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Abstract (350 words) 

Background and Objectives: The diagnostic yield of routine EEG in epilepsy is limited by low 

sensitivity and the potential for misinterpretation of interictal epileptiform discharges (IEDs). Our 

objective is to develop, train, and validate a deep learning model that can identify epilepsy from routine 

EEG recordings, complementing traditional IED-based interpretation. 

Methods: This is a retrospective cohort study of diagnostic accuracy. All consecutive patients undergoing 

routine EEG at our tertiary care center between January 2018 and September 2019 were included. EEGs 

recorded between July 2019 and September 2019 constituted a temporally shifted testing cohort. The 

diagnosis of epilepsy was established by the treating neurologist at the end of the available follow-up 

period, based on clinical file review. Original EEG reports were reviewed for IEDs. We developed seven 

novel deep learning models based on Vision Transformers (ViT) and Convolutional Neural Networks 

(CNN), training them to classify raw EEG recordings. We compared their performance to IED-based 

interpretation and two previously proposed machine learning methods. 

Results: The study included 948 EEGs from 846 patients (820 EEGs/728 patients in training/validation, 

128 EEGs/118 patients in testing). Median follow-up was 2.2 years and 1.7 years in each cohort, 

respectively. Our flagship ViT model, DeepEpilepsy, achieved an area under the receiver operating 

characteristic curve (AUROC) of 0.76 (95% CI: 0.69–0.83), outperforming IED-based interpretation 

(0.69; 0.64–0.73) and previous methods. Combining DeepEpilepsy with IEDs increased the AUROC to 

0.83 (0.77–0.89). 

Discussion: DeepEpilepsy can identify epilepsy on routine EEG independently of IEDs, suggesting that 

deep learning can detect novel EEG patterns relevant to epilepsy diagnosis. Further research is needed to 

understand the exact nature of these patterns and evaluate the clinical impact of this increased diagnostic 

yield in specific settings. 

Keywords: Epilepsy – Electroencephalogram – Deep Learning – Diagnosis – Computer-assisted – 

Biomarker 

Word count (abstract): 282 
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Introduction 1 

The diagnosis of epilepsy is notoriously challenging. It relies on the occurrence of either two seizures 2 

more than 24h apart, one seizure and a high risk of another, or the presence of an epilepsy syndrome.1 3 

Despite this clear definition, the rate of misdiagnosis remains high.2,3 A key issue is the lack of robust and 4 

validated interictal biomarkers,4–6 making the diagnosis highly dependent on the ability to collect a clear 5 

clinical history and accurately interpret the electroencephalogram (EEG). 6 

The EEG can capture ictal and interictal activity that is highly specific for epilepsy. It is cost-effective and 7 

technically straightforward, with standard acquisition protocols that have been put in place by the 8 

International League Against Epilepsy.7,8 However, its diagnostic yield is hampered by low sensitivity9 9 

and only moderate interrater reliability.10 Consequently, the EEG has limitations as a diagnostic tool in 10 

patients with suspected seizures, with EEG misinterpretation contributing to diagnostic errors in 11 

epilepsy.11 12 

In recent decades, efforts have focused on overcoming the limitations of traditional EEG interpretation by 13 

identifying alternative epilepsy biomarkers within the EEG through computational methods.12–16 More 14 

recently, Deep learning (DL) has since revolutionized the analysis of complex signals. DL models can 15 

autonomously extract features from time-series or images by optimizing millions of parameters on large 16 

datasets. DL has been applied to EEG to decode brain signals for brain-computer interface,17 predict 17 

delirium,18 and automatically detect IEDs.19,20 Despite these advancements, studies that attempt to detect 18 

epilepsy on EEG remain disconnected from clinical practice, often using unrepresentative samples or 19 

lacking robust validation.13 As a result, the true diagnostic accuracy of these approaches is uncertain, and 20 

clinical translation is still awaited. 21 

Our group recently demonstrated that machine learning could predict the risk of seizures in the year 22 

following a routine EEG.21 This method could also predict the diagnosis of epilepsy from the EEG alone 23 

with an area under the receiver operating characteristic curve (AUROC) of 0.63. The extraction of pre-24 
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defined features has limited capacity to capture the complex brain dynamics underlying epilepsy, leading 25 

us to hypothesize that DL could substantially enhance these performances. 26 

The present study builds on these findings and seeks to address these questions: can modern DL models 27 

detect epilepsy on interictal EEG, even in the absence of IEDs? What are the potential diagnostic 28 

performances of a DL-assisted EEG interpretation for epilepsy? And what sample size is required to train 29 

such models? 30 

Methods 31 

Study design 32 

This is a retrospective study on a consecutive cohort of patients undergoing routine EEG in a single 33 

tertiary care center in Montreal, Canada.  34 

Participants 35 

We included all patients who underwent a routine EEG (20- to 60-minute, with or without sleep 36 

deprivation) between January 2018 and September 2019 at the Centre Hospitalier de l’Université de 37 

Montréal (CHUM). Exclusion criteria were the absence of follow-up after the EEG, an uncertain 38 

diagnosis of epilepsy at the end of the available follow-up period, or an EEG performed in a hospitalized 39 

patient. Under a prespecified protocol, one neurology resident (EL) and three students (AQ, MJ, JDT) 40 

collected data from the electronic health record for each visit, including baseline characteristics (age, sex), 41 

co-morbidities, number of antiseizure medications, and presence of a focal lesion on neuroimaging. They 42 

also reviewed the EEG report for the presence of IED(s) and abnormal background slowing. All clinical 43 

information was stored on a REDCap database hosted on the CHUM research center’s servers. 44 

We separated the cohort into two independent subsets according to the date of the EEG. Recordings 45 

before July 15, 2019, comprised the training and validation set, while recordings after July 15, 2019, 46 

comprised the testing set. We excluded from the testing set any recording from a patient already included 47 
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in the training and validation set. The training and validation set was further separated into a training set 48 

and a validation set in a random fashion (80%/20% split). 49 

Test Methods 50 

Reference Standard 51 

The reference standard is the diagnosis of epilepsy according to the treating physician at the end of the 52 

available follow-up period. This diagnosis is based on the ILAE definition of epilepsy, i.e. having had 53 

two unprovoked seizures more than 24h apart or one unprovoked seizure and be considered at high (> 54 

60%) risk of seizure recurrence, or being diagnosed with an epilepsy syndrome.1 The final diagnosis at 55 

the end of the follow up period was used, as opposed to the speculated diagnosis at the time of the EEG, 56 

because the follow up period provides additional information such as imaging, additional EEG 57 

recordings, video-monitoring admissions, and seizure recurrences. 58 

EEG recording 59 

EEGs were recorded using a standardized protocol on a Nihon Kohden EEG system, following national 60 

recommendations.22 Awake EEGs, 20–30 minutes long, were recorded at 200 Hz with 19 electrodes 61 

arranged with the 10-20 system. They included two 90-second periods of hyperventilation (except in 62 

patients > 80 years old, uncooperative, or with medical contraindications) and photic stimulation from 4 63 

Hz to 22 Hz. Patients were also instructed to open or close their eyes at several times. Sleep deprived 64 

recordings lasted 60 minutes, with the same activation procedures. Technologists annotated the EEG in 65 

real-time. For this study, EEGs were converted to an average referential montage (A1-A2), saved to EDF 66 

format, and stored on the CHUM research center’s server for analysis. 67 

Automated processing of EEG and classification 68 

The index test is the classification of the EEG recordings using machine learning. We developed 69 

DeepEpilepsy, a Vision Transformer (ViT) model that takes raw EEG segments as input and outputs a 70 

probability of the diagnosis of epilepsy (Figure 1). EEGs were segmented into overlapping 10- or 30-71 
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second windows and directly used as input into the DL models. To enhance model generalization, we 72 

applied a random data augmentation algorithm during training.4 For each segment, an augmentation was 73 

drawn randomly from a set of transformations, which included filtering (band-pass, low-pass, high-pass), 74 

masking (channel, time), and adding noise (eFigure 1). These were applied with a 50% probability and 75 

randomized intensity. We performed a Bayesian hyperparameter search on the training and validation set 76 

to choose DeepEpilepsy’s final configuration. We also investigated different learning rates, weight decay, 77 

and batch size values. The final models were trained on the entire training and validation set. The 78 

optimization hyperparameters and model specifications are described in eTable 4. 79 

In addition, we implemented other Deep Learning models (ViT and ConvNeXt), as well as two 80 

previously described methods: the ShallowConvNet inspired by the Filter Bank Common Spatial Patterns 81 

algorithm,23 and a feature-extraction framework relying on the extraction of linear and nonlinear EEG 82 

markers that are used as input into a classifier (LightGBM).21 These methods are described in details in 83 

eMethods 1. 84 

To obtain the diagnostic performances, the final models/procedures were applied to the testing set. This 85 

resulted in a single predicted probability for each EEG segments. To obtain one prediction per EEG 86 

recording, we aggregated the predicted probabilities at the EEG-level using the median of the predicted 87 

values.  88 

Figure 1: Details of the DeepEpilepsy Transformer model. The EEG is first processed through the RandAugm algorithm with 
50% probability. A tokenizer is used (upper right: convolutional tokenizer) before positional encoding. The tokens are then input 
into a Transformer model. A MLP head classifies the embeddings from the Transformer according to the diagnosis of epilepsy. 
BN: Batch normalization; MLP: Multilayer perceptron; ReLU: Rectified linear unit. 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 14, 2025. ; https://doi.org/10.1101/2025.01.13.25320425doi: medRxiv preprint 

https://doi.org/10.1101/2025.01.13.25320425
http://creativecommons.org/licenses/by/4.0/


 7 

We further evaluated DeepEpilepsy in a specific subgroup of patients which were not yet diagnosed with 89 

epilepsy at the time of the index EEG (i.e., undergoing evaluation for suspected seizures). We also 90 

measured the performance bias across different subgroups: age groups (18–40, 40–60, and >60 years old), 91 

sex, presence of focal lesion, presence of IED (absence, presence, and uncertain), presence of slowing, 92 

and number of ASM (0, 1, ≥2).  93 

Analysis 94 

We calculated the AUROC using the probabilistic predictions for each model, with 95% confidence 95 

intervals estimated using DeLong’s method (single prediction by patient).24 For comparison, we tested the 96 

classification performance of IEDs alone (presence vs. absence). We also tested a two-step classification 97 

using IEDs first (traditional EEG interpretation), followed by DeepEpilepsy if IEDs were absent (DL 98 

interpretation).  99 

The optimal classification threshold was obtained using the validation cohort, minimizing the distance 100 

between the curve and the upper left corner of the ROC graph. This threshold was then applied to 101 

compute sensitivity, specificity, negative predictive value, and positive predictive value on the testing set. 102 

We performed an exploratory analysis of the embeddings learned by DeepEpilepsy and ShallowConvNet 103 

to better understand the patterns captured by both models (eMethods 2). 104 

Sample size 105 

Using Obuchowski’s method,25 with a 60% epilepsy prevalence, a power of 0.9, and a significance level 106 

of 0.0071 (adjusted from 0.05 divided by 7 DL models), a minimum of 126 EEGs is required to detect an 107 

AUROC of 0.70. 108 

Standard Protocol Approvals, Registrations, and Patient Consents 109 

Ethics approval was granted by the CHUM Research Centre’s Research Ethics Board (REB) (Montreal, 110 

Canada, project number: 19.334). The REB waived informed consent due to the lack of 111 
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diagnostic/therapeutic intervention and minimal risk to participants. All methods followed Canada’s Tri-112 

Council Policy statement on Ethical Conduct for Research Involving Humans.  113 

Code and Data Availability 114 

The code for the study will be available upon publication at the following address: 115 

https://gitlab.com/chum-epilepsy/dl_epilepsy_reeg. Anonymized data will be made available to 116 

qualified investigators upon reasonable request, conditional to the approval by our REB. The STARD 117 

checklist is provided as Supplementary material. 118 

Results 119 

Participants 120 

After exclusion, 948 EEGs from 846 patients were included: 820 EEGs in the training/validation set (728 121 

patients) and 128 EEGs in the testing set (118 patients), with no patient overlap. Before exclusion, 1,185 122 

EEGs from 1 067 patients and 161 EEGs from 149 patients met the inclusion criteria for the training and 123 

Figure 2: Flowchart of patients included in the testing cohort. 
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testing cohorts, respectively. Reasons for exclusion were absence of follow-up after the EEG, uncertain 124 

diagnosis at the end of available follow-up, seizure during the EEG, and wrong EEG type (i.e., performed 125 

in a hospitalized patient) (Figure 2). Median age were 49 and 51.5 (IQR: 32–62 and 30–62.5) and the 126 

proportion of women were 51% and 62.5% in the training and testing cohorts, respectively. Median 127 

follow-up was 2.2 years (IQR: 1.0–2.9) and 1.7 years (IQR: 0.9–2.3). Epilepsy prevalence was 63% in 128 

both sets. 129 

In the testing cohort, 75 patients (64%) had an uncertain diagnosis at the time of the EEG, 28 of which 130 

were eventually diagnosed with epilepsy. In the 47 others, the most common final diagnoses were 131 

syncope/faintness (11), dementia-related fluctuations (6), and non-specific sensitive symptoms (5). In 132 

EEGs from patients finally diagnosed with epilepsy, 10 showed IEDs and 6 had uncertain sharp transients 133 

(vs. 1 in patients without epilepsy). This subgroup is detailed in eTable 5. 134 
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Test Results 135 

The AUROC for the diagnosis of epilepsy in the testing cohort for every approach is pictured in Figure 3. 136 

For DeepEpilepsy, the AUROC was 0.76 (95%CI: 0.69–0.83). Using the threshold computed on the 137 

validation cohort (0.86), there were 75 true positives, 38 true negatives, 13 false positive, and 41 false 138 

negatives, equating to a sensitivity of 64.7%, a specificity of 74.5%, a positive predicted value (PPV) of 139 

85.2%, and a negative predictive value (NPV) of 48.1%. For comparison, when using the presence of 140 

IEDs on EEG (as per the EEG report) as the index test, the sensitivity is 37.0%, specificity is 100.0%, 141 

PPV is 100.0%, and NPV is 41.1%, with an AUROC of 0.69 (95% CI: 0.64–0.73). The AUROC of 142 

DeepEpilepsy was higher than any other method, although this was only statistically significant when 143 

compared to the ShallowConvNet models (AUROC: 0.60, 95%CI: 0.50–0.69). The diagnostic 144 

performances of all methods are shown in Table 2. 145 

Figure 3: Diagnostic performances of automated EEG analysis for the diagnosis of epilepsy. Our flagship model, DeepEpilepsy, 
is shown alone and combined with traditional EEG interpretation based on the identification of IED. The other novel approaches 
shown are ViTs and ConvNeXt using different configurations (size: small, large, huge; tokenizers: convolutional or linear; 
window size: 50 pt or 200 pt) as well as presence of RandAugm and the duration of EEG segments used as input. Previous 
methods are the ShallowConvNet,23 extraction of computational markers,21 and the presence of IEDs on EEG. AUROC: Area 
under the receiver operating characteristic curve; IED: interictal epileptiform discharges; ViT: Vision Transformers.  
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When using the two-step model as the index test (1: presence of IED classified as epilepsy, 2: if no IED: 146 

DeepEpilepsy models prediction), the AUROC was 0.83 (95%CI: 0.77–0.89; Figure 3). The sensitivity, 147 

specificity, PPV, and NPV were 73.2%, 74.5%, 86.7%, and 55.1%. 148 

Subgroup analyses 149 

In the subgroup of 77 patients not diagnosed with epilepsy at the time of the EEG, DeepEpilepsy still had 150 

above-chance performances (AUROC: 0.69, 95%CI 0.56–0.80), and the two-step model had the 151 

following performances: sensitivity of 65.6%, specificity of 76%, PPV of 63.6% and NPV of 77.6%, with 152 

an AUROC of 0.77 (0.65–0.87). The ROC curves for IEDs only, DeepEpilepsy, and DeepEpilepsy 153 

combined with IEDs for this subgroup are shown in Figure 4. 154 

Figure 4: ROC curves for IEDs only, DeepEpilepsy, and DeepEpilepsy combined with IEDs in the subgroup 
of patients not diagnosed with epilepsy at the time of the EEG (n = 77). AUROC: Area under the receiver 
operating characteristic curve; IED: interictal epileptiform discharges. 
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The results for other subgroups are presented in Figure 5. Notably, in absence of IEDs, AUROC was 0.74 155 

(0.65–0.83). Across other subgroups, performances were above chance except for patients > 60 years old 156 

and patients with a single antiseizure medication. 157 

Sample size analysis 158 

We trained the different neural network models on subsets of the data (50, 100, 250, 500, and 750 EEGs) 159 

to assess the impact of the size of the training sample on performance (Figure 6). With 10-second 160 

segments, the ShallowConvNet had highest performances when trained on 250 EEG recordings. The 161 

other models tended towards increased performances, with a ceiling at 500 EEGs. Using 30-second 162 

segments, the ShallowConvNet showed a slight increase in performances with increased training size, 163 

with a maximal AUROC of 0.6 at 750 EEGs. In contrast, the performance of the ConvNeXt and ViT 164 

models increased almost linearly with sample size, achieving the highest performances with 750 EEGs. In 165 

almost all cases, 500 EEGs was the minimal training size required to achieve above-chance performances. 166 

Figure 5: Performance of DeepEpilepsy for classification of epilepsy diagnosis from 
routine EEG in different subgroups of the testing set. ASM: Antiseizure medication; 
AUROC: Area under the receiver operating characteristic curve; IED: interictal 
epileptiform discharges. 
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For reference, using our segmentation strategy, 500 EEGs resulted in 765,000 10-second overlapping 167 

segments or 500,000 30-second overlapping segments. 168 

Relationship between learned representations and traditional EEG features 169 

We analyzed the band power and entropy of EEG segments in relation to their distribution in latent space 170 

of Deep Epilepsy and ShallowConvNet using a clustering algorithm. For band power, DeepEpilepsy 171 

produced clusters with higher variance in the high-frequency range (> 13 Hz), particularly in the 20–40 172 

Hz, 40–75 Hz, and 75–100 Hz bands. In contrast, ShallowConvNet exhibited relatively higher variance in 173 

the low-frequency range (< 10 Hz) (eFigure 2). Although DeepEpilepsy showed significant heterogeneity 174 

across all frequency bands, ShallowConvNet had non-significant analysis of variance in the 20–40 Hz 175 

Figure 6: Impact of training sample size on the performance of four deep learning models (ShallowConvNet, 
ConvNeXt, ViT1d, and DeepEpilepsy) for detecting epilepsy from EEG segments. Performance is measured by the 
AUROC score, with models trained on varying numbers of EEGs (50, 100, 250, 500, and 750). The models were 
trained on 10s (top row) and 30s (bottom row) overlapping EEG segments. AUROC: Area under the receiver 
operating characteristic curve; IED: interictal epileptiform discharges; ViT: Vision Transformers. 
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range (p = 0.24) Regarding entropy, both models showed significant heterogeneity across all frequencies, 176 

but ShallowConvNet displayed higher inter-cluster variance, especially for bands above 1.6 Hz, 177 

suggesting that this was a key feature learned by this model (eFigure 3). 178 

Discussion 179 

This study assessed the diagnostic performance of DL-based analysis of routine EEG for epilepsy. We 180 

developed and trained the DL models on 948 consecutive EEGs from 846 patients, testing them on a 181 

temporally shifted cohort of 128 EEGs from 118 patients. Our flagship model, DeepEpilepsy, had a 182 

testing AUROC of 0.76 (95%CI: 0.69–0.83), outperforming other methods including conventional IED-183 

based interpretation and previously proposed computational methods. Combining the presence of IEDs 184 

with DL analysis increased the AUROC to 0.83 (95%CI: 0.77–0.89), demonstrating a potential for 185 

clinical translation. 186 

Epilepsy diagnosis is primarily clinical, guided by individualized seizure recurrence risk assessment, 187 

which can be challenging due to limited reliable data.1 The identification of IEDs on rEEG is commonly 188 

used to support the diagnosis of epilepsy, but their low sensitivity and risk of over-interpretation can often 189 

lead to both over- or underdiagnosis.11 In our study, IEDs had an AUROC of 0.69 with a sensitivity as 190 

low as 37%. Our DL models provided higher overall diagnostic performances from the EEG than IEDs. 191 

Combining both approaches allowed to leverage the model’s higher sensitivity and the high specificity of 192 

IEDs. Currently, no definitive, quantitative, non-ictal biomarkers have been validated for clinical use.1 193 

Although several studies have explored changes in the EEG such as shifts in band power15,26,27 or changes 194 

in entropy,28,29 many remain at the “proof-of-concept” stage, limited by case-control designs or 195 

inadequate validation.13 More recent studies on computational analysis of EEG for the diagnosis of 196 

epilepsy have shown mixed results.12,30 Unlike prior work,13 our validation cohort corresponds to the 197 

group of patients in which the algorithm would be used in real-life, reducing bias in performance 198 

evaluation. Furthermore, the gold-standard in our study was based on a thorough review of clinical notes 199 
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with a median follow-up period of over two years, allowing the clinician to build a more complete clinical 200 

picture integrating seizure recurrence, imaging, video-EEG evaluations, or new clinical symptoms. This is 201 

in contrast with studies that based the diagnosis on the EEG report or a single clinical visit.13 These 202 

methodological strengths reduce bias and represent key steps towards the clinical integration of 203 

automated EEG analysis.13 204 

DeepEpilepsy is based on the Transformer architecture,31 which has greatly advanced our capacity to 205 

model sequence data. Transformers have been adapted for EEG-based tasks such as eye-tracking,32 206 

seizure prediction,33,34 and decoding of motor patterns.35 A critical component in adapting Transformers to 207 

EEG is the tokenization method, which influences feature extraction and the timescales captured by the 208 

model. Previous studies have used separable convolutions as the tokenizer,37,40 a popular approach in EEG 209 

models since the ShallowConvNet and EEGNet CNNs.17,41 However, in our early experiments, we found 210 

this approach underperformed and was inefficient, leading us to discard it. In contrast to the original ViT 211 

model, which “patchified” the input signal with a linear, non-overlapping tokenizer,25 we showed that a 212 

deep convolutional embedding results in higher performances. This improvement is likely due to the 213 

convolution’s inductive bias towards hierarchical dynamics across timescales and spatial scales.42 The 214 

discrepancies between our findings and previous studies on Transformer-based EEG models probably 215 

arise, in part, from dataset size and complexity: our training dataset included over 1 million samples from 216 

more than 900 patients, while prior studies used significantly smaller training samples (15 000–80 000 217 

segments from 23–70 patients37–39,43) as well as shorter EEG segments (up to 50 000 points,37–39,43 218 

compared to our 114,000 points per segment). 219 

A notable advantage of Transformers over CNNs is their scalability. DeepEpilepsy showed continual 220 

improvement as the size of the training sample increased, without hitting a performance ceiling. Recent 221 

studies have further demonstrated CNNs’ limitations in scaling to large EEG datasets.44 The absence of a 222 

performance ceiling in DeepEpilepsy suggests potential for further improvements with larger datasets, 223 

motivating multicenter collaborations to expand the training sample. 224 
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Unlike other approaches to automated EEG interpretation,19,20 DeepEpilepsy did not rely on IEDs. We 225 

hypothesize that DeepEpilepsy’s capacity to detect epilepsy may be linked to changes in the higher 226 

frequency spectrum (40–100 Hz). The gamma range hosts high-frequency oscillations (HFOs). While 227 

they may have a prognostic value in patients with refractory temporal lobe epilepsies,37,38 HFOs are not 228 

captured by our frequency range. All models performed better with longer EEG segments (30s), a 229 

timescale typically outside of the scope of routine EEG interpretation, suggesting that the models may 230 

capture brain dynamics not traditionally considered and warranting further investigations. 231 

Integrating DL models like DeepEpilepsy in the clinical workflow could enhance clinical decision-232 

making by the increasing the information available in case of diagnostic uncertainty. For example, a 233 

positive prediction by the model in a patient with neurological events of uncertain significance and 234 

negative workup (no IEDs on EEG, no epileptogenic lesion on MRI) could increase the suspicion of 235 

epilepsy, prompting to more frequent follow-ups or repeat EEGs. Conversely, a patient with a low pre-test 236 

probability of epilepsy, absence of IEDs and a negative DL prediction could reduce clinical suspicion. 237 

Most likely, combined with advances in other domains such as text processing, imaging and genetics,44–46 238 

the automated EEG analysis will lead to a more comprehensive phenotyping of these patients and 239 

potentially lead to quantifying the seizure likelihood. This could also improve clinical trials in epilepsy, 240 

which are currently limited by self-reported and unreliable outcome measures.4,47 241 

This study has limitations. Our data comes from a single center, and although routine EEG recording is 242 

standardized, variability in hardware, software, and technique may affect generalizability. Additionally, at 243 

our center, patients with a first unprovoked seizure presenting at the emergency department generally 244 

undergo their EEG there and not as outpatient, limiting their inclusion in our cohort. Another limitation is 245 

the use of the EEG report as a measure of whether an EEG contains IEDs, which could be biased as EEG 246 

readers are not blinded to the diagnosis. However, for patients which were “undiagnosed” at the time of 247 

the EEG, the limitation does not apply. Finally, subgroup analyses were limited by the relatively small 248 

sample size. 249 
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In conclusion, this study demonstrates that DeepEpilepsy, a Transformer model, could identify epilepsy 250 

on routine EEG independently of IEDs. The DL algorithm alone had an AUROC of 0.76, surpassing 251 

previously proposed methods, which was increased to 0.83 when combined with IEDs. Several questions 252 

remain such as the exact nature of brain dynamics captured by DeepEpilepsy, the optimal sample sizes for 253 

training the model, and the true clinical impact of this increased diagnostic yield in specific clinical 254 

settings. 255 
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Figures: Titles and Legends 

Figure 1: Details of the DeepEpilepsy Transformer model. The EEG is first processed through the 

RandAugm algorithm with 50% probability. A tokenizer is used (upper right: convolutional tokenizer) 

before positional encoding. The tokens are then input into a Transformer model. A MLP head classifies 

the embeddings from the Transformer according to the diagnosis of epilepsy. BN: Batch normalization; 

MLP: Multilayer perceptron; ReLU: Rectified linear unit. 

Figure 2: Flowchart of patients included in the testing cohort. 

Figure 3: Diagnostic performances of automated EEG analysis for the diagnosis of epilepsy. Our flagship 

model, DeepEpilepsy, is shown alone and combined with traditional EEG interpretation based on the 

identification of IED. The other novel approaches shown are ViTs and ConvNeXt using different 

configurations (size: small, large, huge; tokenizers: convolutional or linear; window size: 50 pt or 200 pt) 

as well as presence of RandAugm and the duration of EEG segments used as input. Previous methods are 

the ShallowConvNet,23 extraction of computational markers,21 and the presence of IEDs on EEG. 

AUROC: Area under the receiver operating characteristic curve; IED: interictal epileptiform discharges; 

ViT: Vision Transformers. 

Figure 4: ROC curves for IEDs only, DeepEpilepsy, and DeepEpilepsy combined with IEDs in the 

subgroup of patients not diagnosed with epilepsy at the time of the EEG (n = 77). AUROC: Area under 

the receiver operating characteristic curve; IED: interictal epileptiform discharges. 

Figure 5: Performance of DeepEpilepsy for classification of epilepsy diagnosis from routine EEG in 

different subgroups of the testing set. ASM: Antiseizure medication; AUROC: Area under the receiver 

operating characteristic curve; IED: interictal epileptiform discharges. 
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Tables 

Table 1: Description of the training (EEG recordings between January 2018 and July 2019) and testing 
cohorts (EEG recordings between July and September 2019) 
 Training/validation cohort (n = 820) Testing cohort (n = 128) 
 Epilepsy No Epilepsy Epilepsy No Epilepsy 
Number of EEGs 517 303 81 47 
Sex = woman (%) 259 (50.1) 159 (52.5) 54 (66.7) 26 (55.3) 
Age (median [IQR]) 42.00 [29.00, 

58.00] 
57.00 [41.00, 67.00] 37.00 [25.00, 

57.00] 
60.00 [50.50, 71.00] 

Total follow-up after EEG in 
weeks (median [IQR]) 

133.50 [95.75, 
173.00] 

59.00 [17.00, 116.00] 99.50 [70.25, 
125.00] 

62.00 [17.00, 
102.00] 

Epilepsy type (%) 
  

  
   Focal 370 (71.6) – 49 (60.5) – 
   Generalized 119 (23.0) – 26 (32.1) – 
   Unknown 28 (5.4) – 6 (7.4) – 
Age of epilepsy onset (median 
[IQR]) 

22.00 [13.00, 
40.00] 

– 23.00 [14.00, 
48.00] 

– 

Seizure recurrence after EEG (%) 269 (52.0) 0 (0.0) 44 (54.3) 0 (0.0) 
Number of days since last seizure 
(median [IQR]) 

237 [56, 1134] – 118 [44, 467] – 

Number of epilepsy risk factors 
(median [IQR]) 

3 [1, 4] 2 [1, 4] 2 [1, 3] 1 [0, 3] 

History of epilepsy surgery (%) 60 (11.6) 0 (0.0) 4 (4.9) 0 (0.0) 
Number of ASM (%)     
   0 55 (10.6) 253 (83.5) 17 (21.0) 42 (89.4) 
   1 280 (54.2) 36 (11.9) 34 (42.0) 5 (10.6) 
   2 123 (23.8) 12 (4.0) 19 (23.5) 0 (0.0) 
   3 47 (9.1) 2 (0.7) 6 (7.4) 0 (0.0) 
   4 10 (1.9) 0 (0.0) 5 (6.2) 0 (0.0) 
   5 2 (0.4) 0 (0.0) 0 (0.0) 0 (0.0) 
Focal lesion on brain imaging (%) 223 (43.1) 84 (27.7) 31 (38.3) 10 (21.3) 
Sleep deprived EEG (%) 62 (12.0) 50 (16.5) 22 (27.2) 8 (17.0) 
IED (%)     
   Absence 333 (64.4) 282 (93.1) 42 (51.9) 46 (97.9) 
   Presence 139 (26.9) 2 (0.7) 30 (37.0) 0 (0.0) 
   Uncertain 45 (8.7) 19 (6.3) 9 (11.1) 1 (2.1) 
Abnormal slowing on EEG (%) 199 (38.5) 46 (15.2) 32 (39.5) 10 (21.3) 
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Table 2: Classification performances on the testing set for all machine learning methods 

 
Segment duration (s) RandAugment AUC 

DeepEpilepsy 30 False 0.77 (0.69--0.84) 
DeepEpilepsy 30 True 0.76 (0.68--0.83) 
ViT1d, Conv tokenizer, small 30 True 0.75 (0.68--0.83) 
ViT1d, Conv tokenizer, small 30 False 0.74 (0.66--0.82) 
DeepEpilepsy 10 True 0.74 (0.66--0.81) 
DeepEpilepsy 10 False 0.73 (0.64--0.81) 
ConvNeXt, large 30 True 0.73 (0.65--0.81) 
ViT1d, Linear tokenizer, large 30 False 0.73 (0.65--0.80) 
ViT1d, Conv tokenizer, small 10 True 0.72 (0.64--0.80) 
ViT1d, Linear tokenizer, large 10 True 0.72 (0.64--0.80) 
ViT1d, Linear tokenizer, large 30 True 0.72 (0.64--0.80) 
ViT1d, Conv tokenizer, small 10 False 0.72 (0.64--0.80) 
ConvNeXt, small 30 True 0.71 (0.63--0.80) 
ViT1d, Linear tokenizer, small 30 True 0.71 (0.63--0.79) 
ConvNeXt, huge 30 True 0.71 (0.62--0.79) 
ConvNeXt, huge 30 False 0.70 (0.61--0.78) 
ConvNeXt, large 30 False 0.70 (0.62--0.78) 
ViT1d, linear tokenizer, small 30 False 0.70 (0.61--0.78) 
ConvNeXt, small 30 False 0.70 (0.61--0.78) 
Feature extraction with LightGBM 30 --- 0.69 (0.60--0.78) 
ViT1d, Linear tokenizer, large 10 False 0.69 (0.60--0.76) 
Feature extraction with LightGBM 10 --- 0.68 (0.59--0.77) 
ViT1d, linear tokenizer, small 10 True 0.68 (0.59--0.76) 
ConvNeXt, huge 10 False 0.67 (0.58--0.76) 
ConvNeXt, huge 10 True 0.67 (0.58--0.75) 
ViT1d, linear tokenizer, small 10 False 0.67 (0.58--0.75) 
ConvNeXt, small 10 True 0.67 (0.58--0.76) 
ConvNeXt, large 10 False 0.66 (0.58--0.75) 
ConvNeXt, small 10 False 0.65 (0.57--0.74) 
ConvNeXt, large 10 True 0.65 (0.56--0.73) 
ShallowConvNet 30 False 0.60 (0.49--0.69) 
ShallowConvNet 10 True 0.57 (0.47--0.67) 
ShallowConvNet 30 True 0.56 (0.46--0.66) 
ShallowConvNet 10 False 0.42 (0.32--0.51) 
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