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Abstract 
Randomized controlled trials (RCTs) can produce valid estimates of the benefits and 
harms of therapeutic interventions. However, incomplete reporting can undermine the 
validity of their conclusions. Reporting guidelines, such as SPIRIT for protocols and 
CONSORT for results, have been developed to improve transparency in RCT 
publications. In this study, we report a corpus of 200 RCT publications, named 
SPIRIT-CONSORT-TM, annotated for transparency. We used a comprehensive data 
model that includes 83 items from SPIRIT and CONSORT checklists for annotation. 
Inter-annotator agreement was calculated for 30 pairs. The dataset includes 26,613 
sentences annotated with checklist items and 4,231 terms. We also trained natural 
language processing (NLP) models that automatically identify these items in 
publications. The sentence classification model achieved 0.742 micro-F1 score 
(0.865 at the article level). The term extraction model yielded 0.545 and 0.663 micro-
F1 score in strict and lenient evaluation, respectively. The corpus serves as a 
benchmark to train models that assist stakeholders of clinical research in maintaining 
high reporting standards and synthesizing information on study rigor and conduct.  
 
Background & Summary  
Randomized controlled trials (RCTs) are foundational to evidence-based medicine1. 
When well-designed and rigorously conducted, RCTs can provide valid estimates of 
effects of therapeutic interventions2. For RCTs to benefit clinical practice and health 
policy, they must be reported thoroughly and transparently2,3. Complete reporting 
facilitates the assessment of RCT validity and applicability2. Given the high cost and 
time investment of RCTs, transparent reporting also helps avoid unnecessary 
duplication and research waste2,4. Unfortunately, even well-conducted RCTs often 
suffer from inadequate reporting2,5,6. 
The SPIRIT 2013 Statement7,8 and CONSORT 2010 Statement2,9 are reporting 
guidelines that aim to enhance the reporting quality of RCT protocols and results, 
respectively. CONSORT 2010 (referred to as CONSORT for brevity, henceforth) 
consists of a checklist and a participant flowchart. The checklist includes 25 items 
essential for understanding the design, implementation, analysis, and results of 
parallel RCTs. CONSORT has been widely endorsed by journals, publishers, and 
editorial organizations, and its adoption has been found to be positively correlated 
with completeness of reporting10,11. However, studies have also repeatedly shown 
that key methodological details like allocation concealment remain poorly reported 
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even in articles published in endorsing journals5,6. An overview of systematic reviews 
found that CONSORT adherence was reported to be inadequate in 88% of the 
reviews6. The complementary SPIRIT 2013 guidelines7,8 (referred to as SPIRIT, 
henceforth) consist of recommended items and a figure to be included in trial 
protocols. SPIRIT includes many applicable items from CONSORT, especially items 
related to methodology, and often encourages authors to report more information 
than would typically be included in a results report. Protocols are widely used to 
appraise trial conduct by funding agencies, institutional review board, regulatory 
agencies, and systematic reviewers7,8. Ensuring that a trial protocol is rigorous and 
transparent before the trial begins can improve the execution of the trial and minimize 
protocol amendments, ultimately translating into more reliable trial results. 
Comparison of protocols with results publications can also pinpoint issues in trial 
conduct, such as outcome switching12. 
Low adherence to CONSORT and SPIRIT demonstrates that journal endorsement 
does not guarantee that authors will report the minimum recommended information. 
Manually verifying that the authors have adhered to CONSORT recommendations 
has been shown to improve reporting10,11 but is not scalable beyond a small number 
of well-resourced journals. Automatic screening for SPIRIT and CONSORT 
compliance could allow more journals to assess reporting quality, reduce burden on 
editors and peer reviewers, and enhance RCT reporting quality. Natural language 
processing (NLP) and machine learning (ML) techniques can support such automatic 
screening tools13–16. 
There has been significant NLP research targeting RCT publications, primarily for use 
in systematic reviews and evidence synthesis17. This includes classifying sentences 
in abstracts or full-text articles by PICO elements (Population, Intervention, 
Comparator, and Outcome) for article screening18–21, extracting PICO-related or other 
methodological terms to aid data extraction22–28, and classifying text for automated 
risk-of-bias assessment29–31. These studies often focus on a small number of 
elements relevant to trials and they do not specifically consider reporting quality. 
Other studies focus on annotating and extracting clinical trial data from registries; for 
example, the Chia corpus provides fine-grained annotations of eligibility criteria from 
ClinicalTrials.gov32. NLP work focusing specifically on RCT reporting transparency is 
relatively recent. In prior work, we constructed CONSORT-TM, a corpus of 50 RCT 
results publications annotated for CONSORT checklist items at fine granularity (37 
items)14. We also trained and validated NLP models based on this corpus which label 
individual sentences for the checklist items they report14,33,34. Additionally, we applied 
a model that specifically focuses on methodology-related CONSORT items at large 
scale (176,469 publications) to study RCT reporting patterns over time, which 
showed that methodology reporting in RCT publications had improved over time but 
that it remained suboptimal for many items35. 
Although CONSORT-TM and the models trained on it enable automated screening of 
RCT publications, they have several shortcomings. First, the corpus is relatively small 
(5,246 annotations over 4,845 sentences). Second, the best NLP model currently 
yields 0.71 micro-F1 and 0.67 macro-F1 at the sentence level and fails on some 
infrequent labels partly due to small training size. This limits the practical applicability 
of the models. Third, adherence to CONSORT can have limited effect on improving 
the rigor and conduct of a trial, because by the time the results are reported in a 
manuscript, it may be too late to improve the trial design and conduct. 
In this work, we aim to address some of these limitations by expert annotation of a 
larger corpus that not only focuses on results publications but also protocols of 
clinical trials and includes a larger and more granular set of checklist items than 
considered before. Our combined annotation scheme recognizes the overlap 
between SPIRIT and CONSORT. A major motivation for our expansion is the recent 
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proposal to better align CONSORT and SPIRIT to enhance usability, implementation, 
and efficiency36, which our corpus and models also support. In sum, our contributions 
are as follows: 
• We have designed a comprehensive data model of RCT reporting characteristics 

based on SPIRIT and CONSORT guidelines (83 items). 
• We have annotated the largest corpus of RCT protocol-results publication pairs, 

to our knowledge, using the data model and made it publicly available from 
https://github.com/ScienceNLP-Lab/RCT-Transparency/tree/main/SPIRIT-
CONSORT-TM.  

• We trained and validated strong baseline models based on state-of-the-art 
neural network architectures for article, sentence, and term level recognition of 
RCT characteristics. 

The corpus can serve as a benchmark to support further development of NLP models 
that support automated transparency screening of RCT publications. 
 
Methods 
 

Trial selection 
Our search and screening steps are visualized in Figure 1. We included parallel 
group RCTs of interventions because CONSORT applies to parallel group trials. We 
excluded pilot and feasibility studies for which other reporting guidelines are 
available. To be included in the study, trials must have been registered on 
ClinicalTrials.gov and must have published both a study protocol and a manuscript 
reporting the primary results. We used stratified random sampling to identify eligible 
protocols, as previously described37. On August 10, 2022, we searched for trial 
protocols from January 2011 to August 2022 on PubMed Central. Detailed inclusion 
and exclusion criteria, along with the search strategy, are located at 
https://osf.io/8rg4h/.  
We retained articles with a ClinicalTrials.gov identifier in the abstract or full text 
(excluding references) using regular expression pattern matching. We then randomly 
selected 500 articles from each year, yielding 6000 citations. After randomly shuffling 
the order, we screened citations in duplicate and resolved discrepancies through 
discussion. For each included protocol, we identified the earliest main results 
publication by reviewing linked publications on ClinicalTrials.gov and applying the 
eligibility criteria. We continued screening records until we reached 100 included 
protocol/results pairs (100 protocols and 100 main results publications). Our search 
concluded in September 2022.  
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Figure 1. Flow chart of searching and screening process. 
 
 
Data annotation and curation 
Based on the SPIRIT7,8 and CONSORT2,9 guidelines, we developed an annotation 
guide, also available at https://osf.io/8rg4h/. We operationalized a total of 83 items 
from both guidelines, including four applicable to protocols only, eleven applicable to 
results only, and 78 applicable to both. We assigned a number and short description 
to each item (e.g., 11a_Intervention_Description). We developed guidance for 
annotating for each item, along with examples. We updated the annotation guide 
throughout the annotation process to reflect protocol changes and to refine 
instructions. Several items from each checklist were excluded from annotation. These 
items and the rationale for exclusion are provided below: 
• SPIRIT: 2b (Information from the World Health Organization Trial Registration 

Data Set) and 3 (Protocol version) are almost never reported in published 
protocols. 6a and 6b (Background and rationale) are broad and subjective, so we 
did not believe they could be assessed reliably. 

• CONSORT: 2a (Background), 20 (Limitations) and 22 (Interpretation) are also 
broad and subjective. 

We downloaded protocol and results publications for 100 trials from PubMed Central 
as HTML files and converted them to plain text for annotation. We completed the 
annotations using the brat annotation tool (version 1.3)38, which allows span-based 
text annotations. Because brat does not preserve article structure, hashtags were 
used to indicate section headers and their depth (e.g., # for top level headers, ## for 
headers of their subsections). 
After span-based annotation of checklist items in brat, we constructed the final corpus 
by automatically converting span annotations to article-level, sentence-level, and 
term-level datasets. The article-level dataset simply includes information on whether 
a checklist item is reported in an article (binary labels). All 83 items are included in 
this dataset. The sentence-level dataset is multi-label and includes individual 
sentences associated with one or more checklist items (or none). All items except 
2_Abstract_structured (whether the publication includes a structured abstract) are 
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included in the sentence-level dataset. The term-level dataset includes word/phrase 
span annotations that precisely describe the checklist items. 22 items are considered 
for this dataset. Each dataset could serve a different purpose. Specifically, the article-
level dataset is appropriate for developing text classification models to assess 
whether checklist items are reported in an article or not, while sentence-level dataset 
allows development of models that identify relevant sentences for each item as well. 
On the other hand, the term-level dataset is appropriate for developing information 
extraction models that identify specific RCT characteristics (e.g., sequence 
generation method) that can help describe the trial conduct (e.g., to assess risk of 
bias). We consider the sentence-level dataset as the primary dataset in our corpus. 
To facilitate efficient annotation in brat, we distinguished three options for annotating 
spans: 
• Section annotation: a section header span relevant to a checklist item is 

annotated, to indicate that all sentences within that section are relevant to the 
item (e.g., The section header “Primary outcomes” is annotated to indicate the 
label 12a_Outcome_Definitions for all sentences in that section.) 

• Trigger annotation: a word/phrase relevant to an item is annotated, to indicate 
that the enclosing sentence contains information related to the item (e.g., the 
span “The specific aim” is annotated to indicate that the enclosing sentence 
relates to the item 7_Objectives.) 

• Term annotation: a word/phrase that precisely describes the item is annotated 
(e.g., “NCT01243554” to indicate the item 3a_Registry_Number.) 

During brat annotation, we used the suffix _Term in item labels (e.g., 
3a_Registry_Number_Term) to indicate that the annotator should annotate the item 
as a term. All other items could be annotated as section or trigger spans. Section 
annotation helps speed up the annotation process and reduces annotator burden, 
because instead of labeling every sentence in a relevant section, only the section 
header is annotated. This is particularly useful for commonly reported items that have 
multiple pieces and often reported in specific sections (e.g., 
11a_Intervention_Description, 12a_Outcome_Definitions). All 83 items are described 
in the annotation guide. 
We converted brat span annotations to final article-level and sentence-level datasets 
using an automated label propagation process. No specific post-processing is 
needed for the term-level dataset. In the article-level dataset, the items that were 
annotated in an article were recorded as 1 (present) and those that were not as 0 
(absent). For the sentence-level dataset, section header annotations were 
propagated down to all sentences in that section, unless the sentence was annotated 
with a different label. There are 11 exceptions to this rule tied to specific labels 
determined by the annotators and listed in the annotation guide. For example, if the 
sentence is labeled with 18a_Data_Collection, and the section header with 
12a_Outcomes_Definitions, the sentence is still additionally labeled with 
12a_Outcomes_Definitions. Labels annotated as triggers and terms were applied to 
the enclosing sentences. We included table contents (i.e., rows) in brat annotation; 
however, because there were not many row annotations and rows are often quite 
different from natural language sentences, we simply associated the labels on table 
rows with the table captions, which are treated as regular sentences, and excluded 
table rows from the sentence-level and term-level datasets. Figure captions are also 
included in the corpus. Example brat annotations corresponding to different 
annotation options are shown in Figure 2. 
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Figure 2. Brat annotation example (from the publication with PubMed Central identifier PMC6546207) 
illustrating section, trigger, and term level annotations. 10a_Participants_Inclusion is annotated by the 
section header span “Sampling”. This indicates a section-level annotation and, as a result, all the shown 
sentences are automatically annotated as 10a_Participants_Inclusion through label propagation in post-
processing. 15_Recruitment and 16h_Personnel_Enrollment are annotated at the trigger level; therefore, 
sentence 32 gets the label 16h_Personnel Recruitment and sentence 33 and 34 the label 
15_Recruitment in post-processing. 8c_Design_Centers is a term-level item; so, sentence 29 gets this 
label in sentence-level dataset and the phrase “village clusters” gets the label in term-level dataset. Note 
that because of label propagation in post-processing, some sentences will have multiple labels, e.g., 
sentence 29 gets both labels 10a_Participants_Inclusion and 8c_Design_Centers. All four items are 
labeled as 1 in the article-level dataset. Some labels are abbreviated by brat to improve readability. 
 
Annotation was performed by four experts (CJV, XY, AWB, and EM-W) in 
epidemiology and meta-science (the study of the scientific process), with expertise in 
evaluating the quality and transparency of research studies and specific experience 
in assessing RCT protocols and results publications. Annotators were always 
assigned to pairs of protocols and results publications for within-trial consistency. 
For the first 30 pairs of articles, annotators worked in duplicate, and any 
disagreements were resolved through discussion. We also calculated inter-annotator 
agreement for these articles. Three annotators annotated the first five pairs (001-005) 
of articles (CJV, AWB, and EM-W). During this phase, the annotators had 
discussions to resolve discrepancies and to develop and finalize the annotation 
guide. For the next 14 pairs of articles (006-019), each pair of articles was first 
annotated individually by two (of three) annotators and then reconciled by the 
annotators. Subsequently, four annotators were involved in annotation of the next 11 
pairs of articles (020-030). The fourth annotator (XY) reconciled the first five pairs of 
articles after being paired with other annotators for reconciliation. Double annotation 
ensured consistency between annotators. After this iteration, each pair of articles in 
the remaining 70 pairs was annotated by a single annotator. We considered the 
reconciled version to construct the ground truth datasets for modeling. 
 
Data Records 
The annotated SPIRIT-CONSORT-TM corpus is available from 
https://github.com/ScienceNLP-Lab/RCT-Transparency/tree/main/SPIRIT-
CONSORT-TM, including a README.md file that explains the corpus organization. 
To build the corpus, we converted the raw brat annotation data to article-level, 
sentence-level, and term-level datasets, as explained above. Raw brat data includes 
the label (checklist item), the annotated string, and its start and end character 
positions for each annotation.  
The final corpus is organized as follows: 
• documents: a directory that contains all 200 articles in plain text format. Files are 

organized under Protocols and Results subdirectories. The file names have the 
format PairID_PMCID.txt, where PairID is the pair number of the articles (001 to 
100) and PMCID is the PubMed Central identifier of the article. 
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• articles.csv: a CSV (comma-separated values) file that includes the article-level 
dataset. Each row includes the following columns: Protocol/Results (whether the 
article is a protocol or results publication), PairID, PMCID, ChecklistItem (the 
checklist item identifier), Reported (1 if the article includes information related to 
the checklist item, 0 otherwise), and Split (train/valid/test). 

• sentences.csv: a CSV file that includes the sentence-level dataset. In addition to 
Protocol/Results, PairID, PMCID, and Split columns, this file includes the 
following columns: SentenceID (sentence index within the article), Sentence 
(sentence text), SentenceNoMarkers (sentence text excluding header or table 
markers (#), ChecklistItems (a list that indicates the checklist item labels 
associated with the sentence), SectionHeaders (a list that includes all section 
headers associated with the sentence, from top level down to the innermost 
header), IsSectionHeader (whether the sentence is a section header itself; 0 or 
1), SentenceStartOffset (the start position of the sentence in the article), and 
SentenceEndOffset (the end position). 

• terms: This is a directory that includes term-level annotations, organized in two 
sub-directories: raw_data and processed_data. raw_data contains annotations in 
brat standoff annotation format. processed_data organizes the data into three 
JSONL files corresponding to training, validation, and test splits. For JSONL 
files, we follow the format for named entities in SciERC dataset38. Each row in a 
JSONL file corresponds to a single article that includes the following keys: 
doc_key (PMID/PMCID for each article), sentences (a list of tokens for each 
sentence), ner (a list of terms in the article, including their token-level start and 
end offsets and the corresponding checklist item labels), and section_headers 
(all section headers for each sentence). 

Training, validation, and test sets were selected randomly (70 pairs for training, 10 
pairs for validation, and 20 for test).  
 
Descriptive Statistics 
High-level descriptive statistics of the corpus are provided in Table 1.  
 Total No. Mean (Std) Median (IQR) 
Article-level    
Articles (protocols/results) 200 (100/100) -  
Checklist items included 8,285 41.43 (7.54) 42.00 (10.25) 
SPIRIT items in protocols 2,841 28.41 (5.12) 28.00 (7.00) 
CONSORT items in results 2,493 24.93 (3.27) 25.00 (4.00) 

Tokens 1,211,107 6,055.54 
(1,872.87) 

5,893.50 
(1,946.50) 

Sentence-level    
Sentences 52,294 261.47 (76.28) 249.00 (94.50) 
Annotated sentences 26,613 133.07 (50.47) 128.00 (57.75) 
Annotations 30,960 154.80 (58.74) 147.00 (61.75) 
Term-level    
Annotations 4,231 21.16 (7.37) 20.50 (10.00) 
Unique term mentions  3,926 19.63 (6.49) 20.00 (9.00) 
Unique term types 2,654 13.27 (3.05) 14.00 (4.00) 

Table 1. High-level descriptive statistics of SPIRIT-CONSORT-TM. Mean and median values are per 
report. Std: standard deviation; IQR: inter-quartile range.  

 
Article-level dataset 
We annotated a total of 200 articles (100 protocol-results pairs). The article-level 
dataset included 8,285 positive and 8,315 negative labels. On average, each article 
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reports 41.43 (±7.54) items (out of 83), indicating that approximately half of all 
relevant items were reported in each article. On average, 61.8% of SPIRIT items 
considered were present in the protocol papers, while 75.6% of CONSORT items 
considered were reported in the results papers. This shows that results articles tend 
to report more comprehensively. CONSORT reporting in this corpus is similar to that 
observed in our previous study14, which showed that 74.3% of the items were 
reported. Item-specific statistics for the article-level dataset is provided in 
Supplementary Table S2. The most commonly annotated items included in both 
SPIRIT and CONSORT guidelines were eligibility criteria (10a_Participant_Inclusion), 
interventions (11a_Intervention_Description), outcome definitions 
(12a_Outcome_Definitions), objectives (7_Objectives), statistical methods for 
outcomes (20a_Statistical_methods_Outcomes), registry numbers 
(3a_Registry_number), and consent information (26a_Consent_Obtaining), all 
reported in more than 97% of the articles. The least frequently reported items were 
related to consent provisions (26b_Consent_Provisions), code sharing 
(31e_Sharing_Code), and consent materials (32_Informed_Consent_Materials) 
reported in fewer than 4% of relevant articles.   
 
Sentence-level dataset 
The sentence-level dataset contains 52,294 sentences, including 6,777 section 
headers. 26,613 sentences (58.5%, excluding section headers) were annotated with 
checklist items. Each annotated sentence was annotated with an average of 1.16 
items. The average number of annotations per sentence, including those with no 
labels, was 0.68. Item-specific statistics for the sentence-level dataset are also 
provided in Supplementary Table S2. Some items were reported over many 
sentences in a paper (e.g., 11a_Intervention_Description, 20.36 sentences on 
average; 12a_Outcomes_Definitions, 19.15 sentences); however, most items include 
at most a few sentences per article (e.g., 16a_Randomization_Generation, 
16c_Randomization_Block_size). 
 
Term-level dataset 
The term-level dataset includes a total of 4,231 annotations, for an average of 21.16 
terms per article. Out of 22 items, on average, 13.27 (±3.05) were annotated per 
article. In more than 90% of the articles, we annotated registry number 
(3a_Registry_Number), population/intervention in the title (1e_Title_Population and 
1f_Title_Intervention), and sample size (14a_Sample_Size). The least frequent terms 
were title-related: framework (1c_Title_Framework) and centers (1d_Title_Centers) 
are reported in less than 10% of the titles. Terms related to masked people 
(17a_Masking_People_Masked) were most frequently annotated (381 instances). 
Terms related to statistical methods (20c_Statistical_Methods_Analysis_Population, 
20d_Statistical_Methods_Missing_Data) include a noticeably larger number of tokens 
per term (up to 72 tokens for the former and 45 for the latter). 128 annotations (3%) 
have disjoint spans (e.g., in the title “Enteral vs. intravenous ICU sedation 
management”, “Enteral . . . ICU sedation management” is annotated with the item 
1f_Title_Intervention). Detailed descriptive statistics of the term-level dataset are 
provided in Supplementary Table S3. 
 
Technical Validation 
In this section, we validate the corpus by reporting the inter-annotator agreement on 
articles annotated in duplicate. We also benchmark baseline NLP model performance 
using both established and novel metrics. 
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Inter-annotator agreement (IAA) 
We calculated IAA for annotations at the article, sentence, and term levels across 
three stages of annotation (5, 14, and 11 trials, respectively). At the article and 
sentence levels, IAA was calculated using Krippendorff’s α40, which accommodates 
binary (article) and multi-label (sentence) cases. Simple binary distance was used at 
the article level, while MASI metric41 (incorporating Jaccard distance) was used at the 
sentence level to account for set overlap. As shown in Table 2, IAA improved across 
stages:  from 0.682 to 0.773 at the article level and from 0.566 to 0.662 at the 
sentence level. The latter is higher than agreement reported in prior work on 
CONSORT checklist items14, supporting subsequent single annotation. 
 
 IAA measure Articles included in IAA calculation 
  001-005 006-019 020-030 

Article-level Krippendorff’s α 
(binary distance) 

0.682 0.756 0.773 

Sentence-level Krippendorff’s α  
(MASI distance) 0.566 0.619 0.662 

Term-level 
F1 score 
(exact/approximate) 0.300/0.500 0.548/0.741 0.599/0.760 

Table 2. IAA calculated at different levels of the corpus. 30 trials (60 publications) are included in IAA 
calculation. 

For the term-level dataset, we calculated IAA using F1 score42, treating one 
annotator’s labels as ground truth and the other’s as predictions. Both exact and 
approximate matching (allowing term overlaps) were considered. In stage 1 
annotation (articles 001-005), IAA averaged 0.3 (exact) and 0.5 (approximate). In 
stage 2 (articles 006-019), IAA improved to 0.548 (exact) and 0.741 (approximate). In 
stage 3 (articles 020-030), IAA further increased to 0.599 (exact) and 0.76 
(approximate).  
 
NLP models and evaluation 
We used the annotated sentence-level and term-level datasets to train NLP models 
that predict the reporting of checklist items. In this subsection, we describe the NLP 
methods used, evaluation metrics, and report performance of the models. We did not 
train a separate article-level model; article-level binary predictions were simply 
derived from sentence-level predictions.  
 
Sentence-level prediction model 
For sentence-level predictions, we retrained the multi-label text classification model 
that yielded best performance in our prior work34. The model encodes the input text 
using the PubMedBERT pre-trained encoder43 and feeds the resulting [CLS] token 
representation into a sigmoid-activated classification head for final prediction. The 
input text consists of three sentences (preceding, target, and trailing sentences) 
separated by [SEP] tokens and prepended by the [CLS] token. The corresponding 
section headers are also prepended to the start of each sentence. We refer the 
reader to Jiang et al.34 for further details on the model. To make the most efficient use 
of the annotated data, we trained a single model using 82 items. For the remaining 
item (2_Abstract_structured), which is an article-level item only and indicates whether 
the article includes a structured abstract, we integrated a rule-based method 
developed in previous work34. Despite developing a single comprehensive model, our 
evaluation considers SPIRIT and CONSORT subsets of the checklist items on 
protocol and results publications, respectively. This is because a user of this model is 
most likely to assess a protocol using SPIRIT items or a final report using CONSORT 
items, rather than using all 83 items for assessing adherence. For the experiments, 
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we trained and evaluated the model 5 times on a NVIDIA V100-32GB GPU. We set 
the number of epochs to 20 and used a batch size of 4 for each run following prior 
work34. We report the evaluation metrics as mean average of 5 runs and provide 95% 
confidence intervals based on bootstrap sampling. 
To account for different potential use cases for the sentence-level models, we used 
standard text classification evaluation metrics (precision, recall, and F1, both micro- 
and macro-averaged) across sentence and article levels. Sentence-level 
performance was calculated following the standard procedure for multi-label sentence 
classification tasks. Article-level performance was calculated by assessing whether, 
for a given checklist item, the label of at least one sentence is predicted correctly 
within the article. This evaluation metric is more lenient than sentence-level 
evaluation, although it facilitates practical use cases such as reporting checks and 
large-scale reporting analyses35, where the user would primarily focus on which 
checklist items are reported or missing and what evidence the model provides for the 
prediction. 
The model performance at the sentence and article levels for all items as well as for 
SPIRIT and CONSORT items specifically is presented in Table 3. Sentence-level 
performance on the CONSORT checklist is higher than performance reported in prior 
work34; micro-F1 (0.748 vs. 0.71) and macro-F1 (0.701 vs. 0.67). The performance on 
the SPIRIT checklist is similar to that on CONSORT in terms of micro-F1 (0.748) but 
is lower in macro-F1 (0.668). At the article level, the model performs better on 
CONSORT than on SPIRIT for both micro-F1 (0.921 vs. 0.894) and macro-F1 (0.858 
vs. 0.810). For CONSORT, article-level performance is also higher compared to that 
reported in prior work (0.90 micro-F1 and 0.84 macro-F1)34. Item-level results for the 
all-items model at the sentence and article levels are presented in Supplementary 
Tables S4-5, respectively. Analyzing the model predictions, we observe that the 
model does not perform well on infrequently reported items (e.g., 30_Post_trial_care), 
consistent with our prior work14,34, and often confuses labels that are similar (e.g., 
10a_Participants_inclusion and 10b_Center_interventionist_inclusion). While the 
performance, especially at the article level, seems reasonable for practical use, there 
is room for improving the model for the sentence-level predictions. 
 

  Precision [95% CI] Recall [95% CI] F1 [95% CI] 
Sentence-level 
All-items Micro 0.756 [0.748-0.763] 0.729 [0.723-0.737] 0.742 [0.741-0.744] 

Macro 0.702 [0.696-0.708] 0.624 [0.622-0.627] 0.645 [0.641-0.648] 
SPIRIT-only Micro 0.759 [0.748-0.769] 0.738 [0.733-0.746] 0.748 [0.745-0.751] 

Macro 0.712 [0.706-0.719] 0.661 [0.654-0.668] 0.668 [0.663-0.672] 
CONSORT-
only 

Micro 0.767 [0.758-0.774] 0.729 [0.720-0.740] 0.748 [0.744-0.751] 
Macro 0.743 [0.721-0.762] 0.683 [0.672-0.693] 0.701 [0.692-0.708] 

Article-level 
All-items Micro 0.887 [0.880-0.892] 0.845 [0.842-0.847] 0.865 [0.862-0.867] 

Macro 0.799 [0.795-0.803] 0.744 [0.741-0.748] 0.761 [0.757-0.764] 
SPIRIT-only Micro 0.917 [0.910-0.923] 0.871 [0.864-0.876] 0.894 [0.890-0.898] 

Macro 0.846 [0.842-0.853] 0.793 [0.784-0.802] 0.810 [0.806-0.814] 
CONSORT-
only 

Micro 0.924 [0.917-0.931] 0.918 [0.914-0.923] 0.921 [0.916-0.925] 
Macro 0.875 [0.854-0.892] 0.859 [0.853-0.865] 0.858 [0.847-0.865] 

Table 3. Performance of the sentence classification model at sentence and article levels. Macro- and 
micro-averaged performance is reported, with 95% CIs in square brackets. SPIRIT-only performance is 
calculated by restricting the model predictions to protocols and to the items included in SPIRIT. Similarly, 
CONSORT-only performance relates to results publications and items included in CONSORT. All-items 
performance considers all 83 items and all publications. 
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Term-level prediction model 
We formulated term-level information extraction as a named entity recognition (NER) 
task. Specifically, we used a span prediction approach to NER, where the input 
consists of consecutive tokens from a sentence up to a fixed length L (i.e., candidate 
terms) to be classified into a term-level label (or None). For span prediction, we fine-
tuned the PURE model44 on our term-level dataset. In the PURE model, a candidate 

term of length k (Tk = {x1,x2, ...,xk}), where xi is the i-th token of the term and k ≤ L, is 
represented as the concatenation of the contextualized representations of the first 
and the last tokens of the span as well as the trained embedding for the span length: 
ek = [hx1 ;hxk;φ(Tk)]. Here, hx is the representation of the token x and φ(Tk) 
corresponds to the learned embeddings of span width k. This span representation is 
then fed into a feedforward network to predict terms. We use PubMedBERT43 to 
generate contextualized token representations. We prefer span prediction approach 
to the more common BIO (Beginning-Inside-Outside) representation and token 
classification, as the terms in our corpus tend to be long phrases, unlike typical 
named entities, and the corpus included a considerable number of nested entities, 
which can be more naturally handled using span prediction. We excluded term 
mentions with disjoint spans from training and evaluation, as they are incompatible 
with a span prediction formulation for NER. 
In addition to applying the baseline PURE model, we also examined whether the 
section headers and relative positions of the spans could improve the performance, 
as they can provide clues to the presence of specific terms. After some initial 
experiments to find which section headers to use, we prepended top-level section 
header to the input sentence (e.g. “Section-header: Abstract, Sentence: Results from 
previous studies on acupuncture for labour pain are contradictory and lack important 
information on methodology”). To represent relative positions of sentences, we first 
segmented each document into k chunks and assigned the relative position index to 
every sentence. We then encoded the sentence-level index of Tk as one-hot 
encoding as input to a feedforward network ψ(Tk) to generate representation for the 
relation position and added this representation to the end of the span embeddings: ek 

= [hx1 ;hxk;φ(Tk);ψ(Tk)]. Span prediction approach requires sampling of negative 
examples. We included all negative samples from sentences in titles, abstracts, and 
methods sections. In another experiment, we also sampled instances from sentences 
with positive labels only. In practice, we envision that a term-level model would be 
applied after sentence classification; therefore, using positive sentences only could 
be considered an upper bound for performance. 
We used the validation set for hyperparameter tuning. We fixed maximum span 
length L to 10 tokens, as this covered about 95% of the term annotations. Unlike 
PURE, we did not include preceding and trailing sentences of the target sentence in 
training. We set the number of epochs as 200 and stopped training when F1 score 
did not improve compared to the previous 5 epochs. We used 4 NVIDIA V100-32GB 
GPUs with a batch size of 32. For the rest of the hyperparameters (e.g., learning 
rate), we followed the original hyperparameters of the PURE model. 
To measure term extraction performance, we use standard NER metrics: precision, 
recall, and F1 score. We compute evaluation metrics in both strict vs. lenient modes 
and use positive sentences vs. all sentences as input. In strict evaluation, only exact 
match of the predicted span and ground truth span along with the term type match is 
considered correct, whereas lenient evaluation allows span overlaps but also requires 
term type match. We put more emphasis on lenient evaluation, because some term-
level items tend to be expressed in long phrases (e.g., for 1e_Title_Population: 
“patients undergoing coronary artery stenting for an acute coronary syndrome”) and 
overlap of spans could be considered acceptable in such cases.  
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Table 4 shows the high-level performance of our baseline term extraction models. 
The baseline PURE model yields 0.462 F1 score in strict evaluation when all test 
sentences are used and 0.505 F1 score when only positive sentences are used. The 
performance is 9-10 absolute percentage points higher in lenient evaluation (0.553 
and 0.604, respectively), indicating that capturing term boundaries accurately is a 
significant challenge for the model. Precision increases significantly in positive 
sentence only evaluation compared to all sentences evaluation, indicating that 
sentence-level classification before applying the term extraction model would improve 
performance. Prepending section headers to inputs and adding relative position 
information improves the results over the baseline PURE model by 8.3-11 absolute 
percentage points, with a significant improvement in recall with some drop in 
precision. Overall, models perform better in precision compared to recall and further 
recall improvements would pave the way for practical use of the model. Item-level 
results are presented in Supplementary Table S6.  

Items such as 1a_Title_Randomized, 1g_Title_Acronym, 3a_Registry_Number, and 
17c_Masking_Type perform well in both strict and lenient evaluations due to their 
more standardized mentions, which share similar linguistic and contextual patterns. In 
contrast, items like 1e_Title_Population, 1f_Title_Intervention, and 
16a_Randomization_Generation show larger discrepancies between strict and lenient 
scores, as their mentions involve longer tokens (Supplementary Table S3), making 
exact boundaries harder to determine. F1 scores are lower for items such as 
8b_Design_Framework, 17b_Masking_Not_masked, 
20c_Statistical_methods_Analysis_population, and 
20d_Statistical_methods_Missing_data. For 
20c_Statistical_methods_Analysis_population and 
20d_Statistical_methods_Missing_data, this seems partly due to their extremely long 
mentions. However, 8b_Design_Framework and 17b_Masking_Not_masked lag 
despite having ample training instances and moderate mention lengths. 
Misclassification of design frameworks stems from comparative terms (e.g., ‘greater,’ 
‘better’), which are often incorrectly identified across the text, leading to low precision. 
Similarly, 17b_Masking_Not_masked is often misclassified as 
17a_Masking_People_masked, likely due to terms like ‘participants’ and ‘patients’, 
common for both items. While sentence-level prediction leverages context to 
distinguish these labels, term extraction relies more heavily on token-level features 
(e.g., start/end tokens and relative positions), which lack contextual depth. First 
filtering sentences predicted to contain items and then applying term extraction, could 
improve performance. 

 
Model Strict Lenient 
 Precision Recall F1 Precision Recall F1 
With samples from all sentences 
Baseline 
(PURE) 

0.572 
[0.550-
0.589] 

0.390 
[0.356-
0.432] 

0.462 
[0.441-
0.489] 

0.692 
[0.676-
0.707] 

0.463 
[0.421-
0.511] 

0.553 
[0.524-
0.584] 

Our 
model 

0.554 
[0.544-
0.570] 

0.537 
[0.530-
0.542] 

0.545 
[0.539-
0.552] 

0.683 
[0.669-
0.699] 

0.644 
[0.637-
0.650] 

0.663 
[0.655-
0.669] 

With samples from sentences including term annotations only   
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Baseline 
(PURE) 

0.722 
[0.697-
0.745] 

0.390 
[0.356-
0.432] 

0.505 
[0.479-
0.540] 

0.878 
[0.861-
0.892] 

0.463 
[0.421-
0.511] 

0.604 
[0.569-
0.643] 

Our 
model 

0.714 
[0.699-
0.728] 

0.537 
[0.531-
0.542] 

0.613 
[0.604-
0.622] 

0.886 
[0.881-
0.889] 

0.644 
[0.637-
0.650] 

0.746 
[0.741-
0.750] 

Table 4. Performance of the term extraction models. Mean averages over 5 runs with different seeds are 
shown, along with 95% CIs in square brackets. Note that term mentions with disjoint spans were 

excluded from evaluation.  

Strengths and Limitations 
We curated an expert-annotated corpus of 200 publications (100 trials) and more 
than 26K sentences with 83 checklist items related to SPIRIT and CONSORT 
reporting guidelines, making SPIRIT-CONSORT-TM the largest and most fine-
grained publicly available corpus of its kind. Our team annotated part of the corpus 
iteratively and in duplicate to ensure consistency and quality in the corpus. We split 
the corpus into training, validation, and test splits and trained NLP models, ensuring 
that the corpus can serve as a benchmark and the models as baseline models for 
transparency assessment according to SPIRIT and CONSORT guidelines. Our 
baseline models show reasonable performance, although there is room for 
improvement. 

Our corpus also has some limitations. All included publications were available in 
PubMed Central, which may not be representative of all RCT publications, although 
we aimed to include RCT publications on a broad range of topics. Some checklist 
items are reported infrequently and thus not well-represented in the corpus; NLP 
models can be expected to underperform on such labels. While the corpus is 
appropriate for identifying text related to SPIRIT or CONSORT items, we did not 
annotate whether each item was reported as recommended in the guidelines. We 
focused on parallel group trials about intervention effectiveness because those are 
the trials to which SPIRIT and CONSORT apply directly; future work might consider 
other types of trials for which SPIRIT and CONSORT extensions are available. 
Finally, the NLP models were only evaluated on our curated test set, and further 
external validation is needed to assess their generalizability. We are currently 
developing a web-based tool that will allow authors, journal staff, and others to 
upload manuscripts and publications and provide a report on reporting transparency 
based on the models. This, in addition to ongoing work on improving the model 
performance, will allow us to conduct robust external validation.  

Code Availability  
Code, data, and materials related to the searching and processing of PubMed search 
results and screening of articles are available from https://osf.io/8rg4h/. Code used 
for training and evaluating the models is available at https://github.com/ScienceNLP-
Lab/RCT-Transparency/tree/main/SPIRIT-CONSORT-TM. This repository contains 
an environment file specifying the versions of any software used during this process, 
as well as a configuration file containing the parameters used in the experiments.  
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