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ABSTRACT 25 

Electronic health records (EHRs) contain rich temporal data about infectious diseases, but an 26 

optimal approach to identify infections remains undefined. Using the All of Us Research 27 

Program, we developed computable phenotypes for respiratory viruses by integrating billing 28 

codes, prescriptions, and laboratory results within 90-day episodes. Phenotypes computed from 29 

265,222 participants yielded cohorts ranging from 238 (adenovirus) to 28,729 (SARS-CoV-2) 30 

cases. Virus-specific billing codes showed varied sensitivity (8-67%) and high positive predictive 31 

value (90-97%), except for influenza virus and SARS-CoV-2 where lower PPV (69-70%) 32 

improved with increasing billing codes. Identified infections exhibited expected seasonal 33 

patterns and virus proportions when compared with CDC data. This integrated approach 34 

identified episodic disease more effectively than individual components alone and demonstrated 35 

utility in identifying severe infections. The method enables large-scale studies of host genetics, 36 

health disparities, and clinical outcomes across episodic diseases.  37 
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INTRODUCTION 38 

Respiratory infections are among the most common human diseases. Severity is influenced by 39 

demographics, social determinants of health, comorbidities, immunosuppression, lifestyle, 40 

exposures, and genetic factors.1 Influenza virus, respiratory syncytial virus (RSV), and SARS-41 

CoV-2 are well-studied causes of lower respiratory tract infections, but over 25 known viruses 42 

can cause such disease.2 The advent of multiplex testing has revealed that rhinovirus (RV), 43 

human metapneumovirus (hMPV), parainfluenza viruses (PIV), and common human 44 

coronaviruses (hCoVs) can cause similar symptoms, detection rates, morbidity, mortality, and 45 

healthcare costs in hospitalized patients.3–5 46 

 47 

Risk factors for severe infection by influenza virus, RSV, and SARS-CoV-2 are well 48 

characterized. These include age extremes, immunosuppression, male sex, smoking, and 49 

comorbidities such as obesity, chronic lung disease, hypertension, diabetes, and heart 50 

failure.1,6–8 Similarly, population-level genetic risk factors have been identified through genome-51 

wide studies for SARS-CoV-2, avian influenza virus (H7N9), pandemic influenza virus 52 

(H1N1pdm09), and influenza virus by survey report.9–14 While underrecognized viruses share 53 

similar risk factors like advanced age and immunocompromised status, they remain 54 

understudied.3,4,15,16 55 

 56 

Population-level studies of respiratory infections typically rely on administrative claims data, 57 

laboratory surveillance data, or curated clinical cohorts.15,17 While laboratory results and some 58 

pathogen-specific billing codes are highly specific, they have poor sensitivity due to infrequent 59 

testing, and adding non-specific International Classification of Diseases (ICD) codes only 60 

modestly improves sensitivity.18,19 In contrast, electronic health record (EHR)-based 61 

phenotyping algorithms can integrate multiple data types to reliably identify disease cohorts for 62 

observational studies. Although integrating billing codes, clinical notes, and medications in 63 
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disease phenotyping using EHRs improves performance, this approach has only rarely been 64 

used for respiratory viruses.15,20–23 65 

 66 

This study aimed to create and assess a computable phenotype for identifying viral respiratory 67 

infections in EHR data using the National Institutes of Health’s All of Us Research Program (All 68 

of Us). We evaluated ICD billing codes, medications, and laboratory results to identify infections, 69 

and assessed phenotype performance through specificity, positive predictive value (PPV) and 70 

sensitivity calculations compared to gold-standard laboratory testing; and compared the 71 

frequency and distribution of laboratory results against CDC surveillance data. 72 

 73 

MATERIALS AND METHODS 74 

Data Acquisition 75 

We analyzed data from the All of Us Research Program, which digitally enrolls participants aged 76 

18 years and older across the United States.24 All of Us is a large, diverse national cohort where 77 

participants contribute survey data, standardized physical measurements, biospecimens, and 78 

EHR data including billing codes, prescriptions, and laboratory results [23]. Participants provide 79 

consent to share health information, which includes physical measurements, surveys, genomic 80 

data, and EHRs. The informed consent and enrollment process has been described, and 81 

specific Institutional Review Board approval is not required for Controlled Tier use of de-82 

identified data, deemed nonhuman subjects research by the All of Us Institutional Review 83 

Board.24,25 The program prioritizes recruitment of populations historically underrepresented in 84 

biomedical research.24 This analysis used Controlled Tier data (C2022Q4R13) from the All of Us 85 

Researcher Workbench and was restricted to the 265,222 participants who had ICD codes, 86 

medications, or laboratory results in their EHR data between 1/1/1981 and 7/1/2022. Data 87 

linkage, follow-up completeness, quality assessment, privacy, and community engagement are 88 
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described in the All of Us Protocol.26 This study meets all five of the CODE-EHR minimum 89 

framework standards for the use of structured health care data in clinical research, with one out 90 

of five standards meeting preferred criteria.27 Participants’ demographic data were derived from 91 

the All of Us Researcher Workspace’s “person” table and its “The Basics” survey.  92 

 93 

Phenotype Development 94 

We developed computable phenotypes for eight respiratory viruses: rhinovirus (RV); human 95 

metapneumovirus (hMPV); respiratory syncytial virus (RSV); adenovirus (ADV); SARS-CoV-2, 96 

parainfluenza (PIV); common human coronavirus (hCoV); and influenza virus. Patient 97 

encounters were identified in the EHR if they had at least one of the following: a virus-specific 98 

billing code (ICD-9-CM or ICD-10-CM), an antiviral indicated for the target pathogen, or a 99 

positive laboratory test. We identified virus-specific billing codes and Logical Observation 100 

Identifiers Names and Codes (LOINC) laboratory results by searching for the virus name and 101 

related terms (e.g., “adenovirus” and “adenoviral pneumonia”). We excluded codes and results 102 

for zoonotic infections, vaccine-related events, and ICD codes for explicitly non-respiratory 103 

conditions (e.g., “ovine adenovirus”, “enteritis due to adenovirus”). We also excluded codes and 104 

results for pathogens sharing components of the virus name (e.g., “Haemophilus influenzae”). 105 

Laboratory data included nucleic acid amplification, antigen, and culture results. For influenza 106 

virus and SARS-CoV-2, we included antiviral medications (i.e., oseltamivir, zanamivir, and 107 

baloxavir for influenza virus; remdesivir, molnupiravir, and nirmatrelvir/ritonavir for SARS-CoV-2) 108 

given for more than one day. For oseltamivir and zanamivir, prescriptions were removed if the 109 

duration of treatment was greater than 6 days to exclude prophylaxis. Antivirals for other 110 

respiratory viruses were not included due to poor specificity or their reserved use for severe or 111 

immunocompromised cases (Figure 1A). 112 

 113 
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We computed phenotypes for each infection episode by grouping related clinical events (Figure 114 

1A). An episode began with the first occurrence (t0) of any virus-specific component: a virus-115 

specific ICD code, positive laboratory result, or qualifying antiviral prescription. All subsequent 116 

components within 90 days of t0 were considered part of the same episode, while events 117 

beyond 90 days initiated new episodes.15 To capture false negatives, we included negative or 118 

indeterminate laboratory results from t0-5 days through the episode’s end. The per-episode 119 

occurrence of constituent components (ICD codes, positive laboratory results, and medications) 120 

were tallied (Figure 1B). Counts for all virus-specific ICD codes, laboratory results, and 121 

medications used for phenotyping are provided (Tables S1-3). We de-duplicated row-level 122 

entries; categorized visit types into major categories (i.e., intensive care unit, inpatient, 123 

emergency room, urgent care, post-acute care, outpatient, and unknown); and reclassified 124 

laboratory results as positive, negative, or indeterminate (Table S4). 125 

 126 

Phenotype Sensitivity Analyses 127 

Positive Predictive Value, Specificity, and Sensitivity Calculations 128 

Using non-antigen test results as reference standard, we calculated the performance (PPV, 129 

sensitivity, and specificity) based on increasing counts of virus-specific ICD codes within each 130 

episode (e.g., multiple occurrences of J10.1, or combinations like J10.1 + J11 + 487). For a 131 

given threshold N (n = 0, n ≥ 1, n ≥ 2, n ≥ 3, n ≥ 4), we defined true positives as episodes with N 132 

virus-specific ICD codes and a positive test, false positives as episodes with N ICD codes and 133 

only negative tests, and false negatives as episodes with fewer than N ICD codes and a positive 134 

test.  135 

 136 

For influenza virus and SARS-CoV-2, we additionally tested the performance of incorporating 137 

antiviral prescriptions. We first assessed specificity, sensitivity, and PPV in cases requiring both 138 
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the specified ICD count and a prescription to be considered positive, or fewer than N ICD codes 139 

and no prescription to be considered negative. Then, we evaluated full performance metrics 140 

(sensitivity, specificity, PPV, negative predictive value (NPV), and phi coefficient) across 141 

different combinations of ICD code thresholds and medication criteria for these two viruses. 142 

 143 

Temporal and Geographic Analysis of Phenotype-Positive Episodes 144 

For any episode that met positivity criteria, we analyzed temporal patterns by calculating three-145 

week moving averages of episode and constituent component counts from July 2017 (MMWR 146 

week 201726) through June 2022 (MMWR week 202225). Because hCoV PPV was lower than 147 

expected for non-influenza, non-SARS-CoV-2 viruses, and as hCoV ICD counts were disrupted 148 

during the COVID-19 pandemic, hCoV ICD codes after February 1, 2020 were excluded from 149 

the analysis (Figure S3). We assessed the geographic distribution of episode rates by three-150 

digit ZIP code prefixes (zip3). 151 

 152 

Level of Care Sensitivity Analysis 153 

Because of differences in testing and care by facility type and acuity, for each episode we 154 

identified the highest acuity encounter (from lowest to highest: outpatient, post-acute care, 155 

urgent care, emergency department, or inpatient) within a window spanning t0-7 days through 156 

t0+14 days. We chose this window after analyzing the distributions of visit timing for phenotype-157 

related visits (those associated with virus-specific ICD codes, antivirals, or laboratory results) 158 

and all visits (Figure S4). Use of all visits within the selected window, rather than only 159 

phenotype-related visits, reduced the overall percentage of missing encounter data from 25.9% 160 

to 15.4%; across viruses and ICD counts, median missing encounter data decreased from 161 

17.6% (IQR 7.6-28.3%) to 11.3% (IQR 2.2-17.8%) (Table S5). Rarely (0.09%-0.43%), 162 

phenotype-related maximum encounter acuity exceeded encounters within this time window 163 

(e.g., hospitalization occurring >7 days prior to initial viral diagnosis, Figure S5). For PIV, hMPV, 164 
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and RSV, manual review of these visits revealed that the associated encounter start date 165 

preceded the window period by a few days, and the phenotype component level of care was 166 

retained. We analyzed level-of-care patterns across viruses, stratifying by ICD codes and test 167 

positivity. 168 

 169 

Comparison with National Surveillance Data 170 

To understand the representativeness of respiratory illness data in All of Us, we compared the 171 

seasonal percent positivity and test volume of All of Us EHR laboratory results to data from 172 

three CDC/WHO sources: National Respiratory and Enteric Virus Surveillance System 173 

(NREVSS), COVID-19 Data Tracker, and the Global Influenza Surveillance and Response 174 

System (GISRS).  175 

 176 

First, we assessed geographic coverage by comparing All of Us participant locations and testing 177 

rates to deduplicated NREVSS clinical laboratory results from 2017-2021.28 All of Us EHR 178 

participant counts were visualized by aggregating data across three-digit ZIP code prefixes 179 

(zip3). Zip3 information was missing for 2/265,222 (0.00%). All of Us EHR participants (per 180 

1,000 zip3 2020 Census population) and All of Us participants tested (per 1,000 All of Us 181 

participants with EHR data) were similarly aggregated by zip3 code. Zip3 regions with five or 182 

fewer All of Us participants were removed and classified as “No Data.” We obtained zip3 183 

boundaries from US Census Bureau zip code tabulation areas, 2017 cartographic state 184 

boundaries from the Vega us-10m.json dataset, and 2020 zip code tabulation area populations 185 

from the US Census Bureau. 186 

 187 

Next, we assessed virus distribution by comparing proportions detected (% = N type / N total 188 

with known type) in All of Us to surveillance data from NREVSS and the GISRS.29–31 These 189 
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comparisons were limited to hCoV, influenza virus, and PIV, as these were the only viruses for 190 

which syndromic multiplex panels routinely report type-specific results. 191 

 192 

To evaluate temporal patterns, we compared weekly test positivity data between All of Us and 193 

CDC surveillance from the first week of July, 2016 to the last week of June, 2022. For each 194 

virus, we calculated the percentage of positive tests for each MMWR reporting week. We plotted 195 

three-week moving averages for both percent positivity and total tests performed for All of Us 196 

and CDC data. We obtained CDC comparison data from NREVSS for non-SARS-CoV-2 197 

viruses, additional influenza virus data from FluView, and SARS-CoV-2 data from the COVID 198 

Data Tracker.28,32,33 199 

 200 

RESULTS 201 

Cohort Characteristics 202 

Among 265,222 All of Us participants with ICD codes, medication entries, or laboratory results 203 

recorded between 1/1/1981 and 7/1/2022, we identified respiratory virus episodes that varied 204 

substantially in duration and composition (Figure 1B). SARS-CoV-2 (n [distinct 205 

episodes]=28,729) and influenza virus (n=19,784) were the largest cohorts, followed by RV 206 

(n=1,620), hCoV (n=1,437), and RSV (n=1,161) and the smallest cohorts, hMPV (n=486), PIV 207 

(n=400), and ADV (n=238). 208 

 209 

Across all cohorts, participants were predominantly female (61-68%) with median ages mostly 210 

between 50 and 58 (Table S6). Participants who self-reported as White were the plurality for 211 

every virus (32.9-60.1%), compared to participants self-reporting as Black (16.5-28.5%) or 212 

Hispanic/Latino (17-32.1%). All other options (Asian, multiple selected, Middle Eastern or North 213 

African, and Native Hawaiian or Other Pacific Islander) were rare (0-2.2%). SARS-CoV-2 and 214 

influenza virus participant demographics most closely mirrored the overall All of Us cohort with 215 
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ICD, laboratory, or medication data. These two groups more frequently self-reported as White 216 

(50.4-60.1%) and were more frequently employed with higher reported income, education, and 217 

employer-provided insurance. Demographic data were only notably missing for insurance type 218 

(46,487/265,222=17.5% for all participants with EHR data). Test count per person was higher 219 

among infected cohorts than tested cohorts for each virus. 220 

 221 

Episodes commonly consisted of either laboratory results alone (predominant for RV [74.7%], 222 

PIV [65.0%], SARS-CoV-2 [31.3%], hMPV [32.9%]) or single ICD codes (predominant for ADV 223 

[45.8%], hCoV [43.1%], RSV [35.4%], influenza [34.8%]) (Figure 1B). Antiviral use varied 224 

markedly: SARS-CoV-2 episodes rarely included antiviral prescriptions (4.57%), while 225 

medication-only episodes were frequently observed for influenza virus (22.9%), even after 226 

excluding prophylactic prescriptions. 227 

 228 

Phenotype Performance for Detecting True Positives 229 

To understand the diagnostic performance of varying ICD codes for an episode, we calculated 230 

sensitivity, specificity, and PPV for each virus across N ICD codes per episode using non-231 

antigen test results as a reference standard (Figure 2). The sensitivity of using one or more ICD 232 

codes varied between viruses and decreased as the minimum N ICD codes increased. 233 

Diagnoses using one or more ICD codes for influenza virus had the highest sensitivity (66.8%), 234 

compared to moderate sensitivity for RSV (55.2%), SARS-CoV-2 (44.8%), ADV (42.4%), hMPV 235 

(40.2%), and hCoV (33.4%), and minimal sensitivity for RV (9.2%) and PIV (8.3%). 236 

 237 

Specificity and PPV demonstrated similar patterns, with exaggerated variation in PPV initially 238 

demonstrating three groupings. First, for influenza virus and SARS-CoV-2, the PPV for one or 239 

more ICD codes was lower (69.7% and 68.8%, respectively), but increased as minimum N ICD 240 

count increased (78.1% and 76.7% for at least 2 ICD codes, respectively) (Figure 2). Second, 241 

for use under a CC0 license. 
This article is a US Government work. It is not subject to copyright under 17 USC 105 and is also made available 

(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 
The copyright holder for this preprintthis version posted January 18, 2025. ; https://doi.org/10.1101/2025.01.17.25320744doi: medRxiv preprint 

https://doi.org/10.1101/2025.01.17.25320744


 

 

for non-influenza, non-SARS-CoV-2 viruses, the PPV was high and did not change substantially 242 

as ICD count increased (89.7-97.3%). Third, hCoV initially demonstrated a high PPV (79.5%) 243 

that decreased as ICD count increased (71.8% for at least 2 ICD codes) (Figure S3A).  244 

 245 

During the COVID-19 pandemic, hCoV ICD code counts spiked above historical maxima despite 246 

an absence of positive tests (Figure S3B). After removing hCoV ICD codes after February 1, 247 

2020, the PPV trend for common hCoV became similar to other non-influenza, non-SARS-CoV-248 

2 viruses (Figure 2, Figure S3A). 249 

 250 

Adding medication use to the phenotype had varying effects on performance. As with the 251 

medication-exclusive phenotypes, specificity and PPV increased with each additional ICD code 252 

for the medication-inclusive influenza and SARS-CoV-2 cohorts. While only a small proportion 253 

(1,345/28,741=4.67%) of SARS-CoV-2 episodes included a prescription for remdesivir, 254 

molnupiravir or nirmatrelvir, the addition of medication to the phenotype did increase PPV for 255 

this subset of 1,345 participants (Figure 2). For influenza virus, medication use alone was poorly 256 

predictive (PPV=46.8%), but combining medications with 1 ICD code improved PPV compared 257 

to 1 or more codes alone (87.1% vs. 69.7%, respectively) (Figure 2). 258 

 259 

Varying ICD code thresholds and antiviral requirements in the entire influenza and SARS-CoV-2 260 

cohorts demonstrated an expected trade-off in performance (Table 1). For both viruses, at least 261 

one ICD code or medication was the most sensitive phenotype (76.0% influenza virus and 262 

45.1% SARS-CoV-2), but this caused the highest number of false positives and the lowest 263 

PPVs (65.8% and 68.8%, respectively). For influenza virus, by requiring at least two ICD codes 264 

or a medication accompanied by an ICD code, the lower sensitivity (47.7%) was accompanied 265 

by a marked reduction in false positives (778 to 238) and increase in PPV (65.8% to 79.8%). 266 
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Similar trends were observed for SARS-CoV-2, and despite trade-offs, the phi coefficient was 267 

highest for the broadest phenotypes. 268 

 269 

Table 1   Phenotype Performance                   
   Counts (N) Phenotype Performance 
 Phenotype TP FP FN TN Sen. Spec. PPV NPV φ 

Flu 

1+ ICDs or medication 1496 778 472 32018 0.760 0.976 0.658 0.985 0.688 

1+ ICDs 1315 572 653 32224 0.668 0.983 0.697 0.980 0.664 

2+ ICDs or medication 1120 444 848 32352 0.569 0.986 0.716 0.974 0.619 

2+ ICDs or (1 ICD + medication) 939 238 1029 32558 0.477 0.993 0.798 0.969 0.600 

3+ ICDs or medication 941 339 1027 32457 0.478 0.990 0.735 0.969 0.574 

3+ ICDs or (1-2 ICDs + medication) 760 133 1208 32663 0.386 0.996 0.851 0.964 0.558 

2+ ICDs 691 194 1277 32602 0.351 0.994 0.781 0.962 0.506 

3+ ICDs 360 68 1608 32728 0.183 0.998 0.841 0.953 0.379 

COVID 

1+ ICDs or medication 7298 3302 8894 177219 0.451 0.982 0.688 0.952 0.526 

1+ ICDs 7258 3298 8934 177223 0.448 0.982 0.688 0.952 0.524 

2+ ICDs or medication 4483 1324 11709 179197 0.277 0.993 0.772 0.939 0.438 

2+ ICDs or (1 ICD + medication) 4443 1320 11749 179201 0.274 0.993 0.771 0.938 0.435 

3+ ICDs or medication 2598 546 13594 179975 0.160 0.997 0.826 0.930 0.345 

3+ ICDs or (1-2 ICDs + medication) 2558 542 13634 179979 0.158 0.997 0.825 0.930 0.342 

2+ ICDs 4309 1310 11883 179211 0.266 0.993 0.767 0.938 0.427 

3+ ICDs 2260 523 13932 179998 0.140 0.997 0.812 0.928 0.318 

TP: true positive; FP: false positive; FN: false negative; TN: true negative; Sen: sensitivity; Spec: specificity; PPV: positive predictive value; NPV: 
negative predictive value; φ: phi coefficient (mean square contingency coefficient). 

 270 

We identified infection episodes nationwide, with SARS-CoV-2 and influenza virus 271 

demonstrating the broadest US coverage. While episodes generally matched the All of Us EHR 272 

subgroup distribution (Figure S1C), incorporating ICD codes and medications exhibited higher 273 

infection rates in the Southeast and Texas despite lower testing coverage in these regions 274 

(Figure 3). Temporally, episodes composed of 1-3 ICD codes showed seasonality patterns 275 

consistent with test-positive episodes for all frequently detected viruses (Figure 4). During the 276 

early COVID-19 pandemic (winter 2020 to spring 2021), only SARS-CoV-2 and RV were 277 

consistently identified. 278 
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 279 

Patterns in Phenotype Composition by Level of Care 280 

Encounter level of care varied by virus and episode composition. For RV, hMPV, PIV, hCoV, 281 

and SARS-CoV-2, episodes defined by at least one test without ICD codes were the most 282 

frequent, while for RSV, ADV, and influenza virus, ICD-only episodes predominated (Figure 5). 283 

Influenza virus episodes with antiviral prescriptions showed a similar distribution of visit types 284 

compared to those without, while SARS-CoV-2 episodes rarely included prescriptions during our 285 

study period. 286 

 287 

By percentage, influenza virus and SARS-CoV-2 episodes showed a mix of outpatient, ER, and 288 

inpatient encounters, while other viruses demonstrated higher rates of ER visits and 289 

hospitalization. Episodes containing a positive test consistently showed higher rates of 290 

hospitalization compared to test-negative episodes. Similarly, hospitalization rates increased as 291 

the number of ICD codes within an episode increased. The cohorts included very few post-acute 292 

care encounters and almost no urgent care encounters. 293 

 294 

Laboratory Result Comparison 295 

Using national epidemiological data from NREVSS, COVID Data Tracker, and GISRS, we 296 

compared All of Us laboratory results by geographic coverage, virus type proportion, and 297 

temporal trends. 298 

 299 

We found broad US coverage of All of Us participants with relevant EHR data (265,222 300 

participants), with enriched sampling near population centers in the Northeast megalopolis; 301 

Western Pennsylvania; Great Lakes Region; Southeast; Arizona; California; and the 302 

metropolitan areas of Austin/Dallas, Kansas City, Denver, and Seattle (Figure S1A, Table S7). 303 

Only 3.7% of zip3 codes had no All of Us participants with ICD, laboratory, or medication data. 304 
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 305 

Testing patterns in the All of Us data overlapped with CDC clinical laboratories reporting to 306 

NREVSS (Figure S1B) and mirrored participant distribution (Figure S1A) with a notable 307 

decrease in testing for all respiratory viruses in the Southeast relative to participant density 308 

(Figure S1C). Testing frequency varied substantially by virus; participants were more frequently 309 

tested for influenza virus and SARS-CoV-2 compared to all other viruses. 310 

 311 

Virus type distributions in All of Us were similar to national surveillance data from NREVSS and 312 

GISRS.29–31 For PIV (2011-2019), HPIV-3 was most commonly detected and all other types 313 

were less frequent (Figure S2A). For hCoV (2014-2021), OC43 was most common and 229E 314 

was least common, while the order of NL63 and HKU1 differed (Figure S2B). Influenza virus 315 

type proportions (2010-2020) were nearly identical, with influenza virus A more common than 316 

influenza virus B (Figure S2C). Cross-dataset influenza subtype comparisons were not 317 

available, but in All of Us, H3N2 and H1N1 pdm09 were markedly more common than H1N1 318 

and H5N1, as expected. 319 

 320 

Test positivity patterns from 2017 to 2022 matched CDC rates for most viruses (mean absolute 321 

error 5.89 percent positive tests per week for RV and 1.18-2.82 for all other viruses) (Figure 6). 322 

SARS-CoV-2, influenza virus, and RV showed the highest percent positivity, and most viruses 323 

showed expected seasonal patterns: PIV and RV exhibited two seasonal peaks per year 324 

(spring-dominant for PIV, fall-dominant for RV), while RSV, influenza, and hMPV demonstrated 325 

single overlapping winter peaks. SARS-CoV-2 positivity matched expected variant waves (e.g., 326 

Alpha, Delta, and Omicron BA.1). Notable differences in the All of Us data include more 327 

variability in RSV tests and positivity, undercounted positivity by ~10% during peak respiratory 328 

season for influenza and RSV, and less ADV positivity, relative to CDC data. 329 

 330 
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DISCUSSION 331 

This study demonstrates that combining virus-specific EHR data elements reliably identifies 332 

respiratory viral infections in large biobank datasets. Using temporal, geographic, and sensitivity 333 

analyses, we described important performance insights into respiratory virus phenotyping. All 334 

phenotypes exhibited high specificity, though trade-offs exist between accuracy and sensitivity 335 

for influenza virus and SARS-CoV-2.  336 

 337 

We identified epidemiological patterns and cohort sizes that matched national surveillance data. 338 

The combination of laboratory results, ICD codes, and medications increased case detection 339 

beyond what any component alone could identify, which was valuable where laboratory testing 340 

was less frequent (e.g., the Southeast). The cohorts varied in size: approximately 20,000-341 

30,000 episodes for influenza virus and SARS-CoV-2 compared to 200-1,600 for other viruses, 342 

likely reflecting increased clinical suspicion and testing for common pathogens rather than true 343 

differences in disease burden.15 These cohorts could be used to investigate host genetic 344 

factors, health disparities, geographic and environmental risk factors, and clinical outcomes 345 

across respiratory viral infections. The longitudinal available also supports study of lifestyle 346 

factors through wearables and patient-reported outcomes from surveys. 347 

 348 

Phenotype performance varied substantially between viruses, across episode composition, and 349 

over time. Virus-specific ICD code sensitivity varied widely: higher for influenza (66.8% vs. 38-350 

95% in published studies) and RSV (55.2% vs. 24%) and moderate for SARS-CoV-2, ADV, 351 

hMPV, and hCoV (33-44%), but very low for PIV (8.3% vs. 14% and RV (9.2% vs. 0%).18,19,34–36 352 

While non-influenza, non-SARS-CoV-2 virus-specific ICD codes showed high PPV regardless of 353 

count (89.7-97.3%), single ICD codes for SARS-CoV-2 and influenza were less predictive (68.8-354 

69.7%).18,19,35,36 For medication-inclusive cases, ICD codes had a higher PPV for influenza virus 355 

and SARS-CoV-2 episodes, and for SARS-CoV-2, antivirals alone were highly predictive of test 356 
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results, although receipt of remdesivir, molnupiravir or nirmatrelvir was rare (4.57% of all 357 

episodes) during the study period.  358 

 359 

The COVID-19 pandemic disrupted the seasonal transmission of most respiratory viruses, 360 

granting the opportunity to assess ICD code performance in unexpected settings and 361 

demonstrating the importance of evaluating code performance over time for seasonally variable 362 

diseases. hCoV ICD codes were inappropriately used to identify concern for COVID-19 363 

infection, with diminished but persistent effects throughout the study period. Apart from 364 

rhinovirus, our phenotypes only rarely identified false positive episodes during the COVID-19 365 

pandemic, mostly attributable to influenza virus episodes composed of a single ICD code. We 366 

suspect that these episodes reflect clinical concern for infection rather than true infection, and 367 

indeed, adjusting the influenza phenotype from any ICD code or medication to 2+ ICD codes or 368 

medications accompanied by an ICD code markedly reduced false positives and increased 369 

PPV. In this work, we suggest choosing phenotype characteristics that match the research 370 

question and desire to maximize sensitivity vs. PPV. 371 

 372 

Level-of-care analyses revealed patterns suggesting systematic detection biases toward higher 373 

acuity settings. Our phenotype identified a high frequency of infections at emergency and 374 

inpatient visits for RV, hMPV, RSV, ADV, PIV, and hCoV, compared to more outpatient visit 375 

types for SARS-CoV-2 and influenza virus. These findings differ from established hospitalization 376 

rates: CDC estimates suggest that only 1-2% of medically-attended influenza cases require 377 

hospitalization, while COVID-19 hospitalization rates ranged between 2.1% and 68% over this 378 

study period, with temporal trends showing a decrease from ~50% in the early pandemic to 20% 379 

by July, 2022.37–41 Moreover, prospective studies in adults have shown that other respiratory 380 

viruses show either similar or lower hospitalization rates compared to influenza - the opposite of 381 

our results.4,16 This discordance suggests that the All of Us computable phenotype oversamples 382 

for use under a CC0 license. 
This article is a US Government work. It is not subject to copyright under 17 USC 105 and is also made available 

(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 
The copyright holder for this preprintthis version posted January 18, 2025. ; https://doi.org/10.1101/2025.01.17.25320744doi: medRxiv preprint 

https://app.readcube.com/library/3d3c9929-7da7-4cc5-8de8-53f2ae9ec189/all?uuid=20019666576378192&item_ids=3d3c9929-7da7-4cc5-8de8-53f2ae9ec189:d5b473b0-85d2-47a2-8a3c-69f758002b87,3d3c9929-7da7-4cc5-8de8-53f2ae9ec189:f642310f-ca5f-4422-87c3-d9873937fd1b,3d3c9929-7da7-4cc5-8de8-53f2ae9ec189:8a1865d6-412b-448a-9be4-77999302f2d1,3d3c9929-7da7-4cc5-8de8-53f2ae9ec189:323a54f4-e0fc-4a1b-9d35-6b729e8d0082,3d3c9929-7da7-4cc5-8de8-53f2ae9ec189:2b8f2d47-5a0c-4a35-bc4d-80983154a439
https://app.readcube.com/library/3d3c9929-7da7-4cc5-8de8-53f2ae9ec189/all?uuid=24986779913535584&item_ids=3d3c9929-7da7-4cc5-8de8-53f2ae9ec189:48f20dc4-683f-460a-b193-e37001d82556,3d3c9929-7da7-4cc5-8de8-53f2ae9ec189:5bfd8f21-dee6-4f26-8664-6954599bcfc4
https://doi.org/10.1101/2025.01.17.25320744


 

 

high levels of care, particularly for non-influenza, non-SARS-CoV-2 viruses, likely due at least 383 

three factors: the lack of cost-effective outpatient assays, an absence of specific therapeutic 384 

interventions that would justify multiplex testing costs in lower-acuity care settings, and the utility 385 

of identifying an etiology in the inpatient setting, where cessation of antibiotics or discharge are 386 

considerations. 387 

 388 

Several limitations affect the interpretation and generalizability of these findings. The low 389 

sensitivity for all viruses indicates that this method cannot be used to study disease prevalence, 390 

as nonspecific syndromic coding likely predominates for upper respiratory illnesses. 391 

Additionally, the requirement for data conversion to a common data model before release in 392 

curated data repositories means this method cannot support real-time surveillance. In addition, 393 

while All of Us provides broad national coverage, it highly sampled some states (AZ, MA, WI, 394 

AL, PA, IL, MI, NY, MS, CA) and left approximately half the US population sampled below rates 395 

of 1 in 10,000. The program’s intentional oversampling of populations historically 396 

underrepresented in biomedical research, while invaluable to health equity research, also 397 

results in demographics that differ from the overall US population. Other known impediments to 398 

generalizability compared to the US population include decreased representation of blind and 399 

deaf participants; difficulty in linking EHRs from a considerable portion of All of Us participants; 400 

and the decreased representation of persons of Asian, Middle Eastern or North African, and 401 

Native Hawaiian or Other Pacific Islander heritage in this cohort.42 402 

 403 

Finally, this work faces challenges common to EHR-based research. These include labeling 404 

bias, implicit clinician biases which could be influenced by demographics, and informed 405 

presence bias where EHR inclusion typically reflects illness rather than routine care.43,44 The 406 

minimal representation of urgent care and post-acute care in our data further underscore the 407 
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disconnected nature of healthcare in the US, and identifies a likely gap in infection detection in 408 

this cohort.  409 

 410 

Despite these limitations, our computable phenotypes reliably detected geographic and 411 

temporal patterns of infection matching national surveillance, although severe infections are 412 

oversampled and many mild infections are likely missed. This work supports a need for 413 

expanded surveillance of non-influenza/non-SARS-CoV-2 pathogens in routine medical care.45 414 

Using a cohort that is expected to continually grow, our results enable future studies of genetic 415 

susceptibility and clinical outcomes research across both well-studied and understudied 416 

respiratory viruses. This work serves as a foundation for the creation and validation of other 417 

computable phenotypes for episodic infectious diseases using EHR-based methods. 418 

 419 

DATA AND CODE AVAILABILITY 420 

The Community Workspace “Respiratory Virus Computable Phenotype” is available for all 421 

approved All of Us users and includes all code and data used in this work 422 
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ae307fda/respiratoryviralinfectionsinallofus/analysis). 424 
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FIGURES AND FIGURE LEGENDS 466 

 467 

Figure 1. Computational phenotype for respiratory virus episodes using electronic health 468 

records (EHRs) with respiratory episode composition. A: Episodes were defined by (1) virus-469 

specific ICD-9-CM or ICD-10-CM codes, (2) antiviral medications (for influenza and SARS-CoV-470 
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2), and/or (3) positive laboratory results including nucleic acid amplification tests (NAAT), 471 

antigen tests, or cultures. The first qualifying event is designated as time zero (t0), and all 472 

related, subsequent events within 90 days were grouped into the same episode. Negative or 473 

indeterminate tests were also included, with a five-day lookback window to incorporate false 474 

negative results. Phenotypes were computed for influenza, human metapneumovirus (hMPV), 475 

respiratory syncytial virus (RSV), parainfluenza, rhinovirus (RV), SARS-CoV-2, common human 476 

coronavirus (hCoV), and adenovirus (ADV). Heatmap (B) showing the breakdown of episode 477 

types (columns) for each virus (row). Colors indicate the percentage of counts for each virus 478 

(e.g., 74.9% of RV episodes (1,210/1,620) contained only positive laboratory results. 479 

Percentage and corresponding color for counts below 20 (with a second count to prevent back-480 

calculation for hMPV), were censored per the All of Us participant privacy policy. N/A : not 481 

applicable. 482 
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 484 

Figure 2. Phenotype performance across different episode definitions. Specificity (A), sensitivity 485 

(B), and PPV (C) were calculated using non-antigen laboratory results as the reference 486 

standard. For each virus, colored lines show performance across episodes containing 487 

increasing numbers of ICD codes. For influenza virus (dashed orange line) and SARS-CoV-2 488 

(dashed dark blue line), additional lines show performance when episodes were restricted to 489 

episodes containing both ICD codes and antiviral prescriptions (Rx). *Human coronavirus 490 

(hCoV) episodes excluded ICD codes after February 1, 2020, due to loss of specificity during 491 

the COVID-19 pandemic (Figure S3A). **Y-axis for specificity (A) is broken to depict differences 492 

near 1.0. PIV: parainfluenza; hMPV: human metapneumovirus; RV: rhinovirus; ADV: 493 

adenovirus; RSV: respiratory syncytial virus; hCoV: human coronavirus; Flu: influenza virus. 494 
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 495 

Figure 3. Geographic distribution of respiratory virus episodes. Heat maps show episode rates 496 

per 1,000 All of Us participants with EHR data by three-digit zip code prefix. Colors represent 497 

quintiles defined by SARS-CoV-2 rates, the largest cohort. Regions with five or fewer All of Us 498 

participants are marked as "No Data" in (B). *Human coronavirus episodes were filtered as 499 

described in methods. RSV: respiratory syncytial virus. 500 
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 502 

Figure 4. Temporal patterns of respiratory virus episodes by composition. Three-week moving 503 

averages shown for (A) parainfluenza, (B) human metapneumovirus, (C) rhinovirus, (D) 504 

adenovirus, (E) respiratory syncytial virus (RSV), (F) human coronavirus, (G) influenza virus, 505 

and (H) SARS-CoV-2. For each virus, lines show total episodes (gray) and episodes by 506 

composition: one or more positive tests (blue), single ICD code (light orange), two ICD codes 507 
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(light green), and three or more ICD codes (red-orange). For influenza, and SARS-CoV-2, 508 

additional lines show episodes with antiviral prescriptions alone (dark green) or with concurrent 509 

ICD codes (pink). Gray shading indicates testing volume. Left y-axis corresponds to episode 510 

counts; right y-axis shows total tests performed. *Episodes for hCoV are shown after applying 511 

temporal filtering (unfiltered plot compared in Figure S3). 512 
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Figure 5. Level of care patterns by virus and episode composition. For each virus, (A) counts 515 

and (B) percentages of maximum level of care recorded between seven days before and 14 516 

days after episode start. Results are stratified by episode characteristics: episodes with positive 517 

tests (upper panels) versus those without (lower panels), and by number of ICD codes 518 

(columns). Color intensity corresponds to level of care: inpatient (IP, darkest), emergency room 519 

(ER), urgent care (UC), outpatient (OP), and unknown (lightest). For influenza virus (Flu) and 520 

SARS-CoV-2, additional columns show episodes containing antiviral prescriptions. PIV: 521 

parainfluenza; hMPV: human metapneumovirus; RV: rhinovirus; ADV: adenovirus; RSV: 522 

respiratory syncytial virus; hCoV: human coronavirus; Rx: antiviral prescription. 523 
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 525 

Figure 6. Temporal validation of test positivity using CDC surveillance data. Three-week moving 526 

average of test positivity and test volume comparing All of Us (gray) to CDC surveillance data 527 

(blue) for eight respiratory viruses: (A) parainfluenza, (B) human metapneumovirus, (C) 528 

rhinovirus, (D) adenovirus, (E) respiratory syncytial virus (RSV), (F) common human 529 

coronavirus (hCoV), (G) influenza virus, and (H) SARS-CoV-2. In each case, percent positivity 530 
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(lines) corresponds to the left y-axis and total tests performed (shaded areas) corresponds to 531 

the right y-axis. CDC data were obtained from NREVSS for panels A-F (ending 2021), FluView 532 

for influenza virus, and COVID Data Tracker for SARS-CoV-2. AoU: All of Us. 533 
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