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Abstract
Accurate health risk prediction is crucial for making in-
formed clinical decisions and assessing the appropriate al-
location of medical resources. While recent deep learning
based approaches have shown great promise in risk predic-
tion, they primarily focus on modeling the sequential in-
formation in Electronic Health Records (EHRs) and fail to
leverage the rich mobility interactions among health enti-
ties. As a result, the existing approaches yield unsatisfac-
tory performance in downstream risk prediction tasks, espe-
cially tasks such as Clostridioides difficile Infection (CDI)
incidence prediction that are primarily spread through mo-
bility interactions. To address this issue, we propose a new
approach that leverages Hypergraphs to explicitly model
mobility interactions to improve predictive performance in
health risk prediction tasks. Unlike regular graphs that are
limited to modeling pairwise relationships, hypergraphs can
effectively characterize the complex high-order semantic re-
lationships between health entities. Moreover, we introduce
a new contrastive learning strategy that exploits the domain
knowledge to generate semantically meaningful positive (ho-
mologous) and negative (heterologous) pairs needed for con-
trastive learning. This unique contrastive pair augmenta-
tion strategy boosts the power of contrastive learning by
generating feature representations that are both robust and
well-aligned with the domain knowledge. Experiments on
two real-world datasets demonstrate the advantage of our
approach in both short-term and long-term risk prediction
tasks, such as Clostridioides difficile infection incidence pre-
diction and MICU transfer prediction. Our framework ob-
tains gains in performance up to 29.49 % for PHOP, 30.64
% for MIMIC-IV for MICU transfer prediction, 13.17 % for
PHOP, and 4.45 % for MIMIC-IV for CDI Incidence Predic-
tion.

1 Introduction

Health risk prediction tasks such as in-hospital mortal-
ity prediction [1], likelihood of adverse complications [2],
and predicting the onset of healthcare-associated in-
fections (e.g., Clostridioides difficile Infection [3]) are
crucial for making informed clinical decisions. Recent
advances in deep learning based risk prediction mod-
els [4–6] have shown great promise in leveraging the
longitudinal information present in Electronic Health
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Records (EHR) and forecasting the health status of pa-
tients. For example, [7] proposed Recurrent Neural
Network (RNN) based approach to model the temporal
visit-level information present in EHR for risk predic-
tion. Similarly, [5] and [8] proposed attention networks
to accurately capture the latent information embedded
in the hierarchy of visits for health risk prediction.

Despite significant advances, the existing ap-
proaches mainly focus on modeling the sequential infor-
mation present in EHRs and fail to leverage the mo-
bility interactions (e.g., patient-doctor, patient-room,
and patient-medication) among health entities. This
leads to limited representational power for existing ap-
proaches, especially for tasks such as Clostridioides dif-
ficile Infection (CDI) incidence prediction that are pri-
marily spread through mobility interactions. To address
this, more recently graph neural networks (GNNs [9])
have been proposed to model the interactions between
health entities over graph structures constructed from
EHR data. However, GNNs only consider the pairwise
interactions which is insufficient to effectively charac-
terize the complex high-order mobility interactions be-
tween health entities. For instance, consider a patient p
that interacts with a healthcare entity e at a timestamp
t. In this scenario, the patient p’s aggregated feature
representations should be influenced by the features of
all the other patients with whom the healthcare entity
e interacts at time t. The rationale being that if a co-
hort of patients share a room and one of them becomes
infected, it is likely that the remaining patients will be
infected in the future time. Effectively capturing such
high-order mobility interactions that go beyond pairwise
relationships is critical for accurately predicting the risk
of patients to acquire healthcare-associated infections
such as CDI.

To this end, we propose a new approach that explic-
itly models the higher-order relations between health
entities using better suited data structures such as hy-
pergraphs. Hypergraphs offer a more expressive struc-
ture than traditional graphs that allow edges to connect
more than two nodes (or entities), thus enabling them
to encode the semantic relationships between health en-
tities at a granular level. Central to our approach is the
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proposed hypergraph information aggregation module
that aggregates comprehensive information from high-
order mobility interactions and learns robust feature
representations useful for health risk prediction. More-
over, to further enhance the expressive power of hyper-
graph modeling, we propose a novel contrastive learn-
ing based strategy that enriches the feature representa-
tions of health entities by exploiting the prior domain
knowledge derived from EHRs. Specifically, the domain
knowledge utilized in this paper are: (a) the hierarchical
structure of medication codes [10], and (b) the special-
ity information of doctor, i.e., if two doctors have the
same speciality (e.g., infectious disease, cardiology) then
they have a semantic relationship [11]. By contrast-
ing the domain knowledge augmented homologous and
heterologous pairs, the model learns to generate health
entity representations that are expressive, robust, and
well-aligned with the prior domain knowledge. Finally,
we propose a temporal information aggregation module
that aggregates spatial information from previous times-
tamps, thus enabling the model to adapt to the patient
conditions changing over time. Experiments conducted
on multiple datasets show that the proposed approach
significantly improves the performance in health risk
prediction tasks as compared to the baseline methods.
In this research, our contributions can be summarized
as follows:

• We propose a novel approach that leverages hy-
pergraphs to capture the high order mobility in-
teractions present in EHRs and improves the accu-
racy for risk prediction tasks. This is different from
existing approaches that are primarily focused on
modeling the sequential information in EHRs.

• We propose a new contrastive pair augmentation
strategy that exploits the domain knowledge to
generate semantically meaningful augmentations
needed for contrastive learning. This technique en-
hances the power of contrastive learning for health
risk prediction by learning feature representations
that are not only robust but also well-aligned with
the domain knowledge.

• The proposed approach is evaluated on real-world
datasets for both short-term and long-term pre-
diction tasks, including CDI Incidence Prediction
and MICU Transfer Prediction. Experimental re-
sults demonstrate the effectiveness of the proposed
framework in accurately estimating patient risks
over various time intervals.

2 Methodology

We consider healthcare operations data with events de-
rived from electronic health records (EHRs) [12–15] and

admission-discharge-transfer (ADT) records [3, 14–16]
from an inpatient healthcare facility. The events in the
data log different types of interactions between patients
P and other entities encountered in healthcare settings,
including doctors D (visiting patient’s room and/or per-
forming a procedure on the patient), medications M
(patient being prescribed a medication) and hospital
rooms R (patient being admitted to a room). Each
event (p, e, t, θ) is an ordered set of four elements which
represents interaction between a patient p ∈ P and an
entity e ∈ D∪M∪R at time t and of type θ. Note that θ
is an element of the set {‘Doctor’, ‘Medication’, ‘Room’}
indicating the type of entity e. Without the loss of
generality, we assume the events in the data are time-
stamped between time 0 and some T > 0. In addition
to the events, healthcare operations data also include
demographic and medical information on each patient
p. These additional personal-level data are temporally
dynamic in nature as they include records of health-
risk factors such as length of hospital stay, cumulative
antibiotic dose count, and gastric acid suppressors use
which evolve over the course of patients’ hospital stay.
At each timestamp t, we represent these data as a fea-
ture matrix Xt. The pth row (i.e. Xt

p) of the matrix
represents the feature vector associated with patient p.

For a subset of the patients Pl, we are also given
time-stamped log L of lab results (example, CDI test) or
decisions made by healthcare providers (example, trans-
fer to MICU) indicating an occurrence of a potentially
adverse event. Each entry in L is a tuple (p, t, l) indicat-
ing that the patient p had a log entry at time t of type l,
where l is a binary variable that represents whether the
outcome was positive or negative. Our main goal in this
paper is to utilize all aforementioned data to estimate
the risk of adverse events in future timestamps for the
remaining patients P \ Pl. Figure 1 shows an overview
of the proposed approach.

2.1 Domain Knowledge: Most existing ap-
proaches [5, 17] for patient risk estimation do not
explicitly utilize the domain knowledge inherently
present in the EHR data that goes beyond the patient
level. This is limiting because such information could
play a critical role in accurate patient risk estimation.
For example, two patients examined by two separate
cardiologists could have similar risks for cardiovascular
diseases. However, this similarity is not captured by
the patients’ interactions with the doctors alone. In
contrast, it becomes apparent once the relationship
between the doctors is taken into account. To address
this gap, we propose to extract domain knowledge
inherent in EHR data, which describes relationships
between entities of a specific type as a static graph
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Figure 1: Proposed framework (best viewed in color). We construct domain knowledge capturing relationships between
doctors and medications and hypergraphs capturing relationships between patients at each timestamp from dynamic
stream of hospital operations data. We construct robust hypergraph augmentations by infusing information from the
domain graphs. We then perform patient-hyperedge and hyperedge-patient message passing on both the augmentations
and concatenate resultant embeddings from different entity types. We then minimize the contrastive loss between these
two augmentations and temporally aggregate the embeddings to make predictions.

Gentitytype as follows:

1. Doctor Graph: We construct Gdoctor(D, Edoctor)
based on the proximity of the specialty of the
doctors with each other. Two doctors d1 ∈ D and
d2 ∈ D have an edge in Gdoctor if they belong to
the same (or similar) specialty.

2. Medication Graph: Similarly, we construct
Gmedication(M∪M,Emedication) as a tree to capture
the medication hierarchy. Note that the medica-
tionsM form the leaf nodes in Gmedication while the
intermediate nodes M represent medication sub-
types.

While our proposed approach leverages the aforemen-
tioned graphs, it is generalizable to any domain knowl-
edge expressed as a static graph.

2.2 Dynamic Heterogeneous Hypergraph Con-
struction: A hypergraph is usually denoted as H =
(V,E) where V denotes the set of the nodes (similar to
traditional graphs) and E denotes the set of hyperedges
that represent relationships between two or more nodes.
We use this notion to define our dynamic heterogeneous
hypergraph H = {H1, H2, . . . ,HT } for T snapshots.

Each heterogeneous hypergraph Ht is constructed
from interactions occurring at time t and is defined as
Ht = (P , Et

D, Et
M , Et

R,X
t) where P and Xt are the set

of patients and feature matrices at time t (as defined ear-
lier). Et

D, Et
M , and Et

R are hyperedges (among patients)
of type ‘Doctor’, ‘Medication’, and ‘Room’ respectively.
The hyperedges Et

D are constructed from the set of in-
teractions {(p, e, t′, θ)|t′ = t & θ = ‘Doctor’}. Each hy-
peredge ϵtD ∈ Et

D at time t connects a subset of patients
P t

D ⊂ P who all have interacted with the same doctor
d at time t, i.e., ∃p∈Pt

D
(p, d, t, ‘Doctor’). The remaining

sets of hyperedges Et
M and Et

R are constructed lever-
aging the interactions of type ‘Medication’ and ‘Room’
respectively in a similar manner. Also note that each
node p in subset Pl ⊂ P (nodes with labels) which has
an entry (p, t, l) ∈ L are labelled as ytp = l ∈ {0, 1} at t.
Let P t

l be the set of nodes labeled at time t.
Having constructed a partially labeled dynamic het-

erogeneous hypergraph from hospital operations data,
we can now pose patient risk estimation as a semi-
supervised binary classification problem. As our pri-
mary goal is to estimate patient risks in the future, we
partition the training and testing data temporally. Let
us assume, we train on data until time 0 < τ < T , then
state our learning problem:
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Given: A dynamic heterogeneous hyper-graph
H = {H1, H2, . . . ,Hτ} and a set of labelled nodes
{P1

l ,P2
l , · · · ,Pτ

l }
Infer: A mapping function f(p) which maps patients
in P to a number in the range (0, 1) representing the
patient risk of adverse event
Such that: a loss function

∑
t

∑
p∈Pt

l
L(f(p), ytp) is

minimized.

2.2.1 Domain Knowledge Augmented Con-
trastive Learning: Contrastive learning over graphs
has achieved state-of-the-art performance in numerous
node classification tasks. However, most prior work on
contrastive learning over graphs [18–20] perturb the in-
put graphs by randomly deleting nodes, edges, or fea-
tures. For example, [20] proposes contrastive learning
on hypergraphs deletes the hyperedges and perturbs the
node features via a Bernoulli distributed masking ma-
trix. Removing entire hyperedges randomly may intro-
duce unnecessary harmful noise, leading to poor perfor-
mance (as evidenced by our experiments). To address
this issue, we propose to leverage domain information
encoded in the graphs Gdoctor(which captures doctor-
doctor similarity) and Gmedication (which represents the
medication hierarchy) to augment the hypergraphs by
perturbing the structure of the hyperedge instead of
completely deleting it.

For each graph, we generate both the homologous
and heterologous augmentations. To generate homolo-
gous augmentation of the heterogenous hypergraph at
time t based on Gdoctor, we iterate through all the edges
(d1, d2) in Gdoctor keeping track of patients who inter-
act with both d1 and d2. We then remove the interac-
tions between such patients and both d1 and d2 in our
hypergraph at time t. The pseudo-code is presented
in Algorithm 1. Similarly, to obtain the heterologous
augmentation, we first sample a complement of Gdoctor

and use it as the Semantic graph input of Algorithm
1. Note that this approach removes the interactions
between doctors and patients for patients who interact
with doctors who are not connected in Gdoctor. We use
a similar approach to generate homologous and heterol-
ogous augmentations based on Gmedication. Here instead
of determining the medication-patients relations to be
deleted based on the edges of Gmedication, we determine
it based on the whether two medication belong to the
same sub-type.

Having obtained the homologous augmentation H′
1

and the heterologous augmentation H′
2, we obtain pa-

tient embeddings X̂t
1 and X̂t

2 via any standard hy-
pergraph convolution step, whose information aggre-
gation steps can be further divided into patient-to-
hyperedge and hyperedge-to-patient information aggre-

Algorithm 1 Homologous Augmentation

Require: Hypergraph H, Semantic graph Gentitytype.
1: H′ = H
2: for each timestamp t from 0 to T do
3: for each edge (d1, d2) in Gentitytype do
4: l1 ← list of patients who interact with d1 at time t
5: l2 ← list of patients who interact with d2 at time t
6: ld1,d2 ← intersection between l1 and l2
7: if |ld1,d2 | > 0 then
8: for each patient p in ld1,d2 do
9: Remove interaction (p, d1) and (p, d2) from H′

at timestamp t
10: end for
11: end if
12: end for
13: end for
14: return Perturbed hypergraph H′

gation steps.
Based on the dynamic heterogeneous hypergraph

H defined above, we construct hypergraph convolution
for each interaction type e ‘Doctor’, ‘Medication’, and
‘Room’ respectively. For the hyperedges Et

e constructed
at timestamp t, we construct the incidence matrix
Ite ∈ R|P|×|Et

e|, node diagonal matrix Ψt
e ∈ R|P|×|P| and

column diagonal matrix Λt
e ∈ R|Et

e|×|Et
e|. For any entity

type e ∈ {D,M,R} denoting ‘Doctor’, ‘Medication’,
and ‘Room’, the patient-hyperedge aggregation scheme
is:

(2.1) Xt
P→e = Ite

⊤
Ψt

e
− 1

2Xt

Similarly, the hyperedge-to-patient message aggregation
to update the patient representations with the learned
hyperedge embeddings is:

(2.2) Xt
e→P = σ(Ψt

e
− 1

2 IteΛ
t
e
−1

Xt
P→eWe)

Here, Xt
P→e ∈ R|Et

e|×d1 denotes the aggregated hyper-

edge embedding, Ite ∈ RN×|Et
e| and We ∈ Rd1×d and

Xt
P→e ∈ R|Et

e|×d1 . σ is a nonlinear activation function

like ReLU, and Xt ∈ RP×d1 . Also Λt
e ∈ R|Et

e|×|Et
e|.

Then, the deviation between the two augmentations
is minimized by the contrastive loss LCL, which max-
imizes the similarity between the learned representa-
tion of a patient across two augmentations while mak-
ing these dissimilar from a randomly sampled patient’s
representation. The temperature-scaled contrastive loss
(NT-Xent) LCL is given by:
(2.3)

Lt
CL = − 1

|P |

|P|∑
i=1

log
exp

(
δi,i
ρ

)
∑

j ̸=i exp
(

δi,j
ρ

)
+ exp

(
δi,i
ρ

)
Here δi,j denotes the cosine similarity between con-

trastive embedding pairs (X̂t
1,i, X̂t

2,j) and ρ is a
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temperature-scaling parameter.
Based on the three aggregated patient features, the

overall patient feature representation is given by the
concatenation operation as shown below:

(2.4) X̂t = Concat(Xt
D→P ,X

t
M→P ,X

t
R→P )

2.2.2 Temporal Aggregation: After obtaining the
robust latent patient embeddings from the contrastive
learning module, we combine the embeddings learned
from the current and prior timestamps to obtain a
final representation for each patient. For a patient
p at timestamp t, we select the embeddings of the
current timestamp as well as of previous k timestamps,
which we denote using tempt

p. Note that tempt
p

is of size k × 3d, where d is the output size of our
hypergraph convolution network. We then use the
weighted sum of the embeddings in this set to obtain
the final representation for the patient.

We do this by passing all the k embeddings through
a Transformer and then using the self-attention mecha-
nism [21] to learn the weights and the final embedding.

(2.5) X̄t
p = Self-Attention(tempt

p)

Previous works [1] have identified that information from
2-5 days before an adverse event is useful in predicting
the risk of the event occurrence. Empirically, we noticed
that k = 3 leads to the best performance in our tasks.

2.2.3 Training: After obtaining the updated latent
feature representation for patient p, X̄t

p at timestamp t,
we obtain the predicted label ŷtp for the patient by pass-
ing the feature representation through a Feed-Forward
Neural Network (FFN). We minimize the binary cross
entropy loss function with the true label ytp for that pa-
tient (if present) which is formulated as:

(2.6) Lt
pred = −[ytp log(ŷ

t
p) + (1− ytp) log(1− ŷtp)]

We jointly minimize LCL at each timestamp as
well as Lpred after obtaining the prediction logits via
the Temporal Aggregation Module and the Decoder
Module. So, our overall objective function to be
minimized can be written as:

(2.7) L =
∑
t∈τ

(γLt
CL + (1− γ)Lt

pred)

Here γ is a hyperparameter. In practice, we aggregate
all the patient predictions across all timestamps and use
a mask to filter out the patients without labels. Then
we compute the binary cross-entropy loss function for
all the patients with available labels.

Table 1: Number of interactions in our datasets.

Interactions PHOP MIMIC-IV

Patient-Doctor 23,085 8,046
Patient-Medication 349,345 34,857
Patient-Room/Unit 16,771 3,334

3 EXPERIMENTS

3.1 Datasets: In our experiments, we used Elec-
tronic Healthcare Records (EHR) and Admission Dis-
charge Transfer (ADT) data from 2 real-world health-
care facilities. Statistics of the datasets used for the
experiments are given in Table 1.
PHOP: Proprietary Hospital OPerations data
(PHOP) is derived from real-time healthcare opera-
tions data collected from a large (800-bed) tertiary care
teaching hospital in the U.S. mid-western region.
MIMIC-IV: The second dataset is derived from the
open-source MIMIC-IV data set [29], which contains in-
formation on vital signs, prescribed medications, labora-
tory tests, and procedural events of ICU patients admit-
ted to Beth Israel Deaconess Medical Center (BIDMC).

Further details about the datasets are given in A.1.
We conducted all experiments on AMD EPYC 7763 64-
Core Processor with 1.08 TB memory and 8 NVIDIA
A40 GPUs with CUDA version 12.2.

3.2 Baselines: We compare our method against sev-
eral state-of-the-art baselines. Some of our baselines
were designed to work in the static setting, hence we
have modified these to make predictions in the dynamic
setting for a fair comparison. Approaches like [8, 30]
heavily depend on prior hospitalization information
(which we do not consider in the current problem setup)
and hence cannot be used for fair comparison against
our approach. The baselines we contrast our approach
are as follows:
1) Patient Feature Baselines: We use domain-
inspired feature representations encapsulating each pa-
tient’s length of stay, history of previous visits, antibi-
otics prescription, etc. as features for these models. The
baseline models are Logistic Regression [22] (LR)
and Feed-Forward Network [23] (FFN).
2) Domain-Inspired baselines: The Multitask
Method [26] (MT) constructs additional features us-
ing the length-of-stay of the patient in addition to
the domain-inspired features and trains the model in a
multi-task manner. On the other hand, HypEHR [28]
and CACHE [17] use medical codes to construct static
hypergraphs to perform predictions. DECent [27] is
an unsupervised learning method that also incorporates
heterogeneous interactions.
3) Sequential Deep Learning Baseline: This ap-
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Table 2: Mean AUROC scores (in percentage) for MICU Transfer Prediction on PHOP and MIMIC-IV Datasets
across 3 runs.

Model
PHOP MIMIC-IV

1-day 2-day 3-day 1-day 2-day 3-day

LR [22] 64.29 ± 0.30 71.57 ± 0.21 71.73 ± 0.11 60.29 ± 0.43 61.45 ± 0.17 60.18 ± 0.43
FFN [23] 68.26 ± 0.11 77.26 ± 0.55 72.48 ± 0.14 61.66 ± 0.17 63.73 ± 0.85 61.16 ± 0.29
LSTM [24] 75.18 ± 0.62 82.59 ± 0.31 82.11 ± 0.73 68.65 ± 0.27 69.75 ± 0.21 68.42 ± 0.34
SGCN [25] 79.18 ± 0.36 80.91 ± 0.16 85.37 ± 0.52 71.26 ± 0.28 77.93 ± 0.58 73.61 ± 0.49
MT [26] 60.72 ± 0.52 70.19 ± 0.16 65.98 ± 0.71 58.26 ± 0.20 54.90 ± 0.11 53.83 ± 0.19
HyGCL [20] 87.63 ± 1.14 86.61 ± 0.60 87.06 ± 0.33 80.32 ± 0.59 78.40 ± 0.10 77.26 ± 0.15
DECent [27] 84.68 ± 0.55 75.28 ± 0.19 74.93 ± 0.88 81.67 ± 1.40 77.42 ± 0.83 78.35 ± 0.60
HypEHR [28] 87.49 ± 0.21 72.36 ± 0.18 73.38 ± 0.95 65.49 ± 0.34 63.67 ± 0.41 61.55 ± 0.20
CACHE [17] 89.85 ± 0.35 80.54 ± 0.55 79.62 ± 0.44 79.83 ± 0.37 71.21 ± 0.31 69.77 ± 0.21
Proposed 92.97 ± 0.43 91.91 ± 0.24 87.46 ± 0.13 84.75 ± 0.9 81.55 ± 0.21 79.75 ± 0.92

Table 3: Mean AUPRC scores (in percentage) for MICU Transfer Prediction on PHOP and MIMIC-IV Datasets
across 3 runs.

Model
PHOP MIMIC-IV

1-day 2-day 3-day 1-day 2-day 3-day

LR [22] 7.52 ± 0.18 9.26 ± 0.19 6.13 ± 1.47 4.27 ± 0.02 6.28 ± 0.03 4.17 ± 0.04
FFN [23] 9.16 ± 0.31 9.91 ± 1.41 7.61 ± 0.37 6.38 ± 0.11 7.05 ± 0.16 4.38 ± 0.27
LSTM [24] 9.55 ± 0.38 10.26 ± 0.15 7.92 ± 0.45 9.16 ± 0.17 8.45 ± 0.12 6.48 ± 0.03
SGCN [25] 12.49 ± 0.13 10.91 ± 0.21 9.72 ± 0.18 11.52 ± 0.37 12.64 ± 0.03 9.67 ± 0.25
MT [26] 6.82 ± 0.19 8.52 ± 0.33 5.18 ± 0.02 4.13 ± 0.51 3.18 ± 0.08 3.04 ± 0.10
HyGCL [20] 18.78 ± 1.76 17.83 ± 0.11 12.71 ± 0.82 13.35 ± 0.77 14.41 ± 0.45 10.05 ± 1.73
DECent [27] 13.16 ± 0.61 11.28 ± 0.51 9.86 ± 0.39 25.63 ± 0.49 13.71 ± 0.84 9.94 ± 0.69
HypEHR [28] 20.16 ± 0.91 13.69 ± 0.58 8.55 ± 0.19 10.18 ± 0.53 8.35 ± 0.06 6.38 ± 0.7
CACHE [17] 24.41 ± 0.37 15.88 ± 0.72 10.61 ± 0.57 27.74 ± 0.58 10.02 ± 0.15 9.02 ± 0.26
Proposed 31.61 ± 0.72 19.36 ± 0.15 15.58 ± 0.16 34.23 ± 0.43 17.92 ± 0.64 13.13 ± 1.73

Table 4: AUROC and AUPRC scores (in percentage) for CDI Incidence Prediction on PHOP and MIMIC-IV
Datasets across 3 runs.

Model
PHOP MIMIC-IV

AUROC AUPRC AUROC AUPRC

LR [22] 53.25 ± 0.10 5.83 ± 0.42 66.26 ± 0.81 15.83 ± 0.28
FFN [23] 60.30 ± 0.13 9.16 ± 0.25 71.58 ± 0.55 17.47 ± 0.04
LSTM [24] 59.15 ± 0.12 9.54 ± 0.13 73.26 ± 0.14 29.51 ± 0.18
SGCN [25] 71.65 ± 0.04 12.59 ± 0.35 80.23 ± 0.21 48.52 ± 0.16
MT [26] 64.15 ± 0.03 9.41 ± 0.02 73.94 ± 0.12 22.95 ± 0.72
HyGCL [20] 72.38 ± 0.09 17.28 ± 0.11 85.92 ± 0.24 50.79 ± 0.38
DECent [27] 70.83 ± 0.61 12.16 ± 0.52 77.68 ± 0.10 41.61 ± 1.74
HypEHR [28] 67.62 ± 0.45 15.17 ± 0.21 75.19 ± 0.02 38.51 ± 0.06
CACHE [17] 72.18 ± 0.10 18.97 ± 0.44 79.86 ± 0.39 42.75 ± 2.58
Proposed 74.98 ± 0.09 21.47 ± 0.14 88.32 ± 0.83 53.05 ± 0.92

proach temporally aggregates information from previous
timestamps to make predictions for the current times-
tamp. we choose LSTM [24] to be the baseline here.
4) Deep Learning Baselines Incorporating In-
teractions: These models leverage the information
from patient interactions with hospital entities. We
use Spatiotemporal Graph Convolution Network
(SGCN), a modification of the original GCN model
[25] with temporal aggregation via self-attention.
3) Contrastive Learning Baseline: HyGCL [20]
uses contrastive learning by augmenting views on a
hypergraph. Unlike our approach, HyGCL randomly
drops hyper-edges as augmentation.

3.3 Tasks: To demonstrate the benefit of using our
method for patient risk estimation, we compare our
framework and the baselines on two tasks:

(1) MICU Transfer Prediction: The task here is
to predict if a patient is at risk of being transferred to
a medical intensive care unit (MICU) [14, 15]. Patients
are likely to be transferred to the MICU when their
conditions deteriorate and require urgent treatment and
continuous observation. We pose MICU transfer predic-
tion as a binary classification task in which inpatients
transferred to the MICU at particular timestamps are
positive instances. The remaining patients are negative
instances. All methods need to correctly predict the
labels of nodes at time t, only using the embeddings
learned at or before time t − d, where d is the delay
period.
(2) CDI Incidence Prediction: Clostridioides dif-
ficile Infection (CDI) is a Hospital Acquired Infection
(HAI) that primarily spreads within healthcare facili-
ties [31]. It spreads through direct contact between in-
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(a) (b)

Figure 2: Ablation Studies for MIMIC-IV (a) shows the result of removing each type of interaction while (b) shows the
result of removing different components of our proposed model.

dividuals and also via surfaces (such as the doorknobs
in patients’ rooms). Early diagnosis of patients at risk
for CDI provides healthcare professionals with a crucial
time to fight the disease. Typically a patient is screened
for CDI three days after exhibiting symptoms. This
indicates that the infection might have proliferated be-
fore the positive test result [14,15,32]. Hence, motivated
by prior works [15,27,33], we make 3-day ahead predic-
tions. We pose it as a binary classification problem.

3.4 Data Split and Performance Metric: Con-
trary to the train: test split done in the downstream
prediction tasks by [14,15], we employ a temporal split
to define the train: test data and labels to prevent in-
formation leakage. We consider the data and labels
during 1/1/2010 - 3/31/2010 for PHOP and 1/1/2128
- 4/10/2128 (date-shifted true values in the data) for
MIMIC-IV. Further details are in the appendix.

Both the tasks described have highly imbalanced
label distribution. MICU Transfer prediction task
has about 1:75 label imbalance for PHOP and about
1:60 for MIMIC-IV. On the other hand, the CDI
Incidence prediction task has about 1:88 label imbalance
for PHOP and about 1:76 for MIMIC-IV. The
extreme label imbalance makes Area under Receiver
Operating Curve (AUROC) a better evaluation metric
over accuracy like prior works [26, 27]. For rigorous
evaluation, we also report Area under the Precision-
Recall Curve (AUPRC) as an additional metric.

3.5 Short and Long Term Risk Prediction:
MICU Transfer: We perform 1 to 3 days ahead
MICU Transfer Prediction for both datasets. The re-
sults of the experiments are present in Tables 2 & 3.
For this task, 1 and 2-day-ahead predictions are short-
term predictions while 3-day-ahead predictions corre-
spond to long-term prediction task. We note that stan-
dard baselines that only take individual risk factors (fea-
tures) into account such as LR, FFN, and MT typ-
ically perform the worst as they do not take tempo-
ral, relational, and semantic information into account.
Note that LSTM which only uses temporal information

has a slightly better performance. SGCN and DE-
Cent perform better than LSTM as they leverage both
interaction and temporal information. Hypergraphs-
based methods, HyGCL, CACHE, and HypEHR,
have a strong performance over other baselines indi-
cating the importance of modeling the higher-order re-
lations for the task. We note that our method out-
performs HyGCL (the only other contrastive-learning
baseline) for all the tasks. This means that the infu-
sion of domain knowledge to construct the contrastive
pairs improves the overall predictive performance. Our
framework obtains gains in performance up to 3.59
% for PHOP and 6.02 % for MIMIC-IV over the
nearest baseline in terms of AUROC and gains in
performance up to 29.49 % for PHOP and 30.64 %
for MIMIC-IV over the nearest baseline in terms of
AUPRC. We also note that our method significantly
outperforms the contrastive-learning baseline HyGCL
across all tasks, thus highlighting the importance of in-
corporating domain-inspired augmentations.
CDI Incidence: We perform 3-day-ahead CDI Inci-
dence Prediction for both datasets. The results of the
experiments are presented in Table 4. Similar to the pre-
vious experiment, we notice that LR and FFN perform
poorly on both datasets. However, we notice that MT,
which is designed for this predictive task, outperforms
LR,FFN and LSTM in terms of AUROC. As in MICU
transfer prediction, the hypergraphs-based approaches
perform the best over all baselines while the mobility-
interactions-based baselines DECent and SGCN par-
ticularly outperform the static and sequential baselines.
We observe that our framework again outperforms all
the baselines across all the tasks in terms of AUROC on
both datasets highlighting the consistent superiority of
our proposed approach over the baselines. We also note
our framework has improvements of 3.59 % for PHOP
and 2.79 % for MIMIC-IV over the nearest baseline
in terms of AUROC and gains in performance up to
13.17 % for PHOP and 4.45 % for MIMIC-IV over
the nearest baseline in terms of AUPRC. Note that the
large difference in AUPRC scores over the two datasets
is due to the difference in the number of interactions in
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the two datasets as shown in Table 1 and as CDI is a
disease that spreads through contact, the reduction in
the number of pathways of disease transmission makes
prediction for MIMIC-IV.

3.6 Ablation Studies: In this section, we present
ablation studies to demonstrate the importance of in-
corporating domain knowledge and the contributions of
each component of our proposed approach. To this end,
we conducted both data and model ablation on CDI
incidence prediction and 1-day ahead MICU Transfer
Prediction tasks on both datasets. We first removed
each interaction type, one at a time, then removed dif-
ferent components of our framework and recorded the
drop in performance. Figure 2 shows the results for
MIMIC-IV and the results for PHOP are presented
in A.2.

First, we notice that removal of any interaction
leads to a significant drop in performance in all set-
tings indicating that all three interactions are very im-
portant for the superior performance of our approach.
For MIMIC-IV, medication interactions are the dom-
inant type, as their elimination causes the most sig-
nificant drop in AUROC for both tasks. This is be-
cause medication-patient interactions dominate doctor-
patient and doctor-room interactions (See Table 1).
We also observed that removing doctor interactions
and room/unit interactions have similar effects on both
CDI Incidence Prediction MICU Transfer Prediction in
MIMIC-IV. This indicates that these two types of
information play roughly equal roles in health risk pre-
diction.

Figure 3: Variation of Learning Rate for CDI Incidence
(left) and MICU Transfer (right) for 3-day CDI incidence
and 1-day MICU Transfer MIMIC-IV

3.7 Sensitivity Test We evaluated the fluctuation
in the performance of our framework due to the varia-
tion of the hyperparameters and tested performance by
varying the latent embedding size by {16, 32, 64} and
the learning rate by {0.01, 0.001, 0.0001}. The results
for MIMIC-IV are in Figure 3 while PHOP is in A.3.
The results prove the robustness of our framework to

the variation of hyperparameters as there is no notable
variation in performance by changing either the learning
rate or the latent embedding size. Based on the results,
a hidden embedding size of 32 and a learning rate of
0.01 were chosen for all our experiments.

4 RELATED WORKS

Learning on Heterogenous Graphs and Hyper-
graphs: Many prior works across other domains use
interaction structures for downstream tasks. [34, 35]
perform classification on static heterogeneous graphs
while [36] considers that the general data contains some
elements that have more influence on the whole data
than others and [37] uses cooperative learning of spatio-
temporal feature embedding for time series prediction.
THINK [38] used a hypergraph learning method that
captured the hyperbolic properties of time-evolving dy-
namic hypergraphs. HyperGCN [39] expands hyper-
graphs to pairwise graphs and samples the relations.
Health Risk Estimation: Prior works for Healthcare
Analytics use patient mobility logs to solve inference
problems, such as outbreak detection [40], missing in-
fection [14] and time-series forecasting [41]. Some
works use heterogeneous co-evolving networks to learn
patient embeddings [15, 27], or utilize the inherent hi-
erarchy present in EHR data [42]. Another direction
of active research is to embed medical concepts from
EHR data using CNNs [43], or incorporating nonnega-
tivity constraints and structural smoothness [44]. Sev-
eral works also perform HAI incidence prediction by
constructing features [26, 33], or interactions [15, 27].
Overall patient outcome-level prediction is also popu-
lar as evidenced by [8, 28,45,46].
Contrastive Learning: Several prior works have
explored contrastive learning for graphs and hyper-
graphs. [47] generates medical code graphs and patient
graphs, and leverages contrastive learning to aggregate
information. Augmenting hyperedges provides the most
numerical gains [48] while [49] generates the same in-
sight for graphs. However, networks provide opportu-
nities to generate augmentations from various levels of
structural perspectives [50] while [51] proposes a con-
trastive loss based on collaborative filtering.

5 CONCLUSION

Our proposed contrastive dynamic hypergraph augmen-
tation framework guided by domain knowledge offers
a promising solution to the challenges of risk predic-
tion in healthcare. Although recent machine learning
approaches have shown promise, they struggle to cap-
ture the complexity of heterogeneous interactions lever-
aged via mobility and fully utilize the domain knowl-
edge, limiting their effectiveness. Our proposed model
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overcomes the existing limitation by explicitly modeling
multifaceted interactions between health entities using
a temporally dynamic hypergraph structure and accu-
rately captures the high-order relationships and domain
dependencies crucial for precise risk estimation.
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A Appendix

Figure 4: Variation of Learning Rate for CDI Incidence
(left) and MICU Transfer (right) for PHOP

A.1 Further Details about Datasets

A.1.1 PHOP In this data, each patient visit in-
cludes a list of diagnoses, a timestamped record of
room transfers, physician-performed procedures, and

prescription medications. We extracted patient contacts
with medications, doctors, and rooms in 2010 between
January 1 and March 31. For the period, there were
interactions between 6496 unique patients, 575 unique
doctors, 686 unique medicines, and 557 rooms.

A.1.2 MIMIC-IV The database contains informa-
tion on 46,520 patients from 2008 to 2019 and includes
demographic information, International Classification
of Diseases codes (ICD-9 and ICD-10), hourly vital
signs, laboratory tests and microbiological culture re-
sults, medication administrations, and survival statis-
tics. All dates in MIMIC-IV are shifted by a factor of
years to protect patient information but the sequence of
hospital events for every patient is maintained. Com-
pared to MIMIC-III [52], which receives data from het-
erogeneous sources, MIMIC-IV has more patient data
and precise information on procedure events, which are
a primary source of clinical information in the ICU,
making MIMIC-IV data homogeneous. We extracted
patient contacts with medications, doctors, and units
between January 1, 2128, and April 4, 2128. Note that
the dates in the dataset are shifted from the true values
to ensure patient data privacy.

A.1.3 Data Split The split is as follows: (1)
PHOP: MICU Transfer- 1/1/2010-2/7/2010 train,
2/8/2010-2/21/2010 validation, 2/22/2010-3/31/2010
test. CDI Incidence: 1/1/2010-2/20/2010 train,
2/21/2010-3/12/2010 validation, 3/13/2010-3/31/2010
test.(2) MIMIC-IV: MICU Transfer- 1/1/2128-
2/20/2128 train, 2/21/2128-3/11/2128 validation,
3/12/2128-4/4/2128 test. CDI Incidence: 1/1/2128-
2/19/2128 train, 2/20/2128-3/1/2128 validation,
3/2/2128-4/4/2128 test.

A.2 Ablation Study for PHOP The results of
the sensitivity study for PHOP are present in Figure
5. Like MIMIC-IV medication interactions are the
dominant type, as their elimination causes the most
significant drop in ROC-AUC for both tasks. Similarly,
we also observed that removing doctor interactions
and room/unit interactions have similar effects on both
CDI Incidence Prediction MICU Transfer Prediction in
PHOP. When we look at different components being
removed, we first note that removal of any component
leads to a drop in performance indicating that all
components are critical in maintaining the performance
of our proposed approach. We performed additional
experiments on PHOP data for both MICU transfer
prediction and CDI prediction where we replaced our
semantic knowledge-based augmentations with random
augmentations while keeping everything else in our
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(a) (b)

Figure 5: Ablation Studies for PHOP (a) shows the result of removing each type of interaction while (b) shows the result
of removing different components of our proposed model.

model fixed. We noticed that the performance dropped
by up to 4.7% in MICU transfer prediction and by up
to 1.5 % in CDI prediction. This result highlights the
importance of incorporating semantic knowledge for the
prediction of health risks.

A.3 Sensitivity Study for PHOP We show the
result of varying the parameters for PHOP and show
them in Figure 4. Notice that the embedding size of
32 gives the best performance for both tasks and the
learning rate of 0.01 gives the best performance in this
case as well.
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