assessment to identify factors that directly influence a patient's response to a 

treatment47,87,108,116,120,125. For instance, a causal model based on a multi-headed multi-layer perceptron (MLP) 

architecture was used for modeling the potential outcome of treatment and placebo on disability progression in 

multiple sclerosis108. This approach allowed researchers to estimate individual treatment effects and reduce the 

sample size required to detect an effect of the intervention. Together with survival analysis, causal inference is 

gaining traction in clinical trial risk assessment, particularly for treatment effect risk assessment (n=6) (b). 

Two other AI approaches are used to predict risks in clinical trials: relational learning (n=1) and quantum 

machine learning (n=1). Relational learning is a classic AI technique that can handle data with complex 

relationships between entities. It includes methods such as inductive logic programming, which allows learning a 

concept definition from observations, i.e., sets of positive and negative examples, and background knowledge173. On 

the other hand, quantum machine learning is a nascent field that leverages quantum theory to model machine 

learning tasks. Both methodologies have been used to assess safety risks26,78. While relational learning did not 

increase in popularity, quantum machine learning has only recently been applied to assess clinical trial risks. 

 
The rise of LLMs 
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More recently, LLMs based on the transformer architecture have been successfully applied in clinical trial risk 

assessment43,75,77,137,144,147,149,152,154,155,158,159,162. In 2023, LLM-based studies represented already more than 20% 

(n=7) of the studies (d). On the other hand, the use of generative LLMs is still restricted, with only three studies 

between 2022 and July 2024. Ferdowsi et al.144 were the first to propose an AI method using LLM (encoder-based) 

to predict clinical trial risks. Their approach encoded sections of the clinical trial protocol using BERT, which were 

then fed into a GNN model to predict phase success risks. For safety risk assessment, the work of Morozov et al.75 

used ProteinBERT to represent protein and predict toxicity. Katsimpras and Paliouras137 were one of the first to 

propose generative LLMs to predict clinical risk. Their approach was based on BART, an encoder-decoder model 

based on the transformer architecture. More recent examples of approaches using generative LLMs include 

inClinico158 and TWIN-GPT43. While the former used GPT-3.5 to extract clinical trial results from free-form text, 

such as publications and press releases, the latter explored the full power of LLM to create virtual trials and assess 

multiple risk types. To date, no approach based on LLM or transformers in general has been proposed in efficacy 

risk assessment. 

 
Data sources and performance metrics 

Most studies assessing safety and operational risks used publicly available benchmarks to train and evaluate their 

models (safety: n=50; operational: n=37) (Figure 6a) while efficacy studies used mostly private datasets (n=32). 

These studies used datasets containing a median of 803 compounds, 1087 participants, and 17'538 protocols (Figure 

6b), which are the main information types used for risk inference in safety, efficacy, and operational studies, 

respectively. Models were mostly evaluated using the area under the receiver operating characteristic (AUROC) 

curve (n=94), with accuracy (n=56) and recall (n=51) completing the top 3 metrics (Figure 6c). Only one metric in 

the top 10 reported, root mean square error (RMSE), refers to regression tasks. The remaining 9 metrics are used in 

classification tasks. Safety and operational studies reported a median of 3 metrics per study while efficacy studies 

reported 2 (Figure 6d). 

Table 2 lists the most used datasets in safety, efficacy, and operational risk assessment studies. For safety risk, the 

main data source used was SIDER (Side Effect Resource)174, a comprehensive database of adverse drug reactions 

(ADRs) extracted from the FDA Adverse Event Reporting System (FAERS). Studies that used SIDER for safety 

risk assessment had a median number of 1'341 compounds in the benchmark dataset and the majority used only 

publicly available datasets (n=18). The main dataset used in efficacy studies was individual trials, with a medium 

number of only one trial and 1'250 participants per study. Most efficacy studies (n=29) used at least one private 

evaluation dataset. As for safety risk studies, operational risk used mainly public data sources (n=33), with most 

studies using data from clinicaltrials.gov. 

 
Table 2 - Main datasets used for safety, efficacy, and operational risk assessment studies. 

Risk Data source References Instances (median) Accessibility 

Public Private 

Safety SIDER 26,28,30–36,38,39,42,55,57,60,70,71,77 1'341 compounds 18 0 
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Efficacy individual trials 47,85,87,89,92,94–96,98–107,107–

110,112,114,115,117,119,121–127 

1 clinical trial 

1'250 participants 

5 29 

Operational clinicaltrials.gov 15,43,51,130,131,133,136,137,140–

147,149–162,165–167 

17'538 clinical trials 33 3 

 

 

Figure 6 - Datasets and metrics used to train and evaluate risk prediction models. a) Distribution of studies using 

(only) public and (at least one) private dataset. b) Number of compounds, participants, and protocols used to train 

and evaluate models. c) Top-10 metrics used in clinical trial risk assessment. d) Number of reported metrics per 

study. 

 
How effective are AI methods in evaluating risks in clinical trials? 

Due to the different prediction tasks (Table 1), metrics (Figure 6c), and benchmark datasets (Table 2) used in 

clinical trial risk assessment, it is hard to compare the effectiveness of AI methods quantitatively. In an attempt to 

have a minimally comparative view, we analyzed performance across the largest subset of experiments using the 

same prediction tasks, reporting metrics, and dataset type. Figure 7a shows the performance across ADE (safety), 

outcome (efficacy), and phase success (operational) prediction tasks using SIDER, individual trial, and clinical trial 

protocol datasets, respectively, for studies reporting performance using the AUROC metric. In this subset, the top 3 

ADE prediction studies all reported AUROC above 90%, with Masumshah et al.30 achieving the highest 

performance (96.6% AUROC), followed by Zhao et al.31 (93.1% AUROC), and Galeano et al.28 and Zhong et al.42 

(92.0% AUROC). The top 3 outcome prediction models100,103,104 achieved AUROC between 84.0% and 87.4%, with 

Lei et al.103 achieving the best performance. For phase success prediction, Ferdowsi et al.144,149,155 rank in the top 3, 

with AUROC performance varying between 92.3% and 92.7%. For this subset of studies, the median number of 

instances in the datasets used in phase success prediction (n=75'174 protocols) is two orders of magnitude higher as 

compared to ADE (n=766 compounds) and outcome (n=235 participants) prediction experiments. 

 

Figure 7 - Model performance and dataset size. a) Model performance across ADE (safety), outcome (efficacy), and 

phase success (operational) risk assessment using SIDER, individual trial data, and clinical trial protocols, 

respectively. b) Number of instances used in the ADE, outcome, and phase success prediction tasks. 

 
What are the key limitations of AI methods in predicting clinical trial risks? 

Selection bias: Data used in clinical trial risk assessment might not be representative of the entire population of 

interest, leading to biased results. In safety risk studies, the number of compounds and drugs used in the experiment 

is significantly limited compared to the estimated drug-like chemical space (O(103) vs. O(1060))175 or, more 

concretely, to the number of compounds in PubChem (O(103) vs. O(108)). Similarly, efficacy approaches are 

evaluated using individual trials, with a median number of trials per study equal to one (Table 2), that is, it is unclear 

if these methods will generalize to different interventions or conditions.  
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Evaluation strategy: Datasets used in clinical trial risk assessment are often imbalanced. For example, for a given 

drug the number of negative ADE cases is far greater than the number of positive cases. Thus, results should be 

reported using metrics robust to class imbalance, such as F1-score, Matthew's correlation coefficient (MCC), and 

weighted accuracy. However, as shown in Figure 6c, the top 3 most reported metrics are not robust to highly 

imbalanced datasets and could present high scores just by predicting the majority class. 

Data quality and availability: While operational risk studies tend to use large and representative sets of clinical 

trials, they often lack access to real-world clinical trial data, being mostly based on the design protocol (Table 2). 

Similarly, most safety risk studies ignore key factors, such as dosage and route of administration, when predicting 

toxicity and ADE risks. 

Retrospective studies: Despite some notable examples103,158, most clinical trial risk assessment studies use only 

retrospective data. While retrospective studies provide valuable insights into AI applications in clinical trial risk 

assessment, they may not be generalizable to different compounds, populations, or clinical trial contexts. This limits 

the applicability of the findings to broader clinical trial risk assessment. 

Siloed risk models: Clinical trial risks are assessed separately even though they are interconnected. A minimal dose 

(e.g., homeopathic) is unlikely to cause safety risks but also to statistically demonstrate efficacy against the 

condition under study. Similarly, interventions with severe safety risks might lead to operational trial termination. 

Despite these interdependences, only a few studies38,43,47,51, including TWIN-GPT43, consider a more holistic 

approach to clinical trial risk assessment. Nevertheless, they only investigate safety and a second category combined 

(efficacy47; operational38,43,51) and no study to date integrates the three risk assessment categories. 

 
Discussion 

In this scoping review, we analyzed the existing literature on the applications of AI methods for predicting risks in 

clinical trials. Our review identified 142 studies describing safety (n=55), efficacy (n=46), and operational (n=45) 

risk assessment applications published in peer-reviewed journals and conferences between January 2013 and July 

2024. We notice a growing interest in the field, with an exponential growth trend between 2013 and 2024. On the 

modeling methodology, various AI approaches have been used, including traditional machine learning, deep 

learning, and causal machine learning, in many risk prediction tasks, such as ADE, treatment effect, and phase 

transition. More recently, there was a surge in the applications of LLMs, reaching around 20% of the studies in 

2023. However, the number of studies using generative approaches remains minimal. Models were trained and 

evaluated using a variety of benchmark datasets, both public, such as SIDER and clinicaltrials.gov, and private, such 

as individual trial data. The risk prediction models achieved high performance on some specific tasks, with AUROC 

as high as 96%. However, issues such as selection bias, poor evaluation strategies, and lack of prospective studies 

hinder the applications of the proposed methodologies in real-world scenarios. Nevertheless, AI-based risk 

assessment for clinical trials seems a promising research avenue and, based on the identified trends, is expected to 

grow in the coming years. In particular, these models could be used to improve risk-based monitoring frameworks in 

clinical trials and extend their adoption, which is not widespread6. 

Four potential reasons contribute to drug development failure: unmanageable toxicity, poor drug-like properties, 

lack of clinical efficacy, and lack of commercial needs with poor strategic planning176. These failure reasons can be 
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categorized into the three high-level risk types outlined in this review: safety, efficacy, and operational. AI-based 

safety methods aim to predict safety risks associated with the intervention, including potential adverse events, 

toxicity (e.g., DILI and drug-induced kidney injury), and severity (e.g., serious ADE and mortality). Efficacy 

methods predict whether an intervention is effective in treating a condition. Methods for efficacy risk assessment 

were further subdivided into approaches for predicting drug response and treatment outcome, estimating the 

treatment effect of an intervention, and progression-free survival. Only one study considered combined safety and 

efficacy risks47. Lastly, in operational risk assessment, AI-based methods were used to predict whether a drug will 

be approved, which depends on demonstrating its safety and efficacy, as well as whether a trial will complete a 

phase. It is important to note that completing a trial phase does not necessarily demonstrate the intervention's safety 

(e.g., serious ADE events might have been identified) or efficacy (e.g., outcome measurements do not differ 

statistically between different interventions). Additionally, AI-based methods were used to predict issues related to 

the quality of the protocol and the trial process, such as recruiting. A few studies combined safety and operation risk 

prediction38,43,51. Despite their interconnection, risk prediction studies are rather siloed. A possible research avenue 

would be using multi-task learning for estimating multiple risk types at once, given that relevant data is available. 

For example, Yazdani et al.177 use a multi-task (or joint) learning approach to identify and normalize ADE-related 

entities in clinical notes. Similarly Tan84 uses multi-task learning to predict anti-cancer drug response. Multi-task 

learning methods typically combine the loss functions of different tasks to enhance data efficiency, reduce 

overfitting through shared representations, and accelerate learning by utilizing auxiliary information84,84,178. Thus, 

multi-task learning approaches could be employed to simultaneously and more effectively infer safety, efficacy, and 

operational risks. 

The clinical trial process varies significantly according to the study phase. Thus, taking into account the phase but 

also experimenting across different phases is essential to capturing specific risks and generalizing to different 

scenarios. Interestingly, the majority of operational risk studies considered at least three phases (n=27 vs. n=18 for 

phases I, II, and non-phase-specific altogether), which could lead to better generalisability of such approaches as 

compared to the safety and efficacy AI-based risk assessment42,105, which are either non-phase-specific or focus on a 

single phase (Figure 4b). As the potential efficacy of compounds is already assessed in phase II, efficacy models 

focusing only on phase III, i.e., the majority, are likely to be biased. A notable example of efficacy risk study across 

phases I-III is described by Lu et al.87, proposing an application of deep learning to predict drug concentration and 

response time course. All the identified safety risk assessment studies are non-phase-specific. While ADEs are 

heavily dependent on the drug and dosage, the study population, which is phase-specific, has a non-negligible 

impact82. Additionally, an interesting application of in-silico risk assessment is to avoid providing potentially toxic 

interventions to participants. Thus, applications of AI risk could focus on phase I studies. In this line, the study of 

Bedon et al.66 proposes a machine learning model to predict the maximum tolerated dosage. 

AI methods are applied in a variety of prediction tasks for clinical trial risk assessment, including i) binary 

classification as in toxicity (safety), treatment outcome (efficacy), and phase transition (operational) predictions, ii) 

multi-class, multi-label classification as in ADE prediction (safety), and iii) regression as in drug response and 

survival (efficacy) predictions. They use different types of input data, such as molecular structure, clinical 
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information as well as semi-structure free-text clinical trial protocols. As a result, many types of AI algorithms based 

on machine learning techniques have been investigated. Safety prediction methods require methods for representing 

molecular structure but also relationships between drugs, genes, proteins, and ADEs. Thus, several studies leveraged 

the power of GNNs to capture these complex relationships and different modalities in an integrated machine 

learning pipeline31,33,35,38,77. Efficacy methods are often based on structured data derived from clinical trial results. 

As such, they tend to apply classic methods (including survival and causal learning) based on ensemble learning, 

such as random forest, gradient boosting machine (GBM), and XGBoost, for learning and inference85,92,94–96,98–

101,103,105–107,109,110,113,114,116,117,119,122–127. Differently, in operational risk studies, the clinical trial protocol is often the 

focus of the analyses. Given the complex, semi-structured, free-text nature of the protocol, these methods tend to use 

deep learning, in particular, LLMs, to encode protocol information43,137,144,147,149,152,154,155,158,159,162. Indeed, apart from 

a few exceptions43,137,158, LLMs have been mostly used for textual representation (protocol, protein sequence, etc.) as 

dense vectors77,144,155. Natural language inference capabilities of LLMs have been little explored in this field. 

We have identified some key limitations of existing AI-based clinical trial risk assessment studies. In particular, they 

include some selection biases and can have poor evaluation strategies, which can hinder their generalizability to 

different interventions or conditions and thus their real-world applications. Indeed, a recent study by Chekroud et 

al.105 found that machine learning accuracy for predicting patient outcomes is similar to chance when applied to out-

of-sample trials. Despite the limitation of the study itself, which evaluates only one machine learning method 

(elastic net), being thus hardly generalizable to the ensemble of AI and machine learning methods, it gives some 

evidence of the limited generalizability of current AI studies for predicting efficacy risks. Moreover, for safety 

prediction, a recent study42 showed that advanced ADE prediction models do not differ significantly from a naïve 

classifier according to the AUROC metric, which is the main evaluation strategy used in this task. By only using the 

mean values of ADEs of known drugs to predict the ADEs for all the new drugs, the naïve model achieved 91% 

AUROC on the SIDER dataset, which is only 2 percentage points below the state-of-the-art model31. 

Based on the identified limitations, several key recommendations can be made for future research in AI-based 

clinical trial risk assessment. First, data limitations for training and evaluating the models should be addressed. 

Researchers should increase the diversity and representativeness of datasets used in AI-based risk assessment, 

including data from real-world clinical trials and a wider range of compounds and outcomes, while ensuring high-

quality data collection and annotation. For example, dosage and route of administration should be incorporated into 

safety risk assessment models to improve faithfulness to application scenarios, and large intervention-outcome 

scenarios should be considered. Moreover, evaluation strategies should be improved. Researchers should 

consistently employ evaluation metrics that are more robust to imbalanced datasets, such as F1-score, MCC, and 

weighted accuracy. Additionally, they should assess the generalizability of AI models to different interventions, 

conditions, and populations and on unseen data to demonstrate their real-world applicability. In this line, studies 

should move beyond retrospective analysis. Researchers should conduct prospective studies to establish causality 

and improve the generalizability of findings, as well as explore the use of real-time data, i.e., safety, efficacy and 

operational data collected during the study, to enable continuous monitoring and risk assessment during clinical 

trials. Finally, a promising research avenue would be to integrate risk assessment categories. In this direction, AI 
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models could be developed to simultaneously predict multiple risk types, within the safety, efficacy, and operational 

categories. Thus, they would account for the interdependencies between different risk categories to provide a more 

holistic assessment. 

This review has a few limitations. First, the field of AI is broad, which makes it challenging to identify the correct 

set of keywords for querying the databases. Some studies might focus on specific methodologies, e.g., SVM, 

XGBoost, and description logics, and do not mention in the abstract one of the high-level methodology-related 

keywords used in the search, i.e., AI, machine learning, etc. Thus, we might have missed some relevant studies. 

Despite that, we identified a large variety of modeling approaches, including even more classic AI methodologies, 

such as relational learning. Second, we took a strategic decision to guide our risk-related search keywords according 

to the application framework proposed by Badwan et al.14, which identified AI applications in clinical trials in three 

predictive areas: toxicity, efficacy, and approval. Instead, other viewpoints could be considered, for example, using 

components of risk-based quality management approaches6. This could be the subject of a specific and more 

targeted review. Finally, we were unable to fully answer one of the questions related to the effectiveness of the 

models for risk prediction due to the lack of common benchmarks and evaluation strategies used in the reviewed 

studies. We attempted to create a homogeneous set, focusing on specific tasks with common evaluation metrics and 

using the same benchmark datasets. Nevertheless, they are not comparable due to differences in the dataset used for 

training and evaluation, including size and content. Even so, these results provide a preliminary overview of the 

effectiveness of AI-based risk assessment in clinical trials. 

In conclusion, this scoping review explored the potential of AI for risk assessment in clinical trials. We identified a 

rapidly growing field with diverse applications, focusing on safety, efficacy, and operational risks. AI models 

leverage various data sources, from molecular structures to clinical protocols, and employ techniques like traditional 

machine learning and, more recently, large language models. While some models achieve high performance, 

limitations exist. Selection bias and poor evaluation strategies hinder generalizability. Future research should 

address these issues by employing more diverse and representative datasets, incorporating real-world data, and 

focusing on generalizable evaluation metrics. Prospective studies and real-time (or continuous) data integration 

further hold promise. Additionally, exploring models that simultaneously predict multiple risk types could provide a 

more holistic assessment. Overall, AI holds significant promise for risk assessment in clinical trials, but further 

research is needed to ensure its real-world effectiveness. 

 

Methods 

We conducted this systematic scoping review between October 2023 and July 2024. For processing and reporting 

the results of this review, we followed the guidelines of Preferred Reporting Items for Systematic Reviews and 

Meta-Analyses Extension for Scoping Reviews (PRISMA-ScR) guidelines179. The PRISMA-ScR checking list is 

provided in Supplementary Table 1. 

 

Search strategy and study selection 
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We collaborated with a health sciences librarian to develop a three-step search plan. Initially, we searched PubMed 

to locate key articles on risk assessment, clinical trials, and AI. These articles helped us create a comprehensive set 

of relevant keywords, organized into four categories: technology, application field, type of analyses, and task. We 

combined the keywords within each group using the OR operator and then linked all the groups using the AND 

operator. The search keywords used in the process are listed in Table 3. We then adjusted the syntax to ensure it 

could be used across the other databases. The systematic search was carried out in three databases – Medline, Web 

of Science, and Google Scholar – using their default search settings. Note that for the search in Google Scholar, we 

split Group 3 into three subgroups as the full query exceeded the character limit of the API. For each subquery, we 

considered for analysis the first 750 articles retrieved.  

 

Table 3 - Search keywords in different groups. 

Groupe 1 – methodology-related 

keywords 

"artificial intelligence" OR "machine learning" OR "deep learning" 

OR "neural network" OR "text mining" OR "NLP" 

Groupe 2 – study-related keywords "clinical trial" OR "clinical study" OR "clinical trials" OR "clinical 

studies" 

Groupe 3 – risk-related keywords ("risk" OR "success" OR "termination" OR "completion" OR 

"outcome" OR "phase success" OR "likelihood of approval") OR 

("adverse drug reaction" OR "adverse drug event" OR "adverse 

reaction" OR "adverse event" OR "adr" OR "ade" OR "toxicity" OR 

"safety") OR ("drug effectiveness" OR "efficacy") 

Groupe 4 – task-related keywords "predict" OR "prediction" OR "classify" OR "classification" OR 

"forecast" OR "forecasting" 

Final result (Groupe 1) AND (Group 2) AND (Group 3) 

AND (Group 4) 

 

Eligibility criteria 

In Table 4, we list the inclusion and exclusion criteria used in the screening and full-text analysis process: 

• Topic and methodology: We considered studies on AI-based risk assessment in clinical trials. All forms of risk 

assessment, encompassing safety, efficacy, and operational considerations, were taken into account. Exclusions 

comprised healthcare applications, drug and protein interactions, and studies lacking pharmacological therapy. 

Studies encompassing predictive models for evaluating the risk of clinical trial interventions and/or the clinical 

study itself, based on AI, were incorporated. Information extraction studies, particularly those utilized in 

pharmacovigilance, along with standard risk factor analysis statistics, were excluded. 
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• Context: We have considered studies conducted across various geographic locations published in English. 

Following our initial screening, it became apparent that there were limited studies available on the AI-based risk 

assessment of clinical trials before 2013. Consequently, to concentrate on the most recent and pertinent AI-

based risk assessment applications, we have restricted our focus to studies published from 2013 onwards. 

• Types of sources: We included peer-reviewed studies from scientific journals and conferences. We included 

conference proceedings as important AI research is published in such venues. This also motivated the use of 

Google Scholar in our search, as it has a high literature coverage, including conferences. We excluded 

systematic and non-systematic reviews, dissertations, conference abstracts, observational studies, case reports, 

opinion pieces, commentaries, and protocols. 

 
Table 4 - Inclusion and exclusion criteria. 

Inclusion criteria Exclusion criteria 

Topic: Application of AI methods for clinical trial risk 

assessment 

Topic: Healthcare application (as opposed to clinical 

research) 

Language: English Topic: Drug and protein interaction 

Publication date: from 01.01.2013 to 15.07.2024 Topic: Non pharmacological therapy (radiotherapy, 

gene therapy, food, etc.) 

Review process: Peer reviewed articles Methodology: Risk factor analyses (e.g., using logistic 

regression) and other non-predictive methods in general 

(e.g., information extraction). 

Article type: Basic research  

All articles retrieved in PubMed and WoS, and the first 

750 articles in Google Scholar for the 3 Google Scholar 

queries 

 

 
Dataset screening 

We used Bibdesk to de-duplicate the results, sorting articles by key, title, and first author. Identified duplicated 

articles were manually checked. Then, we uploaded all the results to an online spreadsheet to make it easier for the 

team to review and extract information from titles, abstracts, and full texts. To ensure a convergent approach, two 

reviewers pilot-tested the screening of titles and abstracts on a random sample of 10 studies. After the pilot test, two 

independent reviewers examined each article. If they disagreed on whether to include a citation, a third reviewer 

would evaluate the citation, and we would then discuss it together to reach a consensus. We uploaded the full texts 
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of potentially relevant articles to Zotero for further screening by two reviewers. Any differences in including or 

excluding full-text studies were resolved during a consensus meeting. 

 

Dataset annotation 

We randomly divided the articles included for full-text review among four researchers. Each researcher read the full-

texts separately and used a standard spreadsheet to extract item information based on the CHARMS (Critical 

Appraisal and Data Extraction for Systematic Reviews of Prediction Modelling Studies) checklist180. The 

spreadsheet included study characteristics (authors, publication date, country of first author, subject area, journal or 

conference), and information about the source of data (data source and public availability), outcome to be predicted 

(type of risk analysis, prediction task, and ADE), candidate predictors (study phase and condition, compound, 

clinical trial data, and clinical trial protocol), sample size (dataset size and dataset type), model development 

(algorithm, model type, and training strategy), model performance (evaluation metrics), and results (performance on 

the test set). We piloted the template, added a "not available" option for some items, and included examples to 

enhance consistency and ease of use. After extraction, an independent reviewer normalized and consolidated the 

information. 

 

Data analyses 

We analyzed the data using Microsoft Excel for Mac (Microsoft Office 365, version Version 16.89.1). We used 

descriptive statistics like frequencies, median, and ranges, and presented the data graphically and in tabular format 

as needed. We summarized the study characteristics, including the frequency and distribution of publication year, 

country of the first author, subject area, and type of publication venue. Additionally, we examined dataset and 

evaluation characteristics, such as mean/median size, frequency/distribution of phase, condition, ADE, and metrics, 

as well as model considerations, including the frequency/distribution of algorithms and training strategies, and 

performance. 

 

Data Availability 

The data underlying this article can be shared on reasonable request to the corresponding author. 
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