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Abstract 
 
 Under a climate change scenario, extreme heat episodes show an increase in 
frequency and intensity, with a scaling impact in Latin American cities. Recently, Rio de 
Janeiro City developed its heat protocol, using the amount of hours spent over specific heat 
thresholds as its trigger metric. This study gathers mortality data by 17 different causes in 
Rio, in a 12.5 year period (2012-2024). We use Distributed Lag Non-Linear Models (DLNM) 
to assess the relationship between different heat exposure metrics to mortality among the 
young (< 65) and elderly (>=65y), including a novel metric called Heat Area Above a 
Threshold (HAAT). In the study period, there were 466,121 deaths in the city from natural 
causes. Deaths due to diabetes, hypertensive diseases, Alzheimer's/dementia, renal failure and 
even undetermined deaths were strongly associated with extreme heat episodes, especially 
among the elderly. The proposed HAAT metric showed better performance on explaining 
mortality for most causes (10 out of the 17), when compared to temperature or heat index, or 
commonly used heat wave definitions. The results dialogue with Rio's heat protocol, 
evaluating the cut-off points defined and proposing simpler definitions using the HAAT 
metric. An exposure to a HAAT of 64°C*h increases mortality by natural causes by 50%, and 
91.2°C*h already doubles the mortality risk. Main strengths of the study lie on the 
comparison of different heat exposure metrics and the investigation of cause-specific 
mortality in a period when recent and remarkable heat waves occurred. There is still fragility 
when considering a compound index such as the Heat Index, and social and spatial 
differences on heat-related mortality should also be considered in future models. The 
proposed metric, however, appears as a relevant indicator to distinguish unusually warm days 
that lead to elevated mortality, and could guide definitions for Heat Warning Systems.  
 
Keywords: extreme heat, mortality, epidemiology, elderly, brazil 
 
Introduction 
 

As the planet reaches its warmest years in 2023 and 20241,2, heat wave episodes are 
becoming more frequent and intense across the globe 3–6. This temperature increase and a 
considerable portion of its related mortality has been shown to be due to human action 7,8 and 
projections show that extreme events such as heat waves will get longer and even more 
frequent in the future 8,9. The health burden caused by heat is well documented in the 
literature. Exposure to extreme temperatures can affect the pathophysiological mechanisms of 
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thermoregulation, distribution of body flow and sweating mechanisms 10,11. Studies around 
the world have extensively shown associations of heat waves with cardiovascular and 
respiratory diseases 12–15, renal diseases 16–18, mental health 4,19 and pregnancy outcomes 20,21. 
Certain population groups are known to be at increased risk, like older populations and those 
with coexisting health conditions 11,22–25. Disparities in risk are also shown to exist across 
gender and race 4,26. 

There has been an increasing attention to heat effects in health in Latin American 
countries 15,27, as the Latin population is aging 28 and the number of heat-related extreme 
episodes in the region is scaling 8,29. In Brazil, most single-city studies concentrate in the 
cities of São Paulo 23,30,31 and Rio de Janeiro 24,32. Recently, Moraes et al. 23 showed a higher 
risk for cardiovascular and respiratory mortality under different definitions of heat waves 
among the elderly population in São Paulo. Silveira and collaborators showed similar results 
for the city of Rio de Janeiro 24 and also for 32 municipalities in the Brazilian Amazon 33. 
Santos et al. 4 showed an increase in the number, intensity and duration of heatwaves in the 
14 most populous metropolitan regions of Brazil, and estimated 48,075 heat-related excess 
deaths in the period of 2000-2018.  

As cities have dealt with heat waves for some time, heat warning systems (HWS) 
have been implemented around the world over the last decades 34–37, with the goal of warning, 
communication and protection of the population. Brazil faced its worst heat wave in history 
in November 2023 38, which resulted in a remarkable fan's death due to heat exhaustion 
during a concert in Rio de Janeiro 39. In June 2024, Rio launched a protocol for dealing with 
extreme heat in the city 40. 

The existing HWS from other countries employ a range of metrics for trigger warning 
36,37, from bio-meteorological indices, such as Heat Index 41 or Humidex 42 to thermal stress 
indices like Universal Thermal Climate Index 43 or Excess Heat Factor 44. Rio's protocol, that 
establishes five heat risk levels (NC1 - “normality” to NC5 - “extreme heat danger”), differs 
from others since it is based on the amount of hours spent in a day above a certain Heat Index 
(HI) threshold, in consecutive warm days. The cut-off points defined for the heat levels: 4 
hours with HI >= 36ºC (levels NC2 and NC3), 4 hours with HI >= 40ºC (level NC4) and 2 
hours with HI >= 44ºC (NC5) were not based on heat-mortality associations. The present 
study intends, then, to explore heat-mortality associations for 17 different groups of causes of 
death in Rio de Janeiro city (RJC), in two population age-groups, varying the metric of heat 
exposure: average daily temperature and heat index, and the amount of hours of heat 
exposure. Finally, it proposes an index that summarizes the period of exposure to high heat in 
a given period - the Heat Area Above a Threshold (HAAT), and compares how it can help 
explain mortality in unusually warm days and potentially guide heat protocols based on the 
amount of heat exposure. 

 
 

Methods 
 
Data and variables 
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Mortality data. Mortality data was retrieved from the Brazilian Mortality Information 
System (Sistema de Informações de Mortalidade - SIM), referring to deaths that occurred 
from 2012 to the first six months of 2024. We filtered only deaths of residents of RJC 
(CO_MUN_RES = 330455). The ICD-10 field of underlying cause of death was used to 
classify deaths into 17 groups, based on 13 groups specified in a CDC's Excess Mortality 
Study 45, along with additional groups for urinary tract deaths, undetermined deaths, selected 
deaths (all of the previously included) and natural causes of death (all deaths except external 
causes). The groups are summarized in Table 1. Daily death counts by cause group were 
aggregated, and divided into two age-groups: young (0-64 years old) and elderly (65+).  
 
Table 1.  Causes of deaths groups included in the study, and respective ICD-10 codes. Based 

on 45. 
 

Cause of death group ICD-10 codes 

Influenza and Pneumonia J09-J18 

Chronic lower respiratory diseases J40-J47 

Other diseases of the respiratory system 
J00–J06, J20–J39, J60–J70, J80–J86, J90–J96, 
J97–J99, R09.2, U04 

Hypertensive diseases I10-I15 

Ischemic heart disease I20-I25 

Heart failure I50 

Cerebrovascular diseases I60-I69 

Other disease of the circulatory system I00–I09, I26–I49, I51, I52, I70–I99 

Malignant neoplasms C00-C97 

Alzheimer disease and dementia G30, G31, F01, F03 

Diabetes E10-E14 

Renal Failure N17-N19 

Sepsis A40-A41 

Urinary Tract Disorder N39 

Undetermined causes R00-R99 

Selected causes All of the above 

Natural causes All except external causes (S00-Y99) 

 
 
Climate data. Temperature (T) and relative humidity (H) data were retrieved for 16 weather 
stations, from 3 different sources: Alerta Rio System (7 stations), Brazilian National 
Meteorological Institute (Instituto Nacional de Meteorologia - INMET, 4 stations) and 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted January 18, 2025. ; https://doi.org/10.1101/2025.01.17.25320740doi: medRxiv preprint 

https://doi.org/10.1101/2025.01.17.25320740
http://creativecommons.org/licenses/by-nd/4.0/


Aeronautics Command Meteorology Network (Rede de Meteorologia do Comando da 
Aeronáutica - REDEMET, 5 stations). Stations locations are represented in Supplementary 
Figure 1. Heat Index as described in Steadman 41 was calculated for all stations (when data 
for T and H were available), and the hourly median heat index was considered for the 
analysis. This is the procedure already done in Rio's heat monitoring, in an attempt to obtain 
a summary metric for the municipality, disregarding extreme values from specific stations 40. 
 
For each day in the study period (Jan/2012 - Jun/2024), the following variables were 
calculated: 
- Average daily temperature (Tmed), calculated as a mean of the median hourly temperature 
among the stations; 
- Average daily heat index (HImed), using the same principles as Tmed; 
- Amount of hours in the day on which it was registered a median Heat Index above a certain 
threshold. Threshold values varied from HI = 32ºC to HI = 44ºC; 
- The Heat Area Above a Threshold (HAAT), a proposed metric to represent the amount of 
exposure to high values of heat index in a given day.  
 
The HAAT metric. The HAAT is calculated as the area between the hourly observed heat 
index and the horizontal line : 𝐻𝐼

𝑚𝑒𝑑
 =  𝐻𝐼

𝑡ℎ𝑟𝑒𝑠ℎ
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 is the HAAT value for a given day i, i0 is the first hour of day i, (i+1)0 is the first hour 𝐻𝐴𝐴𝑇

𝑖

of day i+1. HIt is the heat index value for moment t, and HIthresh is the defined base threshold. 
In this study, we considered two thresholds: HIthresh=36°C, to match the first threshold defined 
in RJC heat protocol; and HIthresh= 32°C, to compare whether a broader limit could explain 
mortality any better. We also considered multiple day accumulated HAAT, with the 
hypothesis that continuous exposure to heat in consecutive days could lead to worse mortality 
excess. Therefore, the HAAT values included in the study were: 
- Daily HAAT, and accumulated HAAT for 3, 5 and 7 days for HIthresh = 32ºC; 
- Daily HAAT, and accumulated HAAT for 3, 5 and 7 days for HIthresh = 36ºC; 
 
 Common heat wave (HW) definitions in the literature were also calculated for the 
study period, in order to compare whether HAAT could explain mortality better than existing 
HW definitions. The definitions included were: Daily Tmed higher than historical quantiles 
Q90, Q92.5, Q95 and Q97.5 for 2, 3 and 4 days.  
 
Statistical Analyses 
 

Daily mortality outcomes were modeled using Generalized Additive Models (GAMs), 
with crossbasis functions from Distributed Lag Non-Linear Models (dlnm) 46. Exploratory 
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analyses were done to identify whether day of week (dow) was an important confounder to 
consider in the models. Other relevant variables for environment-related mortality, like air 
quality (PM10 and PM2.5)  were not included due to low coverage available for the city of Rio.  

 
Model structure. The base model structure accounts for mortality long-term trends and 
yearly seasonality. Since mortality patterns changed relevantly during the Covid-19 pandemic 
47, a specific term was included to account for this change during that period.  

For 16 of the death cause groups, a Poisson distribution was used since no 
overdispersion was detected. The natural causes group was the only group identified with 
overdispersion, for which a negative binomial distribution was chosen. Therefore, 

 
or                     [2] 𝑛 ∼  𝑃𝑜𝑖𝑠𝑠𝑜𝑛(λ),  𝑛 ∼  𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(µ,  θ)

 
where n is the daily death count for a given cause and age group. The expected value is then 
modeled as: 
 

                   [3] 𝑙𝑜𝑔(𝐸[𝑛]) =  β0 +  𝑓
1
(𝑡) +  𝑓

2
(𝑑𝑜𝑦) +  𝑓

3
(𝑡

𝑐𝑜𝑣𝑖𝑑
)

 
 where: 

-  is the smoothing function to capture the overall trend of death counts over the 𝑓
1

years. A thin plate spline was used with k=12 knots (one for each complete year in the 
analysis); 

-  captures the yearly seasonality of deaths, based on the day of the year (𝑓
2

). For f2 a cubic cyclic spline was used, with k=6 knots. 𝑑𝑜𝑦,  𝑑𝑜𝑦 ϵ [1,  366]
- - f3 is the function used to capture the differential pattern of death counts during the 

period with most Covid-19 burden. For Rio de Janeiro, this period was defined from 
March 1st, 2020, first month after the arrival of Covid-19 in Brazil; to December 
17th, 2022, date when the last significant Covid-19 hospitalizations wave ended 48. 
Instead of using a dummy variable to represent the differences in this period, a 
continuous index was used, in order to capture the heterogeneity of the Covid-19 
effect on the death pattern inside this time window. Therefore, the index tcovid, upon 
which f3 is applied, is represented as: 

in the period when Covid-19 effect was relevant: tcovid = 𝑡
𝑐𝑜𝑣𝑖𝑑

 ϵ [1,  ...,  1022],  

1 for March 1st, 2020; and tcovid = 1022 for December 17th, 2022 (time 
difference of 1022 days). 

 otherwise (outside of this time period). 𝑡
𝑐𝑜𝑣𝑖𝑑

 =  0

For this term a cubic cyclic spline was also used, k=8 knots. 
 
To better understand each term in the model structure, Supplementary Figure S1 

illustrates what each term captured in a model for selected causes of death, among all age 
groups. A similar model, but without the Covid-19 term and using a gaussian likelihood, was 
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fitted to Tmed and HImed, to visually compare its exceedance patterns with the ones from 
mortality data.  
 
Distributed lag non linear models.  The base model defined above was extended iteratively 
to include the exposure variables of interest, using the crossbasis function from R package 
dlnm to account for lagged effects 49. 
 
Models for temperature and heat index 
 

Models using Tmed and HImed were fitted to understand the general relation between the 
17 outcome groups and heat exposure in RJC, and also to evaluate whether HImed would 
perform as a better predictor than Tmed for mortality, since this relation is not certain in the 
literature 50,51. For these two exposure variables, a B-spline was considered in the crossbasis 
function, using 3 degrees of freedom (df). The spline choices for each variable were defined 
after a sensitivity analysis, detailed later on. 

 
Models for amount of hours of exposure 
 

The attempt to include hours of exposure to heat as an explanatory variable in the 
models had the goal of evaluating the thresholds of 4 hours of HI >= 36º C, 4 hours of HI >= 
40º C and 2 hours of HI >= 44ºC, used for changing heat levels in RJC's heat protocol. 
Models using the amount of hours over each threshold (from 32°C to 44°C) as a continuous 
variable were fitted, using a natural spline with 1 df.  

 
Models for HAAT 
 
 The HAAT variables were fitted similarly using penalized splines with df = 15. A 
combination of models using both HAAT and a continuous daily average metric (Tmed or 
HImed) was also tested, in order to identify whether days with high HAAT have an added 
effect on mortality and if so, compare them with the added effects of heat waves, described 
subsequently.  
 
Models for heat wave definitions and added effects 
 

In order to compare the performance of the proposed HAAT variable with heat wave 
(HW) definitions used in the literature, models with varying HW definitions were included. 
For each definition, a model with HW only as an explanatory variable and with HW + Tmed 
were fitted. HW was included in the crossbasis function with a natural spline and df = 1. 

 
Poisson, Quasi-Poisson and Negative Binomial (NB) distributions for the models 

were tested and compared in terms of explained Deviance. Since Poisson and NB models 
showed higher explainability for all causes (Supplementary Figure S2A), the dispersion 
parameter was analyzed to decide which of the two would be used for each cause 
(Supplementary Figure S2B). Finally, models using different exposure metrics were 
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compared through AIC metric. All models used 10 lag days, with a natural spline function for 
the lag component with df = 4. To generate predictions for the crossbasis terms, the mean 
value was used as the centering (reference) for Tmed and HImed models. For the remaining 
models, centering values = 0 were used. An exploratory analysis was conducted to decide 
whether the day of the week (dow) should be included in the models (Supplementary Figure 
S3). Since it didn’t appear to have a relevant effect for most causes, we decided not to include 
it. 

 
Sensitivity analysis 
 

A sensitivity analysis was conducted for all the possible exposures: Tmed and HImed, 
amount of hours above a threshold and HAAT metric. For the first two, combinations of 
natural ("ns") and B-splines ("bs") were tested, with  and  for 𝑑𝑓 ϵ {2, 4, 6} 𝑑𝑓 ϵ {3, 4, 6, 8}
each spline, respectively. For the last two, another set of combinations was considered: 
natural splines with 1 df, B-splines with 3 df, Cubic regression splines ("cr") with 3,4,5 and 6 
df, and Penalized splines (P-splines) with 5, 10 and 15. Models were compared graphically 
and through their AIC values.  

 
Relative Risk (RR) estimates regarding each crossbasis term were obtained and used 

for interpretation of the results. To analyze cut-off points for each exposure metric, we 
calculated the points where a significant RR of 1.25, 1.5 and 2.0 was crossed, if there were 
any. For the continuous metrics (Tmed and HImed) the lag effect was also studied in scenarios 
where  
 
Software 
 
 All analyses were run under the “R” environment, in 4.4.1 version 52. Packages 
"mgcv" (1.9.1) and “dlnm” (v 2.4.7) were used. All the developed code is available on 
Github: https://github.com/joaohmorais/heat_mortality_RJC/ 
 
Results 
 
 During the study period, 390,244 deaths from selected causes and 466,121 deaths 
from natural causes were registered in RJC. Table 2 describes the summary metrics (median, 
total and maximum) for death counts due to the 17 cause of death groups included in the 
study. Some had very low daily median values, especially among the young population. 
Malignant neoplasms, influenza and pneumonia, and ischemic heart disease had the highest 
daily median counts for the elderly, excluding the aggregate groups (selected and natural 
deaths). Some maximum death counts occurred during the Covid-19 critical period (other 
diseases of the respiratory system, hypertensive disease, undetermined and natural causes), 
while the maximum for selected causes among the elderly occurred during the November 
2023 heat wave (151 deaths in November 18th).  
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Table 2.  Summary metrics for cause of death groups included in the study for RJC, 
Jan/2012-Jun/2024. 

 

Cause of death group 

Daily median deaths Total deaths Max daily deaths (Date) 

Young Elderly Young Elderly Young Elderly 

Influenza and Pneumonia 2 10 10,048 46,569 10 (Jul 25, 2019) 32 (Dec 17, 2021) 

Chronic lower respiratory 
diseases 1 3 3,294 14,471 7 (Jun 14, 2016) 13 (Dec 26, 2023) 

Other diseases of the respiratory 
system 1 3 4,714 12,922 

7 (May 04, 
2020) 14 (Apr 23, 2020) 

Hypertensive diseases 1 5 7,107 24,491 
8 (May 07, 
2020) 20 (Feb 01, 2021) 

Ischemic heart disease 4 9 18,902 43,825 
17 (Aug 05, 
2016) 26 (Aug 17, 2019) 

Heart failure 0 2 3,099 10,152 5 (Nov 09, 2020) 10 (Apr 25, 2017) 

Cerebrovascular diseases 3 7 12,596 34,807 
11 (Aug 21, 
2022) 20 (Jun 01, 2012) 

Other disease of the circulatory 
system 3 6 13,038 28,685 

11 (Oct 11, 
2015) 20 (Jun 14, 2016) 

Malignant neoplasms 9 16 43,832 74,805 
23 (Jun 23, 
2016) 35 (Nov 14, 2016) 

Alzheimer disease and dementia 0 3 276 13,157 
2 (May 24, 
2023) 12 (Nov 24, 2019) 

Diabetes 2 5 8,711 22,415 9 (Jun 02, 2020) 15 (Sep 04, 2017) 

Renal Failure 0 1 2,541 6,175 6 (Mar 11, 2018) 7 (Feb 05, 2021) 

Sepsis 1 4 4,928 19,437 7 (Dec 31, 2018) 15 (Jun 25, 2016) 

Urinary Tract Disorder 0 4 2,121 17,361 
5 (May 29, 
2016) 13 (Feb 08, 2024) 

Undetermined causes 3 4 13,621 22,577 
14 (Feb 02, 
2021) 26 (Jan 30, 2022) 

Selected causes 32 85 148,381 390,244 
69 (Apr 25, 
2020) 151 (Nov 18, 2023) 

Natural causes 44 99 208,996 466,121 
144 (Apr 25, 
2020) 266 (May 02, 2020) 

 
 Table 3 exhibits summary metrics for the climate variables included in the study. Most 
variables had their highest value during the November 2023 heat wave, when the daily 
average heat index in the city was 39.69°C. The episode also registered 8 hours of HI >= 
44°C and the highest value for HAAT metrics. All metrics depending on the amount of hours 
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of HI above a certain threshold had a value of zero for most of the days in a year, and some 
even had their 95% quantiles equal to zero as well.  
 
Table 3. Minimum, mean/median, 95% and 99% quantiles, and maximum values for climate 

variables included in the study for RJC, Jan/2012 - Jun/2024. 
 
Metric      

 Min Mean Q95 Q99 Max (Date) 

Average daily temperature (ºC) 15.18 24.19 29.09 30.4 32.1 (Nov 18, 2023) 

Average daily heat index (ºC) 14.97 25.14 31.71 33.82 39.69 (Nov 18, 2023) 

 Avg. Days in year > 0 Median Q95 Q99 Max (Date) 

Daily hours of HI >= 32ºC 127.68 0 11 15 24 (Jan 20, 2024) 

Daily hours of HI >= 33ºC 107.12 0 10 13 22 (Jan 20, 2024) 

Daily hours of HI >= 34ºC 88.32 0 9 11 19 (Jan 17, 2024) 

Daily hours of HI >= 35ºC 69.44 0 7 10 17 (Jan 17, 2024) 

Daily hours of HI >= 36ºC 52.56 0 6 9 16 (Jan 17, 2024) 

Daily hours of HI >= 37ºC 38.08 0 4 8 14 (Jan 17, 2024) 

Daily hours of HI >= 38ºC 25.28 0 2 6 13 (Nov 18, 2023) 

Daily hours of HI >= 39ºC 14.64 0 0 5 12 (Nov 18, 2023) 

Daily hours of HI >= 40ºC 8.48 0 0 3 12 (Nov 18, 2023) 

Daily hours of HI >= 41ºC 4.1 0 0 1 10 (Nov 18, 2023) 

Daily hours of HI >= 42ºC 2.16 0 0 0 9 (Nov 18, 2023) 

Daily hours of HI >= 43ºC 1 0 0 0 9 (Nov 18, 2023) 

Daily hours of HI >= 44ºC 0.72 0 0 0 8 (Nov 18, 2023) 

HAAT for HIthresh= 32ºC (ºC * 
hour) 127.68 0 43.34 70.49 185.27 (Nov 18, 2023) 

HAAT for HIthresh= 36ºC (ºC * 
hour) 52.56 0 9.1 25.64 117.78 (Nov 18, 2023) 

 
 Expected vs. observed values for daily deaths from selected causes throughout the 
study period are shown in Figure 1A, along with daily average HI trends (Figure 1B). We can 
describe the seasonality of deaths with two yearly peaks: a higher one occurring in the 
fall/winter period (April-June) and the other during the summer period (December, January). 
This seasonality effect can also be noticed in Figure S1, where the estimated effects for each 
term in the model is plotted. As deaths due to coronavirus infection (ICD-10 codes B34.2 and 
U07.1) were not included in the study, the death trend during the Covid-19 period showed a 
decrease in the death counts. Some notorious excess death periods can be named: in the 
fall/mid-year of 2016, a mortality burden due to the Chikungunya epidemic in RJC that year 
was observed 53. In 2020 and 2021, three mortality peaks can be pointed: the first in early 
2020, after Covid-19 arrival in the country; the second in the period of Gamma (P.1) variant 
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predominance, in early 2021; and the latter during the Influenza A H3N2 outbreak in late 
2021 47. Finally, a considerable peak is then observed in November 2023, in two following 
days: November 18th and 19th - the last two days of November 2023 remarkable heat wave. 
 

Figure 1. Expected daily deaths (solid line) for all ages in selected causes, and difference 
between observed and expected (A), and daily average heat index trend (solid line) and 

observed values (B), for RJC, Jan/2012 - Jun/2024. 

 
 
 The HI yearly patterns expressed in Figure 1B show its expected behavior: an 
increase during summer months and lower values in the mid-year. Out of the ordinary high 
values can be seen in the summer season for 2014 and 2015, and 2023/2024 spring and 
summer. The highest value for average HI registered on November 18th, 2023 was followed 
by several days with high values as well in the months of December, January, February and 
March. 
 
Average daily temperature and heat index 
  
 Figure 2 shows the average daily HI (HImed) effect for all included causes, among the 
two age groups. The young (< 65 y.) group presents less cause groups with significant 
relative risk (RR) in extreme heat conditions. Higher RRs can be observed mainly for 
undetermined deaths, selected causes, and natural causes; the first two with a broad 
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confidence interval (CI). For the elderly group, on the other hand, most cause of death groups 
present a significant association between HImed and mortality risk. In these cases, the RR 
curve seems to get steeper around the 95% quantile of HImed, which is 31.71°C (Table 3). The 
standout groups are Influenza/Pneumonia, hypertensive diseases, ischemic heart disease 
(IHD), cerebrovascular diseases (CVD), other diseases of circulatory system, 
Alzheimer/dementia, diabetes, urinary tract infections and undetermined causes. The 
aggregated groups - selected and natural causes - also show high association. Some of the 
causes present an increase in RR for low HImed as well, but usually with lower values than 
those observed for high HImed. Heart failure, malignant neoplasms and sepsis show none or 
little association for both age groups. Similar results for Tmed are exposed in supplementary 
Figure S4.  
 
Figure 2. Average Heat Index (HImed) effect on mortality for 17 cause of death groups. RJC, 

Jan/2012 - Jun/2024. 

 
 
 
 In Table 3, the minimum Tmed and HImed values necessary to significantly increase 
mortality risk by 25% (RR > 1.25), 50% (RR > 1.5) and 100% (RR > 2.0) are expressed. For 
the young age group, a RR of 1.25 is not reached for most causes, except for other diseases of 
the circulatory system, diabetes, urinary tract disorder, undetermined and natural causes, with 
the last three reaching RR > 1.5 for some Tmed or HImed values. The elderly group, on the other 
hand, showed points of risk increase over at least 25% for all causes but chronic lower 
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respiratory diseases, heart failure, malignant neoplasms and sepsis. A significant RR > 2.0 
was observed for 10 out of the 17 causes. The quantile values for Tmed and HImed necessary to 
reach such thresholds were similar in general, with slightly lower quantile values for Tmed. It 
varied from Quantile 87,65% for a RR > 1.25 for deaths of undetermined causes, to Quantile 
99.98% to reach a RR of 2.0 in other diseases of circulatory system and selected causes. In 
the elderly group, on average, a significant RR > 1.25, 1.5, and > 2.0 was reached 
respectively with quantiles 96.46, 99.11 and 99.82 for HImed.  
 
 
Table 3. Tmed / HImed values (quantiles) necessary to reach significant thresholds of Relative 
Risks (RR) >= 1.25, >= 1.5   and >= 2.0, for all age groups and included death causes. 
 

Cause of death 
group 

Young Elderly 

RR > 1.25 RR > 1.5 RR > 2.0 RR > 1.25 RR > 1.5 RR > 2.0 

Influenza and 
Pneumonia 

- / 
 - 

- / 
 - 

- /  
- 

29.5 (Q96.91) / 
33 (Q97.94) 

31.6 (Q99.89) / 
36.9 (Q99.93) 

- / 
 - 

Chronic lower 
respiratory 
diseases 

- / 
 - 

- /  
- 

- / 
 - 

- /  
35.2 (Q99.67) 

- /  
- 

- / 
 - 

Other diseases of 
the respiratory 
system 

- / 
 - 

- /  
- 

- / 
 - 

29.9 (Q98.07) /  
34.2 (Q99.28) 

31.2 (Q99.76) / 
36.7 (Q99.91) 

- /  
- 

Hypertensive 
diseases 

- /  
- 

- /  
- 

- /  
- 

28.9 (Q94.02) / 
31.7 (Q94.96) 

30.2 (Q98.69) / 
34.4 (Q99.45) 

31.8 (Q99.96) / 
37.7 (Q99.96) 

Ischemic heart 
disease 

- /  
- 

- /  
- 

- /  
- 

30.2 (Q98.69) /  
33.4 (Q98.69) 

31.6 (Q99.89) /  
35.4 (Q99.74) 

- /  
37.7 (Q99.96) 

Heart failure 
- /  
- 

- /  
- 

- / 
 - 

- /  
- 

- /  
- 

- /  
- 

Cerebrovascular 
diseases 

- / 
- 

- /  
- 

- /  
- 

30.1 (Q98.4) / 
33.9 (Q99.08) 

31.4 (Q99.85) / 
37.2 (Q99.93) 

- /  
- 

Other disease of 
the circulatory 
system 

30.6 (Q99.21) /  
34.2 (Q99.28) 

- /  
- 

- / 
 - 

30.2 (Q98.69) /  
33.4 (Q98.69) 

31.8 (Q99.96) /  
35.9 (Q99.76) 

- /  
38.7 (Q99.98) 

Malignant 
neoplasms 

- / 
 - 

- /  
- 

- /  
- 

- /  
- 

- /  
- 

- / 
 - 

Alzheimer disease 
and dementia 

- /  
- 

- /  
- 

- /  
- 

28.5 (Q92.2) /  
31.2 (Q93.17) 

29.4 (Q96.17) /  
33 (Q97.94) 

30.4 (Q98.97) /  
34.9 (Q99.67) 

Diabetes 
30.1 (Q98.4) /  
33.2 (Q98.36) 

- /  
- 

- /  
- 

29.2 (Q95.44) /  
32.5 (Q97.09) 

30.4 (Q98.97) /  
34.4 (Q99.45) 

31.8 (Q99.96) /  
36.7 (Q99.91) 

Renal Failure 
- /  
- 

- / 
- 

- /  
- 

28.7 (Q93.14) /  
31.7 (Q94.96) 

29.7 (Q97.61) /  
33.4 (Q98.69) 

30.9 (Q99.52) /  
35.7 (Q99.74) 

Sepsis 
- /  
- 

- /  
- 

- /  
- 

- /  
- 

- /  
- 

- /  
- 

Urinary Tract 
Disorder 

28 (Q88.74) /  
30.7 (Q91.57) 

29.2 (Q95.44) /  
33.7 (Q98.9) 

30.4 (Q98.97) /  
- 

28.7 (Q93.14) /  
31.2 (Q93.17) 

29.9 (Q98.07) /  
33.9 (Q99.08) 

31.2 (Q99.76) /  
37.7 (Q99.96) 
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Undetermined 
causes 

29.4 (Q96.17) /  
32.7 (Q97.52) 

30.7 (Q99.39) /  
34.9 (Q99.67) 

32.1 (Q100) /  
37.7 (Q99.96) 

27.8 (Q87.65) /  
30 (Q87.93) 

28.9 (Q94.02) /  
31.7 (Q94.96) 

29.9 (Q98.07) /  
33.9 (Q99.08) 

Selected causes 
- /  
- 

- /  
- 

- /  
- 

29.7 (Q97.61) /  
33.2 (Q98.36) 

31.2 (Q99.76) /  
36.2 (Q99.85) 

- /  
39.4 (Q99.98) 

Natural causes 
31.9 (Q99.98) /  
35.9 (Q99.76) 

- /  
38.7 (Q99.98) 

- /  
- 

29.5 (Q96.91) /  
32.7 (Q97.52) 

30.9 (Q99.52) /  
35.2 (Q99.67) 

- /  
37.9 (Q99.96) 

Mean 
29.4 (Q96.5) /  
32.6 (Q97.3) 

29.7 (Q97.42) /  
34.6 (Q99.52) 

30.8 (Q99.49) /  
37.4 (Q99.96) 

29.2 (Q95.45) /  
32.2 (Q96.46) 

30.2 (Q98.63) /  
34 (Q99.11) 

30.7 (Q99.37) /  
36.1 (Q99.82) 

 
 

The lag effects for scenarios when Tmed and HImed reach the average RR > 1.25 
threshold are displayed in Supplementary Figure S5 and S6. Although we see a maximum RR 
as a result of an immediate (lag 0) effect for most causes, with a decreasing effect as the lag 
days advance, some causes show a different pattern. Among the elderly, Influenza and 
Pneumonia show a maximized RR for lags 4-5 for both Tmed and HImed, while Renal 
Failure and Urinary Tract Infections show a trend of higher RR as the lag days advance. 
 
Hours of heat exposure 
 

Relative Risks heat-maps for the amount of hours above varying HI thresholds in the 
elderly age group are shown in Figure 3. A risk gradient is observed for most causes, where 
mortality risk increases whether the number of hours of exposure or the HI threshold 
increases. For lower HI levels like HI >= 32°C, higher RRs are observed after a larger 
exposure period (a 25% increase in risk for natural causes is observed after 13 hours of 
exposure); for higher thresholds like HI >= 40°C a high RR is observed with fewer hours of 
exposure (25% increase in risk after 4 hours of exposure). Like the results presented for 
HImed, hypertensive diseases, alzheimer/dementia, diabetes and undetermined deaths are 
standout groups, while heart failure, malignant neoplasms show little or no association.  
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Figure 3. Relative Risks (RR) for amount of hours above a heat index threshold, for 17 cause 
of death groups among the elderly (>= 65 y.). RJC, Jan/2012-Jun/2024. 

 
 
 
 Figure 4A illustrates the logic for the HAAT metric calculation. The hourly series for 
the HI observed during the November 2023 heat wave is represented, with the period of HI 
above the 36°C threshold filled. The filled area is calculated and represented through the 
circles on the top. In the November 2023 heat wave, a sequence of extremely warm days was 
observed, with a scaling number of hours of heat exposure throughout the week, resulting in 
the highest HAAT value in the whole series, in November 18th (HAAT = 117.78°C*h).  
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Figure 4. Hourly heat index (HI) values during November 2023 heat wave and respectively  
Heat Area Above the 36°C Threshold (HAAT) calculated values (A); in (B), the difference in 

HAAT values between two dates (Jan 12, 2020 and Oct 07, 2023) with similar average HI 
values.  

 
 
 In Figure 4B two days with similar HImed values are compared, showing considerable 
differences in their respective HAAT values. Even though Jan 12, 2020 had a higher average 
HI than October 7h, 2023, the latter had a much higher area above the HI >= 36°C limit. This 
difference in the exposure period is captured through the HAAT metric and now through 
averaged daily values. 
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 The AIC metrics for the models using each of the included exposure variables - Tmed, 
HImed, amount of hours above HI threshold, HAAT metric and HW definition (single and 
added effects) - are compared in Figure 5. Since several different models were fitted for each 
of the last three groups mentioned, only the one with lower AIC was considered for that 
group. Models using the HAAT metric performed best for 10 out of the 17 causes (mostly, 
when used along with Tmed - 8/10). Amount of hours performed best among the groups with 
low death counts; Tmed-only was best for 2 groups and HW models (either single or added 
effects) for other 2. HAAT showed, in general, better performance when included along with 
Tmed in the models. Complete list of results are reported in the Supplementary Material.  
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Figure 5. AIC values for the best model among different exposure variables: average 
temperature (T only), average heat index (HI only), amount of hours above a heat index 

threshold (Hours), heat wave definition (HW), heat wave definition + average temperature 
(added effects, HW+T), HAAT values, HAAT values + average temperature (HAAT + T), 
HAAT values + heat index (HAAT + HI) for 17 cause of death groups in the elderly. RJC, 

Jan/2012-Jun/2024. 
 

 
 

Supplementary Figure S7 compares whether using accumulated HAAT helps explain 
mortality any better than single-day HAAT, and which HIthresh performs best. When not used 
along with an average metric (Tmed or HImed), a HAAT with HIthresh = 32°C shows better 
explainability - which makes sense, since it has fewer days with null values than HIthresh = 
36°C (Table 3). However, in most scenarios the use of HAAT along with Tmed showed a better 
performance - and in that case, the use of single-day HAAT calculated with a HIthresh = 36°C 
was a best-performing combination.  
 Figure 6 exposes the relationship between the defined thresholds in RJC’s protocol 
and the mortality risks for diabetes, hypertensive disease, IHD, renal failure and natural and 
selected causes. Since the triggers for the protocol are based on the amount of hours above 
the thresholds of HI >= 36ºC, HI >= 40ºC and HI >= 44ºC, the mortality risks are expressed 
in terms of these three variables. They are compared with the risk curves obtained using the 
HAAT metric instead, calculated with a HI threshold of 36ºC. The model results indicate a 
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25% increase in mortality risks when thresholds of 6 hours or higher with HI >= 36ºC are 
reached (min.: 5.5 hours for Renal Failure; max.: 8.4 hours for selected causes). An increase 
of 50% is only reached with an amount of hours with HI >= 36°C higher than 10 (min.; 9.9 
for Renal Failure; max.: 15.3 for selected causes). When looking at the amount of hours with 
HI of 40ºC or higher, these marks are crossed much quicker. 1.8 and 3.9 hours are enough to 
reach a 25% increase for Renal Failure and selected causes respectively; 50% is reached with 
3.3 and 7.1 hours. A doubled risk of mortality is reached for all causes shown expected for 
the selected causes, when the limit of 5.7 hours with HI >= 40°C (renal failure) or 11.3 hours 
with HI >= 40°C (IHD). Even shorter periods of exposure are necessary when looking at the 
hours with HI above 44ºC curve. 1 hour is needed to increase the mortality risk for 
hypertensive diseases and renal failure, while 5 hours already doubles the risk for selected 
causes. Similar, but simpler, trends are observed when analyzing the heat area (HAAT) effect: 
lower thresholds are necessary for renal failure mortality risk to increase (28 °C*h for a 50% 
increase, 48 °C*h to double), while for selected and natural causes this increase in risk is 
observed much later (69.6°C*h for a 50% increase, 93 °C*h to double for selected causes). A 
similar visualization for all causes included is shown in Figure S8. From that visualization, 
we see that, across all causes, the median HAAT value where risk of mortality among the 
elderly increases by 25% is 18.44 °C*h; it increases by 50% with HAAT >= 48.77°C*h; and 
doubles with HAAT >= 69°C*h.   
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Figure 6. Relative Risk thresholds (25%, 50% and 100% of excess mortality) 
according to amount of hours of exposure (a) and according to accumulated heat area values 
(b) for the elderly group. Labeled points represent points of crossing established risk marks 
(1.25, 1.5, 2). RJC, Jan/2012-Jun/2024. 

 
 

 
 
Discussion 
 

This study evaluated the effect of heat exposure in mortality due to 17 causes and 
among two age groups, in Rio de Janeiro city from January 2012 to June 2024. The studies 
with similar purposes found did not consider these amount of groups, nor covered the most 
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recent period of important heat wave episodes in Brazil (November 2023 and January 2024). 
It also compares different metrics of heat exposure in terms of amount of exposure time: we 
start by introducing the amount of hours above a HI threshold to the models, and then present 
the HAAT metric.  
 
Death causes and age groups 
 

We explored how continuous Tmed and HImed relate to mortality. Even though patterns 
for both metrics were similar when compared, the punctual risk estimates for extreme values 
of HImed were higher and had larger confidence intervals (CIs). This can be justified by the 
fact that amplitude for HImed was higher - it had lower minimum and higher maximum values 
than Tmed (Table 3). While this may help on the discrimination of days on extreme heat (moist 
heat, specifically) situations, it also increases uncertainty on the effect estimates since there 
are less observations concentrated in the tails of the variable distribution. 

As expected, fewer causes of death showed significant heat-mortality associations for 
the young group, when compared to the elderly (Figure 2). Apart from the aggregate causes 
(selected and natural), only other circulatory diseases, diabetes, urinary tract infections and 
undetermined deaths presented a significant increase in RR for mortality in the young as 
Tmed got higher (Figure S4). Both aggregate causes showed a similar pattern for mortality, 
but with RRs much lower than those obtained for the elderly. These findings are consistent 
with similar studies that show age as a considerable determinant in the heat-mortality 
relationship 15,33,54. 

There was a significant heat-mortality association for almost all causes in the elderly 
group. Chronic lower respiratory diseases, other respiratory diseases, heart failure, malignant 
neoplasms and sepsis were the 5 groups that showed no significant risk for high HImed values.  
The other respiratory diseases group did show, on the other hand, a high significant RR for 
high values of Tmed. This relates to the discussion on the complexity of the role humidity 
plays in the heat-mortality relationship 50,51. Low H and high T episodes (on which HI would 
be lower than T) can lead to respiratory issues 51,55; additionally, so can pollution and bad air 
quality 54,56,57, which were not considered in this study. The humidity discussion will be 
prolonged later on. Heart failure and sepsis are groups that besides having low death counts 
(2nd and 4th lowest median daily counts among the included groups, Table 2), are also 
unspecific and usually not the underlying cause of death reported (variable upon which the 
study is based on). The ongoing recommendation by the Brazilian Ministry of Health is not to 
use non-specific ICDs such as heart and respiratory failure or sepsis - so called "garbage 
codes" - as underlying cause of death 58. Finally, even though higher mortality due to 
neoplasms during heat waves has been reported in the literature 59–61 and majorly attributed to 
harvesting effect 60, we have not seen a significant effect in this study. 

The heat-mortality relationship observed for IHD, CVD and other circulatory diseases 
in the elderly are consistent with the literature. The pathophysiological mechanisms in this 
relationship have been extensively described 11,22,62,63 and involve a diminished capacity of 
heat stress responses, leading to higher cardiac demand and strain on the cardiovascular 
system. A recent meta-analysis including studies from more than 20 countries showed a 2.1% 
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increase in cardiovascular mortality for every 1°C increase in temperature, with 
cause-specific analyses showing higher risks for stroke, coronary heart diseases and heart 
failure 62. A cardiovascular effect was also seen in a study involving 326 Latin American 
cities 15; and in studies that took place in Brazilian cities 4,23,30,64.  

Deaths due to diabetes also had a strong association with heat exposure - a 25% 
increase in days with HImed >= 32.5 and 100% increase for HImed >= 36.7 (Table 3) for the 
elderly. Even though the relation of heat exposure with diabetes is still not totally clear, it is 
argued that diabetic patients have lower skin blood flow and thermoregulation mechanisms, 
which affect blood sugar control and cardiovascular regulation 65. Song et al. recent review 65 
of  18 studies shows a  significant heat-mortality relation for diabetes, with a higher impact 
on mortality than morbidity. The strong association found in this study is supported by 
previous studies in Brazil:  In a 2020 study in Rio de Janeiro Metropolitan Region, Geirinhas 
et al. found that the highest excess mortality identified was due to diabetes, and particularly 
in women and the elderly 32. In addition to it, Zhao found a high association between heat 
wave episodes and hospitalization due to endocrine, nutritional and metabolic diseases in 
Brazil during 2000-2015 17. 

Mortality by Alzheimer and dementia was also strongly associated with extreme 
values of Tmed and HImed among the elderly. The association showed even lower thresholds 
necessary to  reach a 25% increased risk of death - a Tmed of 28.5 (92.2% quantile) or a HImed 
of 31.2 (93.17% quantile). Alzheimer's disease admissions had already been shown to be 
related to heatwave days 66. Xu et al.,  in a retrospective cohort study in Australia, reported an 
increased risk of hospitalizations due to Alzheimer's disease during heatwaves, and reviewed 
plausible mechanisms, which include: a change in thermoregulation capacity due to the use of 
neuroleptics; a dopamine deficit during heatwave days; and a mixed capacity of recognizing 
hostile environments on extreme temperatures 67. Other two groups also showed low 
thresholds for a mortality increase among the elderly: renal failure and urinary tract disorders. 
Heat effects over urologic outcomes - which include kidney disease, renal failure, urolithiasis 
and urinary tract infection - have been documented in studies occurring in Australia 18,68 and 
in American cities 69,70.  In Brazil, Zhao et al. 17 also reported strong associations between 
severe heatwaves and admissions by genito-urinary causes. Heat exposure raises the potential 
of dehydration, which is already critical in the elderly 71. This reduces blood volume and 
urine output, which can impair renal hypoperfusion and lead to kidney injury, or increase the 
risk of urinary tract infections.  

Undetermined and aggregated causes present evident risk increases when high values 
of Tmed or HImed are reached, for both age groups (except for selected causes among the 
young). Undetermined deaths showed higher values of RR, followed by Natural causes. This 
suggests that there can be an excess use of garbage codes specifically in periods when there is 
a mortality excess during heat exposure days, which needs a deeper look. 

Although not the focus of the study, high RRs were also observed for periods of 
colder temperatures for both metrics. The effects were, in most cases, lower than those 
observed on warm days, and those findings are also consistent with the literature 23,30,56,72. 
 
Exposure period to heat as a metric for explaining heat-related mortality 
 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted January 18, 2025. ; https://doi.org/10.1101/2025.01.17.25320740doi: medRxiv preprint 

https://doi.org/10.1101/2025.01.17.25320740
http://creativecommons.org/licenses/by-nd/4.0/


 We were interested in investigating how the amount of time individuals stay exposed 
to high heat thresholds affect mortality risk. Since this exposure time is not exactly captured 
through daily average metrics (Figure 4B), we did that from two perspectives: analyzing the 
amount of hours spent above varying HI thresholds on each day; and through the HAAT 
metric. While these metrics carry less explanatory potential - once they have zero values for 
most days (Table 3), their inclusion in the models for mortality can help distinguish days of 
unusual heat exposure and aid the definition of thresholds for HWSs. 
 The models analyzing hourly exposure to HI thresholds revealed a gradient effect for 
most causes of death in the elderly group (Figure 3), with increased risk associated with both 
longer exposure periods and higher HI thresholds. The gradient effect is more pronounced for 
the aggregated causes, undetermined deaths, circulatory causes, Alzheimer/dementia and 
diabetes. As reported previously, heart failure and malignant neoplasms showed none or few 
scenarios of increased risk. For respiratory causes, models for higher HI thresholds showed 
no significance either. This again can relate to the discussion on the complex role humidity 
plays in population mortality studies, as well as other factors that influence respiratory 
mortality that were not included. 
 From both Figures 3 and 6 we see that, for lower HI thresholds, higher mortality risks 
are reached with prolonged exposure period;  in contrast, shorter exposure times are needed 
for higher HI thresholds. Figure 6A exhibits that a 7.4 hours and a 13.4 hours exposure period 
to HI above 36°C in a given day are associated with a 25% and 50% increase in the mortality 
risk by natural causes, respectively. For a HI >= 40°C threshold, the exposure periods for 
reaching the same marks reduce to 3.5 and 6.4 hours, and 1.5 and 2.8 hours are needed for HI 
>= 44°C. Associations between HAAT values and mortality risk show similar patterns 
(Figure 6B), and are simpler to interpret since they do not depend on different HI thresholds. 
Figure S8 shows that, across all causes for the elderly, a HAAT of 18.44°C*h is the median 
value leading to a 25% risk increase; 48.77°C*h leads to a 50%, and 69°C*h leads to a 100% 
increment. 
 Differently from other metrics used on heat-mortality studies or HWSs, the HAAT 
metric is based on the amount of exposure time to high heat (HI >= HIthresh) in a given day (or 
days), rather than summarizing heat exposure in an average daily metric. It is, however, not 
exclusive to the Heat Index, since its logic can be used to any other hourly metric or even 
temperature. Its explanatory potential was compared to the other metrics included in the study 
(Figure 5). For most causes (13 out of 17), HAAT composed variables (either HAAT-only, or 
added to HImed or Tmed) performed better than the commonly used combination of a heat wave 
indicator + Tmed, including for the broadest groups of selected and natural causes. This shows 
that the proposed HAAT metric succeeds on capturing days with unusually large exposure to 
high heat, and shows relevant explanatory potential for explaining heat-related mortality, 
specially when used along with a summary metric (like Tmed). 
 
RJC’s heat Protocol 
 
 This study offers evidence to support RJC's heat protocol implemented in June/2024. 
Through Figure 6 we can investigate whether the defined cut-off points in the protocol - 4 
hours of HI >= 36°C (levels NC2 and NC3), 4 hours of HI >= 40°C (level NC4) and 2 hours 
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of HI >= 44°C (level NC5) - were appropriately established. The first cut-off point, 4 hours 
of HI >= 36°C, does not show relevant increases in mortality by itself, since an increase in 
mortality by 25% is only seen after around 6 hours of exposure (5.5 hours for Renal Failure, 
6 for Diabetes). The 4 hours of HI >= 40°C threshold defined for level NC4 represents higher 
risk levels - a 50% increase in mortality by diabetes (3.9 hours), renal failure (3.3 hours), and 
HTN diseases (4.4 hours) and a 25% increase in IHD, natural causes and selected causes. 
Finally, the 2 hours of HI >= 44°C trigger represents more than 50% increased mortality for 
diabetes, HTN diseases and renal failure.  
 Even though the first threshold in the protocol does not lead to a significant increase 
in mortality, it doesn't mean it is overestimated. The second and third levels (NC2 and NC3) 
in the protocol involve measures of "monitoring, alert and communication" to the population 
40; while response from the health system and adaptation of public activities are only 
considered in level four (NC4), when an increase in mortality is evident. In addition to it, a 
mortality excess is an extreme outcome - before that, an increase in hospital attendances and 
morbidity may be observed, as documented in other studies 17,73–75. Analyses of these more 
proximal outcomes would be great evidence to better define a heat-related risk scale. As on 
the upper levels of the protocol, there seems to be an agreement as well: While 2 hours of HI 
>= 44°C (fifth level, NC5) do not lead to the maximum RR mark considered (RR >= 2.0), 
one more hour of exposure would reach such mark on HTN diseases (2.6 hours), renal failure 
(3.4 hours) and diabetes (2.9 hours).  
 RJC joins an extensive list of cities that have a HWS implemented, though very few 
are Latin American cities 37,76. It considers the measurement of temperature along with 
humidity through the calculation of the HI, as it is done in Switzerland 77 and by the National 
Weather Service (NWS) in the United States 78. Even though the index is a commonly used 
metric to express thermal comfort 41,79, it was never designed to explain heat-related mortality 
51. This study shows that using HI can help distinguish very unusually warm days (moist heat, 
mostly) but HI doesn't seem to explain mortality any better than temperature (Figure 5), as 
reported in studies using composite indices 50,51. The duration of the heat event is also taken 
into consideration, since a single warm day can't go any further than level 2 (NC2) 40, 
following common agreements on heat wave definitions 80. Despite using HI as its basic 
metric, it differs from other existing HWSs by considering the amount of exposure necessary 
to trigger a new level, rather than reaching a specific daily average/maximum T or HI value 
37, since days with similar averaged values may have much different exposure times (Figure 
4). This study offers, finally, the possibility to put together the exposure period along with HI 
thresholds through the HAAT metric. Simpler cut-off levels could be defined based on the 
metric breaks leading to increased mortality risk - as on natural causes of death, or the 
median values across all causes (Figure S8). 
 
Limitations and future work 
 

This study prioritized studying the association of heat exposure with specific 
mortality causes in the most recent years in Rio de Janeiro. Disaggregating by cause groups 
led to low death counts, which made difficult the consideration of broader age groups, sex, 
race or socio/spatial differences in the analyses, even though evidence shows they play a 
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significant role in the heat-related mortality 4,24,25,81. Pregnancy and maternal outcomes are 
also stated as related to heat exposure in the literature 20,21, and must be investigated in further 
studies for the RJC population. 

Spatial differences in heat exposure and its related outcomes were overlooked. RJC is 
a large, urban city, prone to the urban heat island (UHI) effect 82, where densely populated 
and urban areas, as well as those with lower vegetation cover, tend to accumulate more heat 
83. These areas are also highly correlated with unfavorable socio-economic conditions 26,84. 
Moreover, gaps in weather stations data also impose a challenge: many densely populated 
areas of the city lack station coverage (Figure S9), while part of the stations are located in 
airports or coastal locations, which do not capture intra-urban heat heterogeneities 51.  

The model structure must be brought to discussion as well: the inclusion of a smooth 
term to account for the differential patterns in mortality during Covid-19 pandemic more 
acute period can mask relevant patterns when examining heat-related mortality. Sousa et al.  
85 study in Portugal showed that mortality excess waves during the 2020 summer were not 
solely attributed to Covid-19; rather, they suggest that heat-related mortality may have been 
exacerbated during the lockdown period, possibly due to patients not seeking medical 
attention or being unable to be admitted to emergency rooms due to concurrent capacity 
issues during the pandemic. This effect, if similar in RJC, would not be captured by the 
crossbasis terms in the models and can be further investigated. 

Final considerations on study limitations regard the complex role humidity plays on 
heat-related mortality. Even though it is clear that humidity strongly affects heat-related 
outcomes in human physiological studies 10,86, this effect is not clear in population studies 51. 
Moist heat affects individuals' capacity to dissipate heat and therefore to cool themselves. 
This effect, when present for a large exposure time, can lead to heat exhaustion or heat stroke, 
particularly among the most vulnerable 25,87. However, epidemiological studies conducted 
considering humidity along with temperature 50 or through a composite index 88–91, have 
shown little or no impact on explaining mortality. Our findings contribute to this trend, since 
models for HImed had similar or higher AIC than Tmed in all the cause groups studies (Figure 
5).  Baldwin et al. 51 contributes by pointing out the fragility of using such composite indices, 
since increases can be observed due to elevations in temperature, in humidity, or in both. 
Including both temperature and humidity (preferably, not relative humidity) in the mortality 
models - possibly, with an interaction or effect modification term - is encouraged and could 
help better understand how T and H relate to each of the mortality causes.  
 
Final considerations 
 

Exposure to high heat levels for prolonged times lead to an increase in mortality in 
Rio de Janeiro, affecting mainly the elderly population. The young are affected in smaller 
proportion and in a fewer number of causes, while Diabetes, Alzheimer/Dementia, Renal 
Failure and Hypertensive diseases are standout groups among the elderly. Modeling the 
amount of hours exposed to high heat index extremes showed the thresholds defined in RJC's 
protocol are adequate, though adjustments can be made to match defined 25%, 50% and 
100% increase in risk marks. The approaches taken in the study suggest that the consideration 
of the exposure time to high heat thresholds, either through the amount of hours of exposure 
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or through the HAAT metric, is relevant and can help explain mortality in unusually warm 
days, as well as guiding definition of cut-off points for Heat Warning Systems.  
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