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Abstract 1

Scoring rules are critical for evaluating the predictive performance of epidemic 2

models by quantifying how well their projections and forecasts align with observed 3

data. In this study, we introduce the energy score as a robust performance metric 4

for stochastic trajectory-based epidemic models. As a multivariate extension of 5

the continuous ranked probability score (CRPS), the energy score provides a 6

single, unified measure for time-series predictions. It evaluates both calibration 7

and sharpness by considering the distances between individual trajectories and 8

observed data, as well as the inter-trajectory variability. We provide an overview 9

of how the energy score can be applied to assess both scenario projections and 10

forecasts in this format, with a particular focus on a detailed analysis of the 11

Scenario Modeling Hub results for the 2023-2024 influenza season. By comparing 12

the energy score to the widely used weighted interval score (WIS), we demonstrate 13

its utility as a powerful tool for evaluating epidemic models, especially in scenarios 14

requiring integration of predictions across multiple target outcomes into a single, 15

interpretable metric. 16

Author summary 17

Epidemic model predictions are often evaluated using scoring rules, such as the 18

weighted interval score (WIS), which require outputs in interval or quantile 19
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formats. However, epidemic models often produce outputs as collections of 20

stochastic trajectories, which are then summarized into quantiles for evaluation. 21

In this study, we introduce the energy score as a scoring metric specifically 22

designed for evaluating stochastic trajectories without requiring conversion to 23

other formats. The energy score provides a rigorous assessment by accounting for 24

both the variability among trajectories and their alignment with observed data. 25

Using publicly available data, we demonstrate that the energy score is a reliable 26

and effective metric for evaluating epidemic model predictions in their native 27

stochastic trajectory format. 28

Introduction 29

Epidemic model predictions are typically probabilistic, offering a range of 30

potential outcomes rather than a single deterministic forecast. Epidemic 31

forecasting and scenario modeling groups such as the CDC Flusight Forecasting 32

Challenge, COVID-19 Forecast Hub, and Scenario Modeling Hub (SMH) have 33

required predictions to be reported in quantile format [1–3]. Scoring rules, such as 34

the weighted interval score (WIS), can then be applied to quantile format outputs 35

to analyze the performance of projections with respect to observed surveillance 36

data. Epidemic predictions however are often generated from a collection of 37

stochastic trajectories, each one representing a single potential realization of how 38

an epidemic might unfold [4]. For this reason, recently, there has been a growing 39

trend toward reporting individual stochastic trajectories to collaborative hubs, as 40

demonstrated in recent rounds of the Scenario Modeling Hub [5]. However, 41

evaluation methods for epidemic projections have not yet been widely adapted to 42

effectively handle this emerging format. 43

In this paper, we study the utility and significance of the energy score as a 44

performance metric for evaluating epidemic model projections reported in a 45

stochastic trajectory format, illustrated with examples from scenario modeling. 46

The energy score has been applied across various fields, including weather 47

forecasting [6, 7], electricity market pricing [8, 9], and wind/solar power 48

generation [10–13]. In epidemic modeling, the energy score has been applied in a 49
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limited number of cases to analyze multivariate time-series models [14–16]. 50

Moreover, computational packages used to assess probabilistic forecasts with 51

proper scores have implemented the energy score [17–19]. However, it has yet to 52

gain widespread adoption as a standard metric for performance evaluation in 53

epidemic forecasting and prediction. 54

In this study, we define the energy score, outline methods to adapt it for 55

specific applications, and perform synthetic experiments to explore its properties. 56

We then apply the energy score to evaluate the performance of models 57

contributing to the 2023–24 Flu Scenario Modeling Hub (SMH). With its recent 58

transition to trajectory-based submissions, the SMH provides an ideal dataset for 59

demonstrating the utility of the energy score in a real-world context [3, 20]. While 60

scenario projections serve a different purpose than forecasts, their evaluation often 61

focuses on how well the projected trajectories capture the future dynamics of the 62

epidemic [5, 21]. Our analysis shows that the energy score is a rigorous and 63

versatile metric for assessing the performance of both individual models and 64

ensemble projections, making it an ideal scoring rule for trajectory-based epidemic 65

predictions. 66

Methods 67

When evaluating probabilistic predictions, it is important to use proper scoring 68

rules for model evaluation. Proper scoring rules are evaluation measures such that 69

a forecaster has no incentive to predict anything other than their own true 70

belief [22, 23]. If G is the underlying generative process of the observations y, the 71

score comparing the observed data with G will on average give the optimal score. 72

A scoring rule is strictly proper if the generative process of the observations G 73

gives the best score S(G, y), against the observed data y (a single realization of 74

G), and any prediction P , with score S(P, y) will be greater unless P = G. This 75

can be shown by 76

S(G, y) ≤ S(P, y) (1)
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and is equal only if P = G, where S(F, y) describes the score of a stochastic 77

process F with respect to the true observation y, and a smaller score is considered 78

better [6]. A score is proper but not strictly proper if the inequality holds, but is 79

not uniquely minimized by the generative process G. This means that a 80

prediction could give an optimal score even if it is not identical to the generative 81

process of the observed data. The energy score is a strictly proper 82

negatively-oriented score and it is the multivariate generalization of the 83

continuous ranked probability score (CRPS) [6, 23]. 84

The Energy Score for Trajectory-based Projections 85

The concept of energy score is derived from energy statistics and it measures 86

distances between statistical observations to quantify differences between 87

distributions [24,25]. The energy score (ES(P , y)) of a multivariate distribution 88

P , where X(i) and X(j) are vectors of independent random variables drawn from 89

P , and y is the vector of observed values, is defined as: 90

ES(P,y) =
N∑
i=1

pi||X(i) − y|| − 1

2

N∑
i=1

N∑
j=1

pipj ||X(i) −X(j)||, (2)

where || · || is the Euclidean norm, pi is the weight attributed to each individual 91

trajectory i, and N is the total number of trajectories being analyzed [11,23]. The 92

weights pi can be defined such that trajectories with a higher probability of 93

occurrence are given more weight in the evaluation [11]. This approach could be 94

applied when evaluating an ensemble model composed of multiple individual 95

models or scenarios grouped together, where trajectories from certain models or 96

scenarios are expected to perform better than others. In the following, we will 97

assume that in projections from a single model, all trajectories should be weighted 98

equally, as changing the weights affects the interpretation of the energy score. If 99

we assume that all trajectories are equally weighted with weight pi =
1
N , and we 100
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expand the Euclidean norm, then equation 2 can be written as: 101

ES(P,y) =
1

N

N∑
i=1

√√√√ M∑
m=1

(
x
(i)
m − ym

)2

︸ ︷︷ ︸
distance from surveillance data

− 1

2N2

N∑
i=1

N∑
j=1

√√√√ M∑
m=1

(
x
(i)
m − x

(j)
m

)2

︸ ︷︷ ︸
distance between trajectories

, (3)

where M is the number of elements in each vector (i.e. the number of time points 102

projected), x
(i)
m is the predicted value by trajectory i at time m, and ym is the 103

value of the surveillance data at time m. In this definition, the trajectory could be 104

a time-series, where each entry is a prediction for a given date, or more generally 105

a vector of predictions, such as different outcome targets. As we will discuss later, 106

the score is composed of two components, the first term which compares the 107

distance between the predicted trajectories and the observed data, and the second 108

reflects the distances of the trajectories to each other. 109

The energy score in Eq. 3, as well as the WIS, is an absolute measure, meaning 110

it is strongly influenced by deviations from the signal at higher magnitudes. In 111

other words, if a trajectory has the same relative error for two observed values of 112

different magnitudes, the energy score will place significantly greater weight on the 113

deviation associated with the larger magnitude. This can be a desirable feature in 114

scenarios where errors on large data points have more serious implications. For 115

instance, a 30% relative error in hospitalization at the onset of an epidemic might 116

correspond to only a few weekly admissions, while the same error at the peak of 117

the season could represent a significant underestimation of hospital bed demand. 118

In such cases, the energy score appropriately penalizes deviations at the epidemic 119

peak more than those at the tail (as discussed in Refs. [22, 26]). 120

However, in other situations, this feature may be less desirable—for example, 121

when comparing forecast quality across states with inherently different epidemic 122

curve magnitudes due to varying population sizes. In such cases, a relative energy 123

score can be defined by normalizing the score by the sum of the observed time 124

series data, thereby rescaling the score by the signal’s overall size [6]. A 125

normalized energy score can be written as: 126

ESnorm =
ES(P,y)∑M

m=1 ym
, (4)
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which provides a relative measure that facilitates comparisons of normalized 127

energy scores across different locations. This normalization still emphasizes 128

deviations at the peak within each state but adjusts the overall score based on the 129

sum of the signal, enabling fairer comparisons between states with different 130

population sizes. This approach can also be extended to compare scores across 131

different projection targets or time periods. The issue of normalization is similarly 132

relevant in the multi-dimensional extension of the energy score, as discussed in the 133

next section. Unless otherwise specified, we will use the energy score as defined in 134

Eq. 3. 135

Multi-Dimensional Energy Score 136

One benefit of the energy score is that it can be adapted into a performance 137

measure across multiple dimensions. This would allow us to evaluate a model 138

across multiple target outcomes (i.e. cases, deaths, or hospitalizations), age 139

groups, locations, and so on, with a single score, giving us a comprehensive 140

understanding of a model’s performance with respect to all of its predictions in 141

high-dimensional space. With other scoring rules, this would only be possible via 142

a summary statistic, such as a sum or average of scores for each outcome variable. 143

To calculate this, we look at each time point as a multi-dimensional vector, where 144

T represents the number of prediction targets we are assessing. Now, we have a 145

matrix where the the columns describe the predictions at each time point, and the 146

rows show the time-series predictions for each outcome. In this definition of the 147

energy score, we are looking at the distance between matrices instead of the 148

distance between vectors, as in the standard energy score. Therefore, we can use 149

the Frobenius norm to measure distance, as it is the multi-dimensional extension 150

of the Euclidean norm, and define the multi-dimensional energy score as: 151

ESdim =
1

N

N∑
i=1

√√√√ T∑
j=1

Φ2
j

M∑
m=1

(A
(i)
jm − yjm)2− 1

2N2

N∑
i=1

N∑
k=1

√√√√ T∑
j=1

Φ2
j

M∑
m=1

(A
(i)
jm −A

(k)
jm)2,

(5)

where A(i) is a T x M matrix of predictions for trajectory i, with T outcomes 152

January 13, 2025 6/30

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 14, 2025. ; https://doi.org/10.1101/2025.01.13.25320493doi: medRxiv preprint 

https://doi.org/10.1101/2025.01.13.25320493
http://creativecommons.org/licenses/by-nc/4.0/


and M time points, Φj is a normalization factor for the magnitude of the signal 153

along each dimension/target, N is the number of trajectories reported for each 154

outcome target, T is the number of outcomes, and M is the number of time points. 155

Individual trajectories for each outcome dimension are constructed into these 156

trajectory matrices, where the number of trajectories for each dimension must be 157

the same, and the number of trajectory matrices will equal the number of 158

trajectory vectors reported for each outcome dimension. The T x M matrix y 159

describes the surveillance data, matching the construction of the trajectory 160

matrices A(i). 161

The factorΦ2
j rescales the signal, adjusting the contribution of each forecast 162

target T to the multi-dimensional energy score. When Φ2
j = 1, targets with larger 163

magnitudes dominate the score, implying that they are more relevant for assessing 164

model performance. However, this assumption may not always be desirable. For 165

example, if the targets are hospitalizations and deaths, the T = 2 energy score will 166

be heavily influenced by the hospitalization target, which typically has a much 167

larger magnitude than the death target. However, it may be preferable for the 168

model to predict both targets with equal accuracy. In such cases, we can use a 169

rescaling factor Φj =
1∑M

m=1 yjm
, dividing by the sum of the observation vectors for 170

each target outcome to ensure that all outcome dimensions contribute similarly to 171

the multi-dimensional energy score. The same principle applies when forecast 172

targets correspond to different geographical locations. For instance, if each U.S. 173

state is treated as a forecast target, T = 50, then the energy score will be 174

dominated by states with larger populations, which typically have higher 175

hospitalization or death counts. Applying a rescaling factor in this context 176

ensures that performance across all states is weighted equally, regardless of 177

population size. The choice of Φ2
j = 1 can be adapted on a case-by-case basis, 178

depending on the objectives of the energy score assessment and the desired 179

balance between different forecast targets. 180

Finally, when grouping predictions into multi-dimensional vectors, it is crucial 181

to pair trajectories such that those from the same simulation are used in the same 182

matrix A. This is because the construction of the time series matrix directly 183

influences the energy score value. In other words, the projections for each specific 184
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target must originate from the same simulation trajectory. Only when the 185

projections for each target are generated independently can different 186

low-dimensional trajectories be randomly combined into a single 187

higher-dimensional trajectory without compromising important correlations in the 188

modeling output. 189

Comparison of scoring rules for synthetic data 190

Several scoring rules have been proposed in the literature to evaluate the 191

performance of probabilistic epidemic projections. Among these, the weighted 192

interval score (WIS) has emerged as a widely adopted standard in forecasting and 193

scenario modeling efforts [3, 22]. The WIS is a negatively-oriented proper score 194

applied to (1− α)× 100% prediction intervals. The score consists of three terms 195

that describe the width or uncertainty in the prediction interval, and penalties if 196

the surveillance data lies outside the prediction interval. It is computed at each 197

time point with prediction P and observed value y as a weighted sum of the 198

interval score for each (1− α)×100% prediction interval of interest, and 199

approximates the continuous ranked probability score (CRPS) [22]. In order to 200

evaluate the performance of a full projection time series using the WIS, we take 201

the average of the WIS calculated at each time point. We further discuss the WIS 202

and CRPS in the Supporting Information (SI). 203

The energy score and WIS both evaluate a projection based on its calibration, 204

or the distance between the predicted and observed values, and sharpness, which 205

is the amount of uncertainty given by the prediction. We show in S1 Fig that the 206

energy score and WIS are similar when evaluating a synthetic predictive 207

distribution at a single time point. However, there are important differences 208

between the two metrics that must be considered. Most importantly, the energy 209

score is strictly proper for the full projection where the WIS is proper, but not 210

strictly proper. This has implications for how these scores evaluate specific 211

probabilistic predictions. We present proofs for the propriety of the energy score 212

and WIS in the Supporting Information. 213

To provide a visual intuition of this difference, we generate trajectories from 214
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two stochastic epidemic processes that have the same marginal distribution at 215

each time step. First, we generate trajectories from a stochastic SIR model using 216

a chain binomial process. We parameterize the SIR model such that the 217

transmissibility is β = 0.625 and the recovery rate is µ = 0.25 giving us a 218

reproduction number R0 = 2.5. For the second process, we create a noisy SIR 219

model, where we randomly shuffle the values for the number of infectious 220

individuals at each time point in the SIR model trajectories. Then we randomly 221

group these values across time to produce noisy epidemic trajectories. This gives 222

us two epidemic-like processes with the same marginal distribution at each time 223

step, one with time-correlated, and one with time-uncorrelated stochastic 224

trajectories. An example of the two trajectory processes are shown in Fig. 1A and 225

B, where we also show the quantile format for these trajectories in Fig. 1C, which 226

is identical for each trajectory process. We then score the two processes using as 227

observation vector a single realization of the standard stochastic SIR model. 228

Using this framework, we calculate the energy score and WIS for 200 iterations, 229

generating 100 trajectories at 60 time points for each model at every iteration. 230

In Fig. 1D and E, we show the distribution of the scores for each epidemic 231

trajectory process, and descriptive statistics of these distributions in Fig. 1F and 232

G. From the boxplots and tables of descriptive statistics, we find that the WIS for 233

both model processes is the same, but the energy scores are not. The energy score 234

is able to distinguish between two processes with the same marginal distribution 235

but differing individual behavior, where the WIS scores them identically. 236

Moreover, the SIR model process, on average, produced better values of the 237

energy score than the noisy model, which agrees with the knowledge that the 238

observed values were generated from the SIR model. This is due to the energy 239

score being strictly proper, while the WIS is proper but not strictly proper. If a 240

prediction P has the same marginal distribution as the true underlying process G, 241

it would give the ideal WIS score to both even if P ̸= G; on the other hand since 242

the energy score is strictly proper, only a prediction P = G can give the ideal 243

energy score [23]. 244
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Fig 1. Synthetic experiments comparing energy score and WIS
propriety and evaluation. Comparing behavior of the WIS and energy score
for (A) SIR model and (B) noisy SIR epidemic trajectory process with the same
marginal distribution at each time point, generating the same quantile format (C).
Boxplot of the energy score (D) and WIS (E) obtained from each trajectory
process given 100 trajectories each, showing the distribution for each score and
epidemic trajectory process across 200 iterations. For visualization purposes, the
maximum values for each score and model type is not shown. Boxplots are
created such that the box shows the 25%, 50% and 75% quantiles, and the
whiskers represent 1.5× interquartile range (IQR). Descriptive statistics of the (F)
energy score and (G) WIS for the SIR and noisy SIR model.

Results 245

We illustrate the application of the energy score to epidemic scenario projections 246

for the 2023-24 projection round of the Flu Scenario Modeling Hub. In the Flu 247

Scenario Modeling Hub, modeling teams provide predictions about future 248

influenza trajectories under certain assumptions about human behavior, 249

environmental factors, or circulating strains. The Scenario Modeling Hub (SMH) 250

has performed 5 cycles of influenza scenario projections; 3 during the 2022-23 251

influenza season and 1 for the 2023-24 and 2024-25 seasons in addition to 18 252

scenario projections for COVID-19 and 2 for RSV [27]. In previous projection 253
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rounds, modeling teams were only required to report quantiles of their predictions 254

aggregated for each week, but beginning in the 2023-24 influenza round, teams 255

submitted 100 individual trajectories from their model output for each scenario, 256

and location [5]. The objective of this projection round was to explore the 257

implications of different vaccine coverage levels (high, normal, or low) and the 258

dominant circulating strain (either A/H3N2 or A/H1N1) on the trajectory of 259

weekly hospitalizations during the 2023-2024 flu season for US states and 260

nationally [28]. Modeling teams reported projections for these 6 scenarios, from 261

September 3, 2023 to June 1, 2024. Further information about the projection 262

round and model output can be found in the Flu SMH’s GitHub repository. S1 263

Table describes the 2023-24 SMH scenarios in further detail. In Fig. 2, we show 264

the reported model output for the ‘MOBS NEU-GLEAM FLU’ model in the US 265

nationally for Scenarios C and D of the 2023-24 Flu SMH round, which compares 266

an A/H3N2 dominant season and an A/H1N1 dominant season given historically 267

typical vaccination coverage. We see how the two example scenarios result in 268

distinct epidemic outcomes given assumptions on the circulating influenza strain. 269

We analyze the incident hospitalization projections from September 9, 2023 to 270

April 27, 2024. Using this data, we evaluate the performance of scenario 271

projections with the energy score.
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Fig 2. Epidemic predictions in the trajectory format. One hundred
trajectories for incident hospitalizations for the ‘MOBS NEU-GLEAM FLU’
model for (A) scenario C and (B) scenario D in the Flu Scenario Modeling Hub
2023-24 round 1 with observed surveillance data (black) nationally in the United
States. Trajectories are colored by their normalized distance from the observed
data. Lighter colors represent a larger distance.

272

Given the widespread use of the weighted interval score (WIS) for evaluating 273
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probabilistic epidemic predictions, we compare the performance assessment 274

provided by the WIS to that of the energy score to understand how these metrics 275

evaluate model projections. To compute the WIS, we first estimate the quantiles 276

of the projections using the submitted trajectories for each model, scenario, and 277

location. These quantiles are then used to calculate the WIS based on the 278

corresponding prediction intervals. For consistency, we use the same prediction 279

intervals employed in previous SMH projection rounds, which required 280

quantile-based submissions.; namely the 98%, 95%, 90%, 80%,..., and 10% 281

prediction intervals based on 23 submitted quantiles [22]. The WIS is calculated 282

at individual time points, so we compute the average of these scores across all 283

weeks to obtain the WIS for an entire time series. In the following, we begin our 284

analysis by examining the energy score for the projections of a single model 285

submitted to the Flu SMH, before extending the evaluation to multiple models. 286

Single Model Evaluation 287

We focus the first part of our analysis on the ‘MOBS NEU-GLEAM FLU’ model 288

submitted to the Flu Scenario Modeling Hub, which is a multi-scale, 289

age-structured, stochastic metapopulation epidemic model that uses global flight 290

and commuting data to simulate the spread of an infectious disease [29,30]. In 291

this section, we examine the energy score for this single model across time periods, 292

locations, and scenarios. 293

As noted earlier, the energy score is influenced by the absolute values defining 294

a trajectory. This dependency complicates the comparison of scores across 295

locations, time periods, or target outcomes with differing magnitudes. In Fig. 3A, 296

we compare the energy score for the ‘MOBS NEU-GLEAM FLU’ model influenza 297

hospitalization projections for each scenario and location to the sum of the 298

corresponding surveillance time series. We find that the non-normalized energy 299

score is strongly correlated to the size of the signal. However, Fig. 3B shows that 300

the normalized energy score depends much less on the magnitude of the 301

surveillance data, with an R2 of 0.018. This means that scores can be compared 302

with the normalized energy score, and demonstrates its nature as a relative score. 303
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Fig 3. Evaluation of a single model with the energy score. Comparison of
the dependence of the (A) energy score and (B) normalized energy score on the
sum of the surveillance data of each scenario and location for the model
projections. (C) Decomposition of the energy score terms at each week for the
Scenario D projections, where the blue represents the term describing the distance
of the trajectories from observed data, and the orange describes the term
representing the distance between all pairs of trajectories. The gray line shows the
full energy score calculated at each week. (D) Relationship between the WIS and
energy score. Each point describes the WIS and energy score for a location and
scenario. The WIS was found by estimating the quantiles estimated from the
trajectories. (E) Boxplot of energy score ratio across 52 locations for the
‘MOBS NEU-GLEAM FLU’ model compared to a 4-week-ahead naive baseline
model for each scenario. Vertical dashed line shows where the
‘MOBS NEU-GLEAM FLU’ and baseline model have the same scores, where
ratios below one describe when the model performs better than the baseline. The
overlaid red stars show the median of the multi-dimensional energy score ratio
across locations for 50 iterations of randomizing the trajectory pairings. Boxplots
are created such that the box shows the 25%, 50% and 75% quantiles, and the
whiskers represent 1.5 × IQR. Scatter plots (A,B,D) show a dashed line of the
linear regression fit, with the R2 and two-sided p-value describing the fit. All
results are shown for the ‘MOBS NEU-GLEAM FLU’ model 2023-24 Flu SMH
incident hospitalization projections.
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While the energy score is defined for a multivariate time series, we analyze its 304

behavior at individual time points to study how the energy score changes 305

throughout an outbreak. In Fig. 3C, we show the energy score at each week of the 306

flu season for the ‘MOBS NEU-GLEAM FLU’ model, scoring incident 307

hospitalization projections for Scenario D (A/H1N1 Dominance, Business as usual 308

vaccination coverage) nationally in the U.S., and we decompose these scores to 309

look at the contribution of individual terms. The energy score is made up of a 310

positive term describing the distance between the trajectories and surveillance 311

data, and the pairwise distance between all trajectories subtracted from this value. 312

This negative term is why the energy score value is less than the component 313

describing the distance from surveillance data. In this example, the energy score 314

is largely composed of the distance between each trajectory and the observed data. 315

The score increases at time points near the peak as expected because the energy 316

score is an absolute metric depending on the magnitude of the surveillance signal, 317

which means it will typically give higher weights near the peak of an epidemic 318

curve. We show in S1 Fig that the WIS follows similar patterns when evaluated at 319

each week of the influenza season. 320

Since the WIS is a commonly used score for evaluating epidemic projections, 321

we compare the performance of the ‘MOBS NEU-GLEAM FLU’ model using the 322

energy score and WIS. If we calculate the energy score and WIS for the 323

predictions made for each location and scenario for incident hospitalizations in the 324

2023-24 Flu Scenario Modeling Hub round, we find a strong correlation between 325

the two scores, shown in Fig. 3D. This highlights that a prediction that performs 326

well under the WIS is likely to also be scored well by the energy score. 327

Using the energy score, we are also able to compare performance across 328

scenarios and locations. In Fig. 3E, we evaluate the performance for all scenarios, 329

looking at the distribution of scores for predictions at each location. To evaluate 330

model performance, we create a naive baseline forecast for 4-week-ahead 331

projections, to use as a reference point against which we compare the performance 332

of long-term scenario projections [31]. While, alternative baseline methods can be 333

devised for scenarios projections, this approach has been used previously to assess 334

the performance of several rounds of the SMH COVID-19 projections [3]. We 335
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report the details of the generation of the naive baseline model and its trajectories 336

in the Supporting Information. From the baseline model, we create an energy 337

score ratio where we divide the energy score for each model, location, and scenario 338

by the energy score of the baseline model for each location. A ratio less than 1 339

describes when the scenario model performs better than the naive baseline model. 340

It is important to note that scenario projections are not necessarily expected to 341

outperform the baseline model. This is because the baseline model is continuously 342

updated with new data each week to produce 4-week-ahead predictions, whereas 343

scenario projections are made several months in advance without incorporating 344

recent surveillance data. In our analysis, we find that most scenarios for the 345

‘MOBS NEU-GLEAM FLU’ model perform similar to or slightly worse than the 346

naive baseline model. In S2 Table, we show descriptive statistics for the energy 347

score ratio ‘MOBS NEU-GLEAM FLU’ model for each scenario. 348

We also utilize the multi-dimensional energy score to compute a single 349

comprehensive score for each scenario, providing an overall assessment of the 350

‘MOBS NEU-GLEAM FLU’ model’s performance across all U.S. states. The 351

multi-dimensional energy score requires trajectories to be paired consistently 352

across all dimensions, including across states. However, the SMH does not 353

explicitly provide the pairing of trajectories across different locations. For the 354

‘MOBS NEU-GLEAM FLU’ model, trajectories in different states are originated 355

from independent calibrations, allowing us to randomize the trajectory identifiers 356

and conduct a sensitivity analysis to evaluate how different pairings influence the 357

multi-dimensional energy score, repeating this process over 50 iterations. 358

Additionally, we calculate an energy score ratio, as previously described, to 359

compare these values against the multi-dimensional energy score of the 360

4-week-ahead naive baseline model. In Fig. 3E, the red stars show the median 361

multi-dimensional energy score ratio across these iterations for each scenario. In 362

S5 Table, we show that the uncertainty around the multi-dimensional energy score 363

for randomizing the trajectory pairings is very small. Additionally, we find that 364

the distribution of the energy score ratio across locations in the boxplots and the 365

multi-dimensional energy score rank the scenarios similarly, with both medians 366

following the same pattern. This shows that the multi-dimensional energy score is 367
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evaluating the model similarly to the standard energy score, but in an aggregated 368

manner. In addition, we examine the impact of removing the normalization factor 369

from the multi-dimensional energy score expression in order to keep emphasis on 370

locations with larger signals in S2 Fig. 371

Multi-Model Analysis 372

In this section, we focus our analysis on the performance of all models submitted 373

to this Flu SMH projection round that provided incident hospitalization 374

projections for multiple locations. This selection resulted in six individual models 375

being included in the analysis, with four models excluded from the study because 376

they only reported data for one location. Ensemble models generated by the SMH 377

were not considered, as they are reported only in a quantile format. To illustrate 378

the utility of the energy score in comparing performance across multiple models, 379

we analyze model rankings and performance across different locations. In Fig. 4 380

we show how the energy score varies across models, scenarios, and locations. We 381

calculate the energy score ratio in comparison with the 4-week-ahead naive 382

baseline model [31] described previously for each scenario, location, and model, 383

where a ratio below one represents a case where the scenario model performed 384

better than the naive baseline model. We find that there are models that 385

consistently perform better than others, and that some models perform very 386

similar to or slightly better than the baseline model. S3 Table presents descriptive 387

statistics of this data for all scenarios and models by summarizing the energy score 388

ratio for all models and scenarios examined. This demonstrates the ability of the 389

energy score to compare models and differentiate between better-performing 390

models. This tells us about relative model performance within each scenario. 391

We also investigate how model rankings based on the energy score compare to 392

those derived from the WIS. For each scenario and location, we rank the models 393

from lowest to highest score using both the energy score and WIS. To assess the 394

agreement between these rankings, we calculate Kendall’s τ rank correlation 395

across all models. The Kendall’s τ correlation coefficient compares rankings by 396

counting the number of pairs of objects that are in an incorrect order, divided by 397
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Fig 4. Energy score ranking across models. Boxplots showing the
distribution of the ratio of the energy score for each model, location, and scenario
in Flu Scenario Modeling Hub divided by the energy score for the 4 week ahead
naive baseline flu model at each location. Each boxplot shows the energy score
ratio distribution over the number of locations the corresponding model reported
(shown in SI). Vertical dashed line shows where the ensemble and baseline model
has equal energy scores such that ratios below one describe when the SMH model
performs better than the baseline. Models are ordered by median energy score
ratio within each scenario. Boxplots are such that the box shows the 25%, 50%
and 75% quantiles, and the whiskers represent 1.5 × IQR. Note that Model A
represents the ‘MOBS NEU-GLEAM FLU’ model, which can be compared to
results in Fig. 3.

the total possible pairs [32]. A rank correlation of 1 means that the rankings of 398

the energy score and WIS are identical. In S1 Fig, we show a histogram of the 399

Kendall’s τ rank correlation between the energy score and WIS for all models and 400

scenarios. The mean rank correlation coefficient between the energy score and 401

WIS is 0.87. This shows that the energy score and WIS rank models quite 402

similarly, but there can be cases where the rankings are not identical. More 403

precisely, we find that for 49.7% of projections, the energy score and WIS have a 404

Kendall’s τ correlation coefficient of 1. 405

Trajectory-Based Ensemble 406

In multi-model analysis, it is common practice to create an ensemble model by 407

combining predictions from the multiple individual models. [21, 31]. In the 408
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ensemble, the information and uncertainty from multiple models are aggregated 409

together to provide a “consensus” projection of future possibilities aggregating the 410

different assumptions and methodologies of individual models [26]. The 411

performance of ensemble models has been shown to generate improved future 412

predictions that characterize uncertainty better than individual 413

models [21,26,33,34]. The SMH includes three ensemble models as part of its 414

analysis. However, these ensembles are built by first converting each model’s 415

trajectories into a quantile format before applying the ensemble methods. Here, 416

we propose an alternative approach for generating an ensemble model that 417

directly utilizes the trajectories reported by each modeling team. In this method, 418

we simply bundle all trajectories from each model into the definition of a single 419

ensemble, assigning equal weight to each trajectory. This approach avoids the 420

need to summarize stochastic model outputs into quantile format, leveraging the 421

raw data provided by the models instead. In S3 Fig, we compare this ensemble of 422

trajectories method with the three ensemble models reported by the SMH. 423

In Fig. 5, we explore the energy score across locations using the 424

trajectory-based ensemble. We include all models reported to the 2023-24 Flu 425

SMH that submit projections of incident hospitalizations for any number of the 50 426

U.S. states, Washington D.C., or nationally. Fig. 5A shows the ratio of the energy 427

score of the trajectory-based ensemble model divided by the energy score of the 428

4-week-ahead naive baseline model at each location (U.S. states and the District 429

of Columbia) for Scenario D. Locations in blue show where the ensemble model 430

performed better than the baseline model (ratio < 1), where those in orange show 431

where the naive baseline model had better performance (ratio > 1). We observe 432

heterogeneous performance across the United States, with the ensemble model 433

outperforming the naive baseline in 24 locations, but falling short in 27. These 434

results indicate areas where model performance could be improved for future 435

predictions. Notably, in this example, the ensemble tends to perform better in the 436

Southern U.S. states. 437

We extend this to show the distribution in the energy score ratio compared to 438

the 4-week-ahead naive baseline model across locations for each scenario in Fig. 439

5B. This allows us to assess the overall performance of the trajectory-based 440
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Fig 5. Energy score for the trajectory-based ensemble model. (A) Map
of the US showing the energy score ratio (trajecory-based Ensemble / baseline
model energy score) for each US state of the 2023-24 Flu Scenario Modeling Hub
round for Scenario D. Ratios below one (blue) show where the energy score for the
trajectory-based ensemble model for a state was better than the naive baseline,
where the ratios above one (orange) show where the baseline model had better
performance. (B) Boxplots of the energy score ratio across 52 locations for all
scenarios compared to a 4-week-ahead naive baseline model. Vertical dashed line
shows where the ensemble and baseline model has equal performance, where ratios
below one describe when the ensemble model performs better than the baseline.
Boxplots are such that the box shows the 25%, 50% and 75% quantiles, and the
whiskers represent 1.5 × IQR.

ensemble model for each scenario, and compare the scenarios to each other. This 441

analysis illustrates that scenarios B, D, and F are the best-performing scenarios 442

for the ensemble model, which corresponds to the scenarios describing H1N1 as 443

the dominant circulating strain. This is in agreement with the observed strain 444

dynamics in the United States for the 2023-24 influenza season [35]. We show 445

summary statistics of this data in S4 Table. 446
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It is worth noting that we do not calculate the multi-dimensional energy score 447

for the ensemble model due to the assumptions required about trajectory 448

independence and pairing—information that is unavailable for the other modeling 449

teams within the SMH. 450

This ensemble of trajectories method could be easily translated to a different 451

weighting process where models or even specific trajectories are weighted 452

differently as data is gathered [4]. This allows for a flexible framework for 453

ensemble creation and performance analysis using only single trajectories 454

generated by individual models without the need to summarize and aggregate 455

model output using quantiles. 456

Discussion 457

In this paper, we discuss the benefits and application of the energy score to 458

evaluate probabilistic epidemic predictions given in a trajectory format. It is 459

important to highlight that the energy score is not a new method, and it has been 460

used in the evaluation of probabilistic forecasts in many fields [6]. Using multiple 461

scoring rules to assess predictions is shown to be useful [36], and the energy score 462

adds a strictly proper performance measure to the toolbox of probabilistic 463

prediction analysis methods. The energy score is a natural way of assessing 464

epidemic model output given in trajectory format, as it does not rely on 465

summarizing stochastic model output into quantiles. Moreover, the energy score 466

acknowledges the stochastic nature of epidemic forecasting. It follows the full path 467

of each individual trajectory over a time series, and is a multivariate score that 468

assesses a probabilistic time series with one score value. We show how the strictly 469

proper nature of the energy score is able to differentiate between predictions with 470

the same marginal distribution but different generating processes. We introduce 471

the multi-dimensional energy score in order to gain a comprehensive 472

understanding of a model’s performance across all of its predictions. 473

One limitation of the energy score is the increasing computational cost of the 474

energy score as the number of trajectories increases. The second term in the 475

energy score expression requires the calculation of the pairwise distance between 476
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all trajectories. This can become computationally challenging when the number of 477

trajectories is large. We show in S4 Fig that randomly sampling even a small 478

percent of trajectories gives good agreement with the energy score found through 479

using the full set of stochastic trajectories. 480

The information contained within epidemic projections in quantile format 481

versus trajectory format has both advantages and disadvantages. Trajectories 482

allow for greater flexibility in weighting and analysis of time-series features, where 483

the quantile format does not retain information on variability within potential 484

epidemic outcomes [4]. The energy score acknowledges the individual behavior of 485

single trajectories, where scores evaluated using a quantile format evaluate the 486

descriptive statistics at each week. This can suppress important epidemiological 487

information and obscure the true uncertainty of different epidemic 488

outcomes [4, 37, 38]. Typically, predictions in a quantile format highlight the most 489

likely outcomes, rather than the worst-case scenario, which is critically important 490

to public health decision-makers [39]. In this paper, we show how the individual 491

behavior of a stochastic model realization can change the energy score, even if 492

descriptive statistics are the same. This is important to consider when choosing 493

the best evaluation method to apply to any given research question. 494

The discrimination ability of a scoring rule illustrates the differences in scores 495

generated by forecasts of differing quality. For example, a scoring rule has low 496

(high) discrimination ability if forecasts with a very different quality result in the 497

same (different) scoring value [40]. A proper scoring rule can still have poor 498

discrimination ability. It has been shown that the energy score lacks 499

discrimination ability between forecasts with different correlation structures, but 500

discriminates well between predictions with different means or 501

variances [14,40,41]. Many of these works are aimed at the capability of the 502

energy score to correctly identify the true underlying distribution driving the 503

dynamics. While this is important to consider when employing the energy score 504

for the performance analysis of epidemic forecasts, we believe that it should not 505

limit our use of this tool. The main goal in evaluating epidemic projections and 506

forecasts is not the specification of the true data-generating distribution, but the 507

identification of projections that are closest to reality. 508
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Our results consider equally weighted trajectories, but the energy score 509

definition allows for the weight of each trajectory to be individually defined. This 510

could lead to developing scoring strategies that allows changing trajectory weights 511

based on past performance, or a particular outcome of interest. This adjustment 512

may alter the intuition behind the energy score, but it could be useful for 513

generating ensembles or calibrating models as we gather more information about 514

the progression of an epidemic. While we use the Flu Scenario Modeling Hub as 515

an example of how the energy score can be utilized, the energy score can be 516

extended beyond scenario projections to any epidemic forecast or prediction that 517

produces stochastic realizations. As trajectories become more common in epidemic 518

model reporting, the energy score should be considered in model evaluation as a 519

way to utilize the information contained within individual trajectories. We do not 520

believe that this should discourage the use of other scoring rules, but we illustrate 521

the energy score as a robust performance metric if trajectories are available. 522
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We use a formatted version of this data provided by the CDC FluSight Forecast 535

Hub [43]. Scenario model projections are made available by the Flu Scenario 536

Modeling Hub [28] and in their GitHub repository. Our code for this project is 537

publicly available on Zenodo [44]. 538
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Supporting information

S2 Fig. Multi-dimensional energy score. Boxplot of energy score ratio

across 52 locations for the ‘MOBS NEU-GLEAM FLU’ model compared to a

4-week-ahead naive baseline model for each scenario. Vertical dashed line shows

where the ‘MOBS NEU-GLEAM FLU’ and baseline model have the same scores,

where ratios below one describe when the model performs better than the baseline.

The overlaid red stars show the median of the multi-dimensional energy score

ratio across locations for 50 iterations of randomizing the trajectory pairings. The

blue stars show the multi-dimensional energy score without the use of a

normalization factor. Boxplots are created such that the box shows the 25%, 50%

and 75% quantiles, and the whiskers represent 1.5 × IQR.

S1 Fig. WIS analysis. (A) Decomposition of the WIS terms at each week for

the ‘MOBS NEU-GLEAM FLU’ model 2023-24 Flu SMH incident hospitalization
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projections for Scenario D, where blue show the contribution of the dispersion

term, red describes the penalty for underprediction, and orange shows the penalty

for overprediction. The gray line shows the full score calculated at each week. (B)

Comparison of the energy score (gray) and WIS (dashed orange) calculated at one

time point as a function of an observed value y given an underlying predictive

distribution (blue) with 100 samples drawn from the predictive distribution to

calculate the scores. The predictive distribution is a negative binomial

distribution with a mean of 60 and variance of 31. (C) Histogram of the Kendall’s

τ rank correlation between the model rankings for the energy score and WIS for

each scenario and location for the 2023-24 Flu SMH incident hospitalization

projections. A Kendall’s τ rank correlation of 1 means that the energy score and

WIS rank models identically.

S3 Fig. Ensemble model comparison. Relationship between the WIS of the

ensemble models reported by the SMH: Ensemble vincent (left), Ensemble LOP

(middle), and Ensemble LOP trimmed (right) and the WIS of the ensemble of

trajectories method. Scatter plots show a dashed line of the linear regression fit,

with the R2 and two-sided p-value describing the correlation.

S4 Fig. Sampled energy score. (A) Sampled energy score compared to the

true energy score for different densities of sampled trajectories (5, 10, 25, and 50

%) for the ‘MOBS NEU-GLEAM FLU’ model. Dots show a single sampled energy

score compared to its corresponding true value for a given location and scenario.

(B) Sampled energy score averaged across 50 iterations compared to the true

energy score for different densities of sampled trajectories (5, 10, 25, and 50 %)

for the ‘MOBS NEU-GLEAM FLU’ model. Dots show the average sampled

energy score compared to its corresponding true value for a given location and

scenario. Black dotted line shows the y=x line where the sampled and true energy

scores are equivalent.

S1 Table 2023-24 Flu Scenario Modeling Hub round. Description of the

scenarios used by each modeling team in the 2023-24 flu SMH projection round.

VE describes assumptions surrounding vaccine effectiveness (VE).
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S5 Table Descriptive statistics of the multi-dimensional energy score

for the ‘MOBS NEU-GLEAM FLU’ model. Table showing the mean,

standard deviation, minimum, maximum, and range for the multi-dimensional

energy score across locations for the ‘MOBS NEU-GLEAM FLU’ model influenza

hospitalization predictions for each scenario of the 2023-24 SMH round, given 50

iterations of randomly pairing trajectories.

S2 Table Descriptive statistics of the energy score ratio for the

‘MOBS NEU-GLEAM FLU’ model projections. Table showing the number

of locations predicted, minimum, 5% quantile, median, 95% quantile and

maximum for energy score ratios across locations for influenza hospitalization

predictions for the ‘MOBS NEU-GLEAM FLU’ model of the 2023-24 SMH round

across locations for each scenario. The energy score ratio is calculated by dividing

the energy score of the SMH model at each scenario and location by the energy

score of a 4-week-ahead naive baseline model at each location.

S3 Table Descriptive statistics of the energy score ratio for the all

analyzed models and scenarios. Table showing the number of locations

predicted, minimum, 5% quantile, median, 95% quantile and maximum for energy

score ratios across locations for influenza hospitalization predictions for each

scenario and model of the 2023-24 SMH round. The energy score ratio is

calculated by dividing the energy score of the SMH model at each scenario and

location by the energy score of a 4-week-ahead naive baseline model at each

location.

S4 Table Descriptive statistics of the energy score ratio for the

ensemble model projections. Table showing the number of locations predicted,

minimum, 5% quantile, median, 95% quantile and maximum for energy score

ratios across locations for influenza hospitalization predictions for the ensemble of

trajectories model across locations for each scenario. The energy score ratio is

calculated by dividing the energy score of the ensemble model at each scenario

and location by the energy score of a 4-week-ahead naive baseline model at each

location.
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