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2 

Abstract 19 

Background. Stroke is a condition marked by considerable variability in lesions, recovery trajectories, and 20 

responses to therapy. Consequently, precision medicine in rehabilitation post-stroke, which aims to deliver 21 

the “right intervention, at the right time, in the right setting, for the right person,” is essential for 22 

optimizing stroke recovery. Although Artificial Intelligence (AI) has been effectively utilized in other 23 

medical fields, such as cancer and sepsis treatments, no current AI system is designed to tailor and 24 

continuously refine rehabilitation plans post-stroke.  25 

Methods. We propose a novel AI-based decision-support system for precision rehabilitation that uses 26 

Reinforcement Learning (RL) to personalize the treatment plan. Specifically, our system iteratively adjusts 27 

the sequential treatment plan—timing, dosage, and intensity— to maximize long-term outcomes based on 28 

a patient model that includes covariate data (the context). The system collaborates with clinicians and 29 

people with stroke to customize the recommended plan based on clinical judgment, constraints, and 30 

preferences. To achieve this goal, we propose a Contextual Markov Decision Process (CMDP) framework and 31 

a novel hierarchical Bayesian model-based RL algorithm, named Posterior Sampling for Contextual RL 32 

(PSCRL), that discovers and continuously adjusts near-optimal sequential treatments by efficiently 33 

balancing exploitation and exploration while respecting constraints and preferences.  34 

Results. We implemented and validated our precision rehabilitation system in simulations with a 35 

sequence of 100 diverse, synthetic patients. Simulation results showed the system ability to continuously 36 

learn from both upcoming data from the current patient and a database of past patients via Bayesian 37 

hierarchical modeling. Specifically, the algorithm’s sequential treatment recommendations became 38 

increasingly more effective in improving functional gains for each patient over time and across the 39 

synthetic patient population. 40 
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Conclusions. Our novel AI-based precision rehabilitation system based on contextual model-based 41 

reinforcement learning has the potential to play a key role in novel learning health systems in 42 

rehabilitation. 43 

 44 

Keywords: Stroke. Neurorehabilitation. Precision rehabilitation. Reinforcement learning.  Patient model. 45 

Digital twin. Bayesian modeling. 46 

 47 

Background 48 

Despite extensive rehabilitation research, including multiple multi-site randomized clinical trials, about 49 

40% of the 800,000 people who suffer a stroke in the US each year show limited recovery of upper 50 

extremity (UE) function, restricting daily activities and the quality of life(1-3).  The challenge of 51 

determining optimal rehabilitation based on an individual's clinical profile is one of the most challenging 52 

questions in stroke rehabilitation(4).  Precision rehabilitation, defined as the “right intervention, at the 53 

right time, in the right setting, for the right person,” (5, 6) has been proposed as a solution to improve UE 54 

function. However, as we review below, delivering true precision rehabilitation, that is, determining the 55 

optimal sequential treatment plan that maximizes long-term outcomes for each patient, is difficult even for 56 

experienced clinicians because of the huge number of potential plans given the multiple scheduling factors 57 

that modulate recovery, the high between-patient variability, and the multiple scheduling constraints.  58 

Here, we therefore propose a collaborative Artificial Intelligence (AI) precision rehabilitation system for 59 

stroke survivors with upper extremity (UE) deficits that uses model-based Reinforcement Learning (RL). 60 

Such model-based RL systems are being deployed in precision medicine, for instance, for cancer and 61 

sepsis treatments (7-10). However, no AI system exists to personalize and continuously refine 62 
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rehabilitation treatment plans post-stroke.  The collaborative AI system iteratively adjusts and 63 

recommends the plan—timing, dosage, intensity—of UE task practice based on the patient’s profile to 64 

enhance long-term outcomes; clinicians and patients can customize the recommended plan based on 65 

clinical judgment, constraints, and preferences. The system’s overall output is a personalized long-term 66 

(e.g. 6-month) treatment plan updated at each clinician-patient session. The system is self-improving both 67 

at the patient and population level: as the model is updated from a growing database, the treatment 68 

recommendations become increasingly effective in improving functional gains for each patient over the 69 

treatment horizon (i.e., duration) and across the patient population.  70 

Organization 71 

This paper is organized as follows: First, we review prior research demonstrating that optimizing the 72 

longitudinal rehabilitation plan is essential for achieving the best outcomes post-stroke. However, given 73 

the multiple scheduling factors that modulate recovery, the high between-patient variability, and the 74 

multiple scheduling constraints, we argue that clinician expertise alone is insufficient to determine 75 

optimal rehabilitation plans for each patient. Second, we propose to address these challenges with a new 76 

framework for collaborative AI precision rehabilitation based on contextual model-based RL, where the 77 

context is the set of individual factors that modulate recovery. Third, given the uncertainty in the patient 78 

model, context, and scheduling constraints, we propose a novel algorithm for precision rehabilitation, 79 

Posterior Sampling for Contextual Reinforcement Learning (PSCRL), which generates increasingly better 80 

personalized treatment plans as the database grows. Fourth, to illustrate the functioning of the algorithm, 81 

we propose a realistic scenario of precision rehabilitation for dose scheduling.  Fifth, we present 82 

simulation results to illustrate how the treatment plan continuously improves via both within-patient and 83 

between-patient learning. Finally, we discuss related work, limitations, and future clinical implementation. 84 
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The challenges of determining the treatment plan in precision rehabilitation  85 

We limit our AI-based precision rehabilitation system to the scheduling of UE motor rehabilitation post-86 

stroke, which is sequential and delivered over months. Such a system assumes that optimizing the 87 

individual rehabilitation plan matters. We review four types of challenges. First, stroke recovery depends 88 

on time-varying (dynamical) processes operating at different time scales modulated by treatment 89 

parameters. Second, the effects of treatment depend on multiple individual factors, which we collectively 90 

call the “context,” that need to be considered for personalizing the rehabilitation plan. Third, not all 91 

treatments are possible; instead, they are constrained by clinical constraints, logistic constraints, and 92 

personal preferences, which we collectively call “constraints.” Finally, given the sequential nature of 93 

rehabilitation over extended periods, the number of rehabilitation plans is very large. Thus, determining 94 

the plan that maximizes long-term outcomes, given the scheduling parameters, the individual differences, 95 

and the constraints, can be best achieved by an AI system in collaboration with the clinician. 96 

The dynamical processes of recovery post-stroke are modulated by treatment parameters 97 

Stroke recovery operates via multiple time-dependent processes. The initial changes in sensorimotor 98 

behavior largely result from “spontaneous recovery”, which involves the reduction in edema, ischemic 99 

penumbra, and brain re-organization(11, 12), and is the greatest in the first month but continues for up to 100 

6 months(13, 14). Then, motor practice can further improve sensorimotor behavior via neural plasticity 101 

mechanisms(15). However, practice affects recovery in a complex manner, with the following treatment 102 

parameters influencing the effectiveness of practice post-stroke. 1) The dose of rehabilitation, whereby 103 

high doses consisting of 1000s of trials delivered over days of practice, leads to structural and stable 104 

changes in brain areas involved in recovery(15) and to greater functional improvements(16-20).  2) The 105 

intensity of practice, whereby high daily doses enhance synaptic plasticity(15) that facilitates recovery(21, 106 
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22).  3) The timing of rehabilitation is important as motor practice that is too early or too late has been 107 

associated with worse outcomes(23, 24),(12, 25),  indicating a critical “window of plasticity” (11, 12, 16, 17, 108 

23-26), which is about 30 to 90 days for UE function in humans(27). In addition, intensive initial practice 109 

increases the probability of habit formation of motor training and, thus, long-term perseverance(28). 4) 110 

The distribution of practice is often needed (29) because a lack of sustained practice results in decreased 111 

activity in relevant motor areas(15) and loss of the gains due to rehabilitation (30).  In addition, distributed 112 

practice enhances long-term performance compared to massed practice in motor learning in healthy(31) 113 

and stroke(32) populations.  5) Finally, the amount of UE use in daily activities, if above a threshold, can 114 

act as “self-training” (33-35), increasing future use and function(36, 37).   115 

This prior research, therefore, shows that to maximize long-term outcomes, the rehabilitation plan needed 116 

to optimize recovery cannot be uniform or follow some simple predefined schedule but instead needs to 117 

be carefully crafted throughout rehabilitation in terms of dosage, intensity, timing, and distribution over 118 

time to maximize long-term gains.  119 

The context associated with the variability of response to treatment 120 

Stroke is characterized by large variability in lesions, impairments, and response to recovery(38, 39). 121 

Individuals post-stroke show highly variable responses, even to the same treatment. For instance, in re-122 

analyses of the EXCITE(24) and DOSE(20) trials data, we found that about one-fourth of participants 123 

continued to see improvements following rehabilitation, and another one-fourth lost most gains(35, 40). 124 

The following characteristics have been shown to modulate the effect of rehabilitation: 1) lacunar and non-125 

lacunar strokes(41); 2) baseline clinical scores(29, 42); 3) the side of lesion(43); 4) the integrity of the 126 

ipsilesional corticospinal tracts(41, 44-47); 5) somatosensory deficits(48-51) and 6) deficits in the integrity 127 

of visuospatial working memory(52), which we showed modulates the effect of massed but not distributed 128 
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practice in chronic stroke(32).a
 Therefore, the treatment plan needs to be individualized to account for the 129 

individual level clinical factors that are known to modulate the effect of treatment.  130 

The constraints on possible treatments plans 131 

Because clinical and logistic constraints as well as patient preferences limit the plans that can be delivered, 132 

not all treatment plans are possible. Clinical constraints include high activity-dependent fatigability(57), 133 

reduced attention soon after stroke, limited UE function before sufficient spontaneous recovery, and other 134 

medical conditions (e.g., shoulder pain, depression). Logistic constraints include patient schedule changes 135 

(e.g., vacations), socioeconomic and interpersonal needs, and reimbursement needs. Finally, patient 136 

preferences in scheduling and task practice are important to maximize motivation and even gains in 137 

rehabilitation. For instance, providing choices of task practice has been shown to increase gains in motor 138 

learning and rehabilitation57  and increase engagement and adherence(58, 59).   Thus, the treatment plan 139 

must consider scheduling constraints, which we classify into clinical constraints, logistical constraints, and 140 

patient preferences.   141 

The current limitations in optimizing the treatment plan 142 

The current state-of-the-art in scheduling of task-oriented motor therapy to maximize recovery is based on 143 

the clinician’s knowledge and experience.  Via both formal and continuing education, clinicians learn what 144 

treatment plan “works” best for sub-types of patients. As they treat patients and observe progress, 145 

 

a Other neural factors include such as transcallosal tract integrity, ipsilesional motor cortex activity, and connectivity between motor and 

premotor cortex (41, 45, 53-56). However, we note that identifying these factors requires TMS, EEG, or research-grade MRIs, which are often 

unavailable in routine care. 
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clinicians gradually build a mental model of effective treatment plans for different sub-types of patients.  146 

However, as reviewed above, the nuances of the effect of scheduling parameters on recovery at different 147 

times post-stroke, the considerable between-patient variability, and all possible constraints make it hard to 148 

predict how patients will respond to different treatment plans and then nearly impossible to select the 149 

most effective treatment plans. Indeed, the number of potential treatment plans is huge.  For instance, 150 

even the seemingly simple task of deciding whether to treat or not each week for 6 months results in ~67 151 

million treatment plans.  Thus, it is currently not feasible to determine the treatment plan that will 152 

maximize recovery for each patient. Here, we propose that a collaborative AI-based system can help the 153 

clinician-patient team determine effective treatment plans.  154 

Methods 155 

Addressing the challenges of precision rehabilitation with Contextual Model-156 

based Reinforcement Learning  157 

Precision rehabilitation as an RL problem in a Markov Decision Process (MDP) 158 

Although ad-hoc rehabilitation plans can be determined, we propose a structured theoretical framework 159 

for optimizing rehabilitation treatments using Reinforcement Learning (RL). Precision rehabilitation can 160 

be viewed as a decision-making problem in which the clinician-AI team interact with a person with stroke 161 

sequentially with the goal of determining treatment plans that maximize sensorimotor outcomes. The 162 

quality of treatments can be measured by longitudinal rehabilitation outcomes, which are stochastic and 163 

partly controllable, i.e., the outcomes are influenced but not fully determined by the treatment.  164 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 15, 2025. ; https://doi.org/10.1101/2025.01.13.24319196doi: medRxiv preprint 

https://doi.org/10.1101/2025.01.13.24319196
http://creativecommons.org/licenses/by-nc-nd/4.0/


9 

An appropriate and well-studied framework for such a decision-making problem is the Markov Decision 165 

Process (MDP) in the RL literature(60, 61).  An MDP consists of four primary components ��, �, �, ��, 166 

where � is a set of states, � is a set of actions (i.e., treatments), � is a (hidden) transition function such that 167 

����|�, 
� gives the probability of transitioning from state � � �  to state �
 � � given action 
 � �, and 168 

reward function � is such that ���, 
, �
� is the reward received when action 
 is performed in state � and 169 

leads to a transition into state �’.  In the rehabilitation case, the states are motor “memories” on which the 170 

outcomes will depend, the actions refer to the dose and type of rehabilitation at a given timestep, the 171 

transition function is equivalent to the patient (dynamics) model that describes the person’s response to 172 

treatment, and the reward function generates the reward (i.e., a positive reinforcement signal) given to the 173 

agent that quantifies the goodness of the chosen treatment at each timestep. 174 

As a branch of AI, RL aims to design an agent (i.e., an autonomous decision-maker) that can learn to act 175 

optimally in an unknown "environment” commonly modeled by an MDP. The optimal actions maximize 176 

the instantaneous and total future rewards (in expectation). For precision rehabilitation, the goal of an RL 177 

agent is to learn an individualized, reward-maximizing treatment policy (i.e., a protocol for selecting 178 

treatments contingent on the patient’s clinical state), where the reward function is customized by the 179 

clinician and the patient based on the desired long-term outcomes. The learning process in an MDP is 180 

interactive: the agent tries different treatments, the patient generates a reward signal, and the agent 181 

adjusts its strategy intelligently to make sure that better treatments are more likely to be selected.  182 

To address the specific challenges of precision rehabilitation post-stroke outlined in Background, we 183 

propose a novel AI-agent based on contextual model-based RL with four key elements. The RL agent1) 184 

utilizes an interpretable, dynamical, Bayesian patient model that takes into account the time-varying 185 

(dynamical) processes of stroke recovery at different time scales modulated by treatment decisions (item 186 
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○1  in Figure 1), 2) performs patient model update via contextual and hierarchical modeling (item ○2  in 187 

Figure 1), 3) takes into account constraints and personal preferences (item ○3  in Figure 1), and  4) plans a 188 

sequential treatment with respect to the context, constraints, and uncertainties in the patient model (item 189 

○4  in Figure 1). Each component is described in the next four sections. 190 

 191 

Interpretable, dynamical, Bayesian patient model for precision rehabilitation 192 

Feasible implementation of RL for precision rehabilitation requires a patient model that forecasts (“predict 193 

some future condition as a result of study and analysis of available pertinent data”(62)) functional 194 

Constraints 

(clinical, logistical, 

preferences)

Clinician & patient

Recommended 

treatment plan

Data from other patients

Candidate treatment plans

Predicted 

Outcomes

Patient

engages in motor practice

  Treatment 

Planner

4
Patient 

model

1

Repeated 

measures

Context

(lesion, 

clinical,

demog.)

Patient data

Lesion

Covariates

Outcomes 

Practice (sensors)

2

3

AI Agent

 

Figure 1. The collaborative AI precision neurorehabilitation system has four main components: (1) a patient model 

informed by (2) contextual data from the current and other patients, (3) constraints and preferences as determined by 

the clinician and the patient, and (4) a treatment planner based on PSCRL, i.e., Posterior Sampling for Contextual 

Reinforcement Learning. The patient model and the treatment planner form the AI agent that is capable of 

autonomously proposing treatment plans that maximize the predicted outcomes. Note that the image showing the 

“Clinician & Patient” is not an image of real people but is an artificially generated cartoon
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outcomes accurately and precisely during the subacute to chronic phases, given the current state and 195 

action. Unlike in model-free RL, in which a control policy is directly learned via slow trial and error, in 196 

model-based RL, the system learns a model of the environment (i.e., transition probabilities and reward 197 

functions) via (efficient) supervised learning and then solves the MDP using this learned model. Because 198 

model-based RL requires fewer interactions with patients to identify good policies, model-based RL is 199 

preferred in medical applications (7-10, 63).  (For instance, there could be as little as one interaction 200 

between the AI system and the patient every two weeks, whereas 10,000s of interactions would be needed 201 

in a model-free approach).  202 

A second significant advantage of model-based RL is the possibility of interpretability of the decision-203 

making process. Although “black box” models, such as recurrent neural networks, could be used for 204 

patient modeling, mechanistic, interpretable, “grey box” models (i.e., with a structure that is motivated by 205 

theory and the parameters estimated from patient data) can be developed to explicitly account for the 206 

time-varying processes of stroke recovery, where the dosage, intensity, and timing of practice modulate 207 

recovery (see Background section). For instance, in previous work (29), we used state-space modeling to 208 

forecast UE functional outcomes for chronic stroke that included a) the intensity of practice (e.g., the daily 209 

dose, constrained by the total dose) as input to account for gain in function due to motor training, b) a 210 

“forgetting” term to account for the need of distributed practice, and c) a non-linear “self-training” term to 211 

account for the dose of UE use in daily activities.  Analysis of the parameters in such interpretable models 212 

can help the clinician make informed decisions about therapy. For instance, in our previous model, if the 213 

estimated forgetting rate is high, more frequent “booster” sessions need to be scheduled. An updated 214 

model for all phases of stroke recovery, from acute to chronic, would include a critical window that 215 

modulates training effectiveness as a function of time since stroke and a spontaneous recovery term.   216 
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Finally, because the RL agent must select treatment plans that account for the uncertainty of recovery post-217 

stroke, the patient model needs to quantify uncertainty in long-term predictions, e.g., by providing 218 

credible intervals for future outcome assessments given a treatment plan. Bayesian modeling provides a 219 

principled framework for uncertainty quantification and for incorporating prior knowledge (when 220 

available, e.g., from similar patients in a database) to reduce such uncertainties in the predictions.  221 

Contextual and hierarchical modeling to leverage data from other patients 222 

Because post-stroke response to treatment largely depends on individual characteristics (see Background), 223 

the RL agent must find individualized treatment policies. In a typical model-based RL application, such as 224 

robot control, the model is typically well-identified and identical across all instances of the controlled 225 

system (e.g., the robots). In contrast, humans show large inter-individual variations, which are further 226 

magnified by the variability of the stroke. Therefore, we propose a Contextual MDP(64) (CMDP) 227 

framework for precision rehabilitation. CMDP can be seen as a collection of (individual level) MDPs 228 

connected by contexts (lesion, etc.; Item ○2 -Context in Figure 1). The context is an arbitrary set of 229 

measured covariates (e.g., type of stroke, see above) that partially explains individual differences in 230 

outcomes. CMDP assumes context-dependent dynamics (i.e., the patient’s outcomes trajectory partially 231 

depends on the context) and is thus suitable for modeling multi-patient, heterogenous rehabilitation 232 

data(65).  For instance, the context can be included in the hierarchical patient model by linearly (or non-233 

linearly) influencing the gains due to motor training. 234 

A difficulty in forecasting neurorehabilitation outcomes, however, is that for a new patient, there is 235 

initially no (or little) data to estimate the effect of motor therapy, and the variance of the predictions may 236 

be large. As in our previous work, we therefore consider a hierarchical Bayesian model to refine the initial 237 

predictions via population level “hyper-parameters” that allows information sharing from past, similar 238 
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patients (29). Crucially, the hyper-parameters are used to construct informed prior distributions for 239 

individual level parameters when predicting the response of a patient early in therapy. This hierarchical 240 

model is trained with repeated data from sensors and clinical assessments, baseline contextual data from 241 

the current patient and an expanding patient database (see Figure 1).   242 

Treatment constraints and preferences limit the range of possible treatments 243 

Treatment plans must take into account clinical and logistical constraints as well as personal scheduling 244 

preferences (Item ○3  in Figure 1). Thus, we consider finding an optimal constrained treatment policy in a 245 

CMDP with respect to, for instance, realistic constraints such as a long-term rehabilitation budget (i.e., the 246 

total dose that can be administered throughout the longitudinal treatment), a stepwise dose limit (e.g., at 247 

most two therapy sessions per week). This leads to a novel constrained RL problem in a CMDP with 248 

unknown individualized dynamics. Most constraints and preferences (e.g., a dose limit per week and 249 

scheduling restrictions due to time conflict) can be handled through a time-varying action set, which 250 

reduces the search space for an optimal treatment plan. However, special care is required for an RL 251 

algorithm to strictly adhere to the long-term constraints (e.g., the total dose). In this work, we propose a 252 

budgeted dynamic programming method that plans according to both the patient's state and the 253 

remaining budget to solve the long-term planning problem. 254 

Via the collaborative nature of our AI system (see Figure 1), the clinician and patient can input “hard” 255 

constraints, such as the minimum or maximum daily distal and proximal arm practice doses every two 256 

weeks, and, if needed, “soft” constraints, such as the weights of the reward function. For instance, in 257 

preliminary simulations (see below), the reward is the sum of the outcomes at 6 months plus the mean 258 

outcome until then with equal weighting. This can be adjusted, for instance, for more emphasis on long-259 

term outcomes or specific treatment goals (i.e., emphasis on distal vs proximal arm functions). After the 260 
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adjustments, the algorithm will be rerun, and the clinician will be able to visualize the proposed plan and 261 

forecasted outcomes and modify it as desired. 262 

A treatment planner that accounts for uncertainty in the patient model, context, and constraints 263 

We consider the RL problem in CMDP, focusing on the uncertainties of the individualized model and the 264 

update of this model. We propose a novel self-improving treatment planner (Item ○4 , in Figure 1) based on 265 

the Posterior Sampling for Contextual Reinforcement Learning (PSCRL) algorithm for solving the RL 266 

problem in CMDP. PSCRL is a model-based algorithm that tackles the challenges of precision 267 

rehabilitation by combining Bayesian hierarchical modeling and planning under constraints. PSCRL 268 

belongs to a family of algorithms following Thompson sampling (66, 67) (68), which exhibits strong 269 

empirical performance and theoretical guarantees in various RL settings, including recent medical 270 

applications (69-72). Briefly, at each step, PSCRL updates a posterior distribution over individual level 271 

MDPs, takes one sample from this posterior, and optimizes treatment for this specific patient model. This 272 

posterior-sampling behavior tackles the tradeoff between exploration and exploitation. Early in learning, 273 

as the model is uncertain, with wide parameter distributions, rehabilitation plans are varied. Late in 274 

learning, as uncertainty decreases, the plans are closer to optimal.  Once a specific model instance is 275 

selected via sampling, we apply a planning algorithm (such as dynamic programming in our simulation 276 

study below). To account for budget constraints, our treatment plans select treatments with respect to both 277 

the current patient state and the remaining budget. In the following, we describe PSCRL in the context of 278 

stroke rehabilitation.  279 

Formal description of the RL algorithm for dose scheduling 280 

To illustrate the functioning of our AI-based precision rehabilitation system, we introduce the CMDP 281 

formulation for a simple dose optimization problem of a generic upper extremity treatment with finite 282 
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dosing options, which represents the hours of rehabilitation therapy with realistic scheduling constraints. 283 

We defer the technical details to Supplementary Material A. We then describe the PSCRL algorithm to 284 

solve this problem.  285 

Notations. We first define necessary notations for formalizing the sequential dose optimization problem. 286 

For any positive integer �, we define ��� � �1,2, … , 
�. For any two positive integers 
 � �, we use the 287 

shorthand 
: � � �
, 
 � 1, … , ��. We denote an ordered collection of values (or random variables) by 288 

applying this notation in subscript. For instance, we write ��,�:� � ���,�, ��,�, … , ��,�� to denote a sequence of 289 

states for patient  � � � until timestep � � �. For � arbitrary real numbers ��, �� , … , �� , we also use 290 

��:� � ���, ��, … , ��� to denote a �-dimensional vector, i.e., ��:� � �� . 291 

Description of the Precision Rehabilitation scenario. We consider a scenario in which a clinician-AI team 292 

treats, in sequence, a cohort of � patients post-stroke. Each patient receives rehabilitation treatments over 293 

a fixed treatment horizon (e.g., 6 months) containing � discrete timesteps (e.g., each timestep is two 294 

weeks). Upon patient intake, the clinician-AI team observes a ��-dimensional context �� � ���  that 295 

encodes ��  clinical covariates (demographic information, type of stroke, etc.) for the patient indexed by �. 296 

Then, at time � � ���, a patient’s recovery is measured via clinical outcome assessments summarized into 297 

an outcome ��,	 �  ! �  (e.g., the Action Research Arm test, ARAT, or the Motor Activity Log, MAL), 298 

where   is called an outcome space; for instance,  � �0,5� for the MAL. We assume that the outcome ��,	 299 

depends on a latent state ��,	 � $ ! � that summarizes the patient’s motor state (or “memory”) at time �. 300 

We consider scalar outcome and treatment for ease of demonstration. We discuss vector-valued outcomes 301 

and treatments (e.g., a 2-dimensional dose that specifies distal and proximal practice separately) in 302 

Discussion: Future Work. 303 
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For each patient � and each timestep �, the collaborative AI system recommends a treatment ��,	, which 304 

represent, for instance, the hours of rehabilitation therapy in this simple dose optimization example. The 305 

treatment influences the motor state and in turn the outcome in future timesteps. To reflect realistic time 306 

and monetary constraints, we also impose a total budget of %&  therapy hours to be distributed over � 307 

timesteps (i.e., ∑ ��,	
�
	
� � %& ) and a step-wise limit (& that represents the maximum rehabilitation dose that 308 

can be administered at a timestep (i.e., ��,	 � (&). These constraints can be modified by the clinicians or the 309 

patients at any time.  310 

Data generating process of multi-patient rehabilitation data. We compactly denote the data collected 311 

after treating patient � by a context-trajectory pair ��� , )��, where )� � ���,�:���, ��,�:�� is a trajectory containing 312 

the history of outcomes and treatments throughout the �-step treatment horizon, with an additional post-313 

treatment outcome ��,���. In general, we assume that the outcome ��,	 only partially reveals the patient’s 314 

latent state ��,	 (e.g., motor memory) and is a random variable that is conditionally independent of all 315 

other variables given ��,	. We represent this dependency by an observation function *��|��, which gives 316 

the probability of observing outcome � when the current patient-state is �. Here, the observation function 317 

* is stochastic to reflect random measurement errors of clinical assessments. We write ��,	 , *�- |��,	� to 318 

denote that the conditional distribution of ��,	 is *�- |��,	�. We further assume that for each patient �, states 319 

��,�:��� and treatments ��,�:� follow a first-order dynamics model parametrized by an unknown patient-320 

specific ��-dimensional vector .� � ��� .  Specifically, for each � � ��� , given the current state ��,	 and 321 

treatment ��,	 , the next state ��,	�� follows a conditional distribution /��
�- |�	 , �	�, i.e., ��,	�� , /��

�- |�	 , �	�.   322 

In addition, the context vector ��  observed at intake can be used to infer the unknown parameter vector .�  323 

that characterizes the transition dynamics. Components of ��  are covariates that potentially encode 324 

similarity between patients (see Background section) and can be used to inform clinical decision-making 325 
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when little to no outcome data is available for a new patient �. We assume that the exact relationship 326 

between contexts and recovery dynamics is unknown to the clinician-AI team and needs to be inferred 327 

from data. A reward signal is defined based on observed data. 328 

In summary, the interactions between the clinician-AI team and the patients can then be described with 329 

the following: 330 

1. For patient � � 1, 2, … , 
: 331 

2. Conduct baseline measurements on patient � to observe context �� � ���  332 

3. At timestep � � 1, 2, … , �: 333 

4. Observe patient outcome ��,	~*�- |��,	� and remaining budget (�,	  334 

5. Clinician-AI team decides and recommends dose ��,	 � 1(&2 subject to constraint ��,	 � (�,	 and 335 

user-defined rewards, using data from past patients (��:�
�, )�:�
�) and from the current patient 336 ��� , ��,�:	 , ��,�:	
�� 337 

6. With treatment ��,	 , patient undergoes transition in (latent) state, 338 

 ��,	�� , /��
�- |��,	 , ��,	�; budget updates to (�,	�� � (�,	 3 ��,	  339 

7. At timestep � � 1, the patient returns to the clinic for post-treatment measurements, leading to 340 

terminal outcome ��,���. 341 

 342 

Unlike an MDP, this scenario assumes that the patient-state ��,	 (e.g., motor memory) is hidden from the 343 

clinician-AI team and the outcomes are generated by an observation function *. In theory, this 344 

environment is called a Partially Observable MDP (POMDP), which is computationally intractable in 345 

general. In practice, RL in POMDP can be approximately solved by expanding the state with 346 

measurements from multiple timesteps (see Discussion). For simplicity, in the rest of the paper, we 347 

consider the MDP case with fully observed states and the trajectory for a patient becomes 348 

)� � ���,�, ��,�, … , ��,� , ��,� , ��,����.  349 
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Algorithm: Posterior Sampling for Contextual Reinforcement Learning (PSCRL) 350 

Here, we briefly describe the PSCRL algorithm (Algorithm 1).b At time � for patient �, PSCRL first updates 351 

the posterior distribution of parameters .� � ��� of the patient model given all available data. As a 352 

shorthand, we denote the posterior density of .�  by  353 

4�,	�.�� � 5��
�.�|��:� , )�:�
� , ��,�:	 , ��,�:	
�� 

where 4� is a prior distribution over all unknown variables and 5��
 indicates that the posterior 354 

distribution depends on the prior 4�. Then, a plausible parameter vector .6�,	  is randomly drawn from this 355 

posterior distribution over the model parameters for the current patient. Next, an integer-valued dose 356 

��,	 � 7 � �0: (&� subject to user-specified constraints is determined by an optimal control algorithm (such 357 

as dynamic programming used in the simulation study below) on the sampled dynamics model. 358 

Specifically, PSCRL computes a time-dependent optimal treatment policy 8	:�

���,� for the remaining timesteps 359 

such that  8	:�

���,�  maximizes the expected predicted future rewards, i.e.,  360 

8	:�

���,� � argmax��:�
 > ��:�

���,� ? @ A���� , �� , ������

�
	

B 

where > ��:�

���,�  indicates that the expectation is taken over the distribution of future states and actions under 361 

policy 8	:� (i.e., �� � 8����� for C � �, � � 1, … , �) and the sampled dynamics parameter .6�,	 , and A	:�  is the 362 

user-defined, time-varying reward function (which may be modified at will, e.g., to reflect the desired 363 

long-term rehabilitation outcomes by the clinician-patient team).  According to this (updated) policy, the 364 

 

b We defer the technical details of PSCRL and a review of the related theoretical literature to Supplementary Material A. 
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recommended treatment at timestep  by PSCRL is .  As new outcome data is observe365 

the next timestep, the posterior distribution is updated, leading to more accurate (sampled) patient 366 

models, better treatments, and better outcomes.  367 

  368 

Simulation study: adaptive dose scheduling in chronic stroke 369 

We tested our new PSCRL algorithm in simulations using a chronic stroke model. In previous work(2370 

we developed and validated a chronic model based on DOSE and EXCITE clinical trials (20, 73), whic371 

provided compelling evidence that the dose and scheduling of therapy affect rehabilitation outcomes372 

patients with chronic stroke. As a testbed for the proposed framework, we developed a simulator bas373 

our previous dynamics model for the change in the Motor Activity Log (MAL) (29), a functional UE 374 

ed in 

29), 

ch 

s for 

ed on 
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measure with slight modifications to include a patient context (see below). We simulated � � 100 patients 375 

arriving in sequence to receive rehabilitation therapy over a 6-month treatment window. The treatment 376 

horizon was divided into � � 12 timesteps, where each timestep corresponds to a 2-week interval. At each 377 

timestep, a patient may receive a dose of 0—20 hours of rehabilitation therapy, with a maximum total dose 378 

of 60 hours, corresponding to the maximal dose and the maximal weekly dose, respectively, in the DOSE 379 

trial(20).  Large between-patient variability was modeled by including four baseline covariates.  380 

Specifications of the patient simulator 381 

Patient dynamics model. Henceforth we use superscript “D”  to denote a ground-truth parameter used by 382 

the simulator but hidden from the decision-maker.  Following our previous work(29),  our simulation 383 

utilizes a patient dynamics model (or patient model, for short) that describes the change in the MAL 384 

��,	 � �0,5� (see Table 1).  Formally, the dynamics model contains a subject-independent (stochastic) 385 

observation function *���,	|E�,	� that gives the conditional probability of ��,	 given “motor memory” 386 

E�,	 � �. The motor memory is updated by an individualized transition function /��
	

� . c Up to some process 387 

noise, the next motor memory E�,	��   is a function of the current memory E�
	 modulated by the retention 388 

rate F�
� � �0,1�, the dose of training ��,	  modulated by the learning rate G�

� H 0, and the current MAL ��,	 389 

modulated by the self-training rate I�
� H 0. We represent individual level parameters using a vector 390 

.�
� � �F�

�, G�
�, I�

�� � ��. Additionally, the individualized dynamics depend on population level parameters, 391 

including a process noise scale J�
� H 0, slope-and-offset parameters �K�����, K������� for the observation 392 

 

c We reserve ��,� and  ��

� for the state and transition function of an augmented MDP used by the RL agent for treatment planning. This is 

because the agent’s “perceived” state ��,� may carry more information (e.g., the remaining budget). 
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function that converts motor memory into an MAL measurement (potentially with an observation error 393 

L�,	), and a random effect scale J!
� H 0 on learning rate. We update the previous model to reflect the large 394 

between-patient variability seen in stroke recovery, by assuming that the patient’s context vector �� � �� 395 

influences .�
� linearly via a weight matrix M� � �N"

� , N!
�, N#

��$ � �%����&'�, where N"
�, N!

�, and N#
� contain 396 

fixed intercepts (at first coordinate) and fixed effects.  For simplicity, we only added random effect for 397 

learning rates (G�
�).  398 

Individual level parameters Generating distributions/equations    

Retention rate  F�
� � �N"

��(��
�        (deterministic) 

Learning rate  G� 
�~Normal)�,*& R �N!

��(��
�, �J!

���S 

Self-training rate  I�
� � �N#

��(��
�       (deterministic) 

States and observations Transition dynamics 

Motor memory at timestep � H 2 

MAL at timestep � H 1 

E�,	 , Normal�F�
�E�,	
� � G�

���,	
� � I�
���,	
� , �J�

���� 

��,	 � MAL+,- - Sigmoid�K����� E�,	 � K������ � L�,	� 

Table 1. Simulation of the change in the Motor-Activity-Log (MAL) for synthetic patient in the simulation. The MAL 399 

ranges from 0 to MAL
�� � 5. We let ��
� � �1, ��� where �� is the context vector for patient �. We assume no observation 400 

noise, i.e., ��,� � 0. The initial MAL 
�,� � �0,5� was generated according to Normal��,�	�� � 2, �
 � 0.04�, i.e., a 401 

truncated normal distribution on the interval [0, 5�. The initial motor memory ��,� � � is obtained by the inverse of 402 

the (deterministic) observation function.  403 

Reward definition. To find a balance between the patient’s UE function during the treatment as well as 404 

the overall rehabilitation function measured post-treatment, we defined the return (i.e., total reward) for 405 

treating a patient to be the sum of the terminal MAL at 6 months (��,���� and the mean MAL (∑ ��,	��
�
	
� /406 

�) after the first treatment session. Hence, we defined the (time-varying) reward function at each step by: 407 
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A	���,	 , ��,	 , ��,	��� � [ 3∞, if ��,	 \ (�,	��,	��/�, else if 1 � � � � 3 1��,���/�� � 1�, else if � � � ]
 

where ��,	 � ���,	 , (�,	� is an expanded state for the CMDP, and we use a penalty of 3∞  to encode the 408 

constraint that each dose ��,	 may not exceed the remaining budget (�,	  at the current timestep.  409 

Simulation hyper-parameters. We consider � � 100 patients who arrive in sequence to receive 410 

rehabilitation treatment over � � 12 timesteps. A synthetic patient is indexed by � � ��� and represented 411 

by a four-dimensional context vector �� � �. along with an unknown (ground-truth) parameter vector 412 

.�
� � ��

. The patient contexts were drawn independently from a population distribution (specified in 413 

Supplementary Material B) with two continuous covariates (that could represent baseline function, 414 

sensory integrity, etc.)  and two categorical covariates (that could represent stroke type, side affected, etc.). 415 

Dynamics parameters �.���/)01  were then randomly generated by a conditional distribution given the 416 

contexts as shown in Table 1 with an unknown random effect scale J!
� � 0.2 for learning rates. Other 417 

(hidden) hyper-parameters N"
�, N!

�, and N#
� for linear context-to-dynamics relationship are specified in 418 

Supplementary Material B. For simplicity, we assumed that the observation function * is deterministic 419 

(i.e., L�,	 � 0) and known by the decision-maker with parameters K����� � 0.2 and K������ � 33. As a result, 420 

the simulator matches the assumptions of CMDP and avoids intractability issues (see POMDP in 421 

discussion). See additional details in Supplementary Material B. 422 

Implementation details of the PSCRL algorithm 423 

Implementing PSCRL requires specifying a hierarchical Bayesian model and a planning algorithm that 424 

finds the optimal policy given a sampled patient model. 425 

Patient model update via posterior inference. We make the simplifying assumption that the structure of 426 

the hierarchical MAL model described above is known except for the ground-truth parameters. PSCRL 427 
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uses a hierarchical Bayesian modeling approach, treating all unknown quantities as random variables. For 428 

clarity, consider the parameters with superscript “D” (e.g., .�
�) as fixed unknown quantities, while those 429 

without superscript (e.g. .�) as random variables.  The hierarchical Bayesian model is defined by hyper-430 

prior distributions for population level random variables (or vectors) �N" , N! , N# , J! , J��, prior 431 

distributions for individual level variables .� � �F� , G� , I�� conditioned on the population-level parameters 432 

and a likelihood function for the observed data (��,	’s along with ��,	’s). Table 2 shows the prior and hyper-433 

prior distributions used by PSCRL in the simulation experiment. The likelihood function is given by the 434 

transition function as in Table 1. Since exact posterior inference is computationally intractable, we used 435 

Hamiltonian Monte Carlo (HMC)(74), a state-of-the-art Markov Chain Monte-Carlo (MCMC) algorithm 436 

(implemented in NumPyro (75)), to approximate the posterior distribution. MCMC algorithms are 437 

generally considered “exact” posterior inference algorithms since the approximation error can be 438 

arbitrarily small when the number of samples from the posterior distribution is large. 439 

Unknown parameters Priors Hyper-priors 

Retention rate F� � N"
(��

�   (deterministic) 
N",� , Normal�0, 1� N",�:. , Normal�a, 0.1b� 

Learning rate G� ~Normal)�,*&�N!
(��

�, J!
�� 

N#,� , Normal�0, 1� N!,�:. ~ Normal�a, 0.1b� J!  ~ HalfNormal�0.5� 

Self-training rate I� � N #
(��

�     (deterministic) 
N#,� , Normal�0, 1� N2,�:. ~ Normal�a, 0.1b� 

Process noise scale  J� , HalfNormal�1�
 

Table 2. Bayesian model for unknown parameters in the individualized dynamics. “Priors” are the prior distributions for the 440 

individual level parameters conditioned on population level parameters. “Hyper-priors” specify the prior distributions for 441 

population level parameters. The process noise scale �
 is shared across patients and is used to compute the likelihood of outcome 442 

trajectories according to the transition dynamics in Table 1. Known parameters are omitted. The (4-dimensional) zero-vector is 443 

denoted by � and the (4-by-4 identity matrix is denoted by �. 444 
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Planning for optimal treatment policy under constraints. Given a sampled parameter .6, PSCRL solves 445 

the associated constrained planning problem subject to a total rehabilitation budget  %& � 60 and a 446 

stepwise dose limit (& � 20. The dose limit restricts the MDP’s action space to 7 � 10: (&2 � �0,1, … , (&�, 447 

which simplifies the planning problem. Handling the budget constraint requires long-term planning, as 448 

choosing a dose now may affect dosing options in the future. A simple solution for this is to consider an 449 

MDP with an expanded state space $� � $ f �0: %&� with deterministic transitions in the remaining budget 450 

component(76)]. Then, an optimal policy for the expanded MDP is equivalent to an optimal constrained 451 

policy for the original MDP. Although the state space for the MAL model is continuous, in this simulation 452 

example, we approximately solve the constrained planning problem using Dynamic Programming (DP) 453 

with the expanded state space and discretized MAL outcomes (100 bins of width 0.05 covering the range 454 

of MAL �0,5�).  455 

Evaluation protocol 456 

Regret (performance metric). To rigorously examine the potential benefit of AI-based precision 457 

rehabilitation, we measured the performance of a learning agent by a “regret” metric (similar to (64)). In 458 

this work, we define the regret of an RL agent after seeing � patients as:  459 

Reg
0

� @ Rg�
����,�� 3 g�

345���,��S0

�
�

   
where ��,� is a fixed (pre-generated) initial state for patient �, g�

����,�� is the expected return of a theoretically 460 

optimal policy associated with patient � starting at ��,�, and g�
345���,�� is the expected return for treating the 461 

same patient using treatments recommended by the algorithm. The expectation (in expected return) is 462 

taken over the randomness of state transitions (i.e., process noise) and treatments. A lower regret is 463 

preferred as it suggests that (in expectation) the overall treatment effect is closer to the theoretically 464 
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optimal effect. Because patients are heterogenous (represented by different parameters .�
�), the optimal 465 

treatment policy and its corresponding value vary across patients. Due to infinite state space, non-linear 466 

(stochastic) transitions, and constraints, both g�
� and g�

345 are impossible to compute exactly. We thus 467 

estimated g�
6 with a near-optimal benchmark obtained using dynamic programming with access to the 468 

ground-truth parameter .�
�. Notice that g�

345 also depends on the randomness of the algorithm (which in 469 

turn depends on all data from past � 3 1 patients). We estimated g�
345 by averaging over the results from 470 

10 independent runs of the algorithm. 471 

Comparison with non-adaptive treatment (benchmarks). We compare the regret performance of PSCRL 472 

against three non-adaptive benchmark treatment policies: Uniform, Increasing, and Decreasing. For any 473 

patient, Uniform distributes doses evenly throughout the treatment horizon while Increasing and 474 

Decreasing administer doses in an increasing and decreasing manner in fixed steps (respectively).  475 

Comparison of PSCRL with and without within-patient learning. By updating the patient model using 476 

both covariate data at baseline and all measurement data during training, PSCRL is self-improving both at 477 

the patient and population levels. That is, as the database of past patients expands, PSCRL can 478 

recommend treatment policies that are increasingly effective in improving functional gains for any new 479 

patient, while continuously improving the policy by finetuning the (Bayesian) model with incoming 480 

patient-specific data over time and across the patient population. To test the effect of individual level 481 

learning when new outcome data becomes available, we investigated the performance of a simplified 482 

version of PSCRL (dubbed PSCRL-reduced) that only constructs a patient model and plans accordingly 483 

once at the intake stage for every patient. In other words, there is no within-patient learning and 484 

replanning in the reduced-PSCRL. 485 
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Fixed patient sequence. Notice that in the CMDP formulation, the expected return of an agent (or a 486 

treatment policy) may vary significantly between patients due to different individualized transition 487 

functions and different initial states. Hence, to avoid unnecessary variations in the performance metric, we 488 

evaluated the agent and the benchmark treatments with a fixed sequence of synthetic patients. The patient 489 

sequence is generated in advance by the simulator according to the data-generating process specified in 490 

Supplementary Material B.  491 

Average return on the population level. We further measured the performance of an agent (or a treatment 492 

policy) by its average return when treating the patient population. The average return was evaluated by 493 

averaging over the expected return of the agent (or a policy) on 50 held-out patients. The held-out patients 494 

were pre-generated from the same distribution as the patients occurred during the learning stage. This 495 

metric is particularly useful to evaluate the performance of an RL agent with different levels of simulated 496 

clinical experience (i.e., number of past patients in its database).  497 

Results 498 

Evidence of effective, personalized treatments with step-by-step replanning  499 

In Figure 2, we illustrate the model predictions and treatment policies proposed by PSCRL for two 500 

synthetic patients along with the history of the posterior distribution of the learning rate G� .  The 501 

progression of the predicted trajectories is presented in Fig2A-C (light blue) for timesteps � � 1, 7, 13 502 

(respectively).  Because at the initial timestep (� � 1, shown in Figure 2A), the individual level posterior 503 

was based on the data from past patients only, the posterior on G�  (shown in Figure 2D) was wide and the 504 

estimated distribution of future predicted outcomes (following the current policy 8���,�) deviate rather 505 

significantly from the ground-truth (light orange in Fig 4A-B), indicating a lack of knowledge on the 506 
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current patient. By learning from incoming patient data, PSCRL quickly improves its estimate of the 507 

patient model, as reflected by a narrower posterior on  and more accurate predictions (as shown in 508 

Figure 2B) by the midpoint of the treatment horizon ( ). As a result of an improved patient model509 

PSCRL’s treatment recommendations became increasingly effective, leading to higher (expected) retur510 

(see patient indices in top right of each panel) for treating both patients. 511 

512 

Figure 2. Simulation of two patients illustrating updates of model predictions and recommended treatment plans from PSCR513 

C. Observed, predicted, and potential (future) trajectories at initial (A), midpoint (B), and post-treatment (C) timesteps. S514 

blue line: Observed MAL outcomes. Light blue: Potential future outcomes with means (dashed line) and 95% confidence 515 

intervals (shaded) as generated by the true model with parameter  assuming that the patient would follow policy . Lig516 

orange: Predicted future outcomes with means (dashed line) and 95% prediction intervals (shaded) as generated by the pati517 

model and policy . Solid green bars: Past (actual) treatments. Light green bars: Example of future treatments assum518 

the patient follows  (without updates from PSCRL). Notice how future treatments change as PSCRL continuously refine519 

policy with the new patient data. Vertical gray line: Indicator of the current timestep.  D. Distribution of the learning rate 520 

parameter (see Table 2) as a function of time during treatment. Orange: Posterior distribution (mean and 95% credible in521 

of the learning rate, as estimated by PSCRL at each timestep. Blue cross: Sampled parameter used for planning by PSCRL. R522 
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Improved average return with a larger database 524 

Figure 3 shows the performance of PSCRL with and without within-patient learning with respect to the 525 

number of past patients in the database.  The database consisted of contexts and trajectories ���:7 , )�:7� 526 

from past 
 patients. PSCRL’s adaptive treatments consistently outperformed the Uniform treatment 527 

policy even when the database size is small.  Note that, in these simulations, the improvement in 528 

performance over time was small as the performance was already close to the theoretically optimal value 529 

at the beginning of the experiment thanks to individual level learning and replanning (i.e., policy updates) 530 

at each time step. In contrast, the reduced PSCRL with no within-patient learning and replanning initially 531 

showed worse performance than the non-adaptive Uniform policy. However, after interacting with about 532 

10 synthetic patients, the performance of reduced PSCRL clearly improved and became consistently better 533 

than the Uniform policy. This result clearly shows the algorithm’s ability to learn and generalize the 534 

information between patients in the proposed setup.  535 

 536 

Figure 3. Average return of PSCRL with increasingly larger databases compared to benchmarks. Purple: Average return (solid) 537 

with 95% CI (shaded) for PSCRL. Red: Average return (solid) with 95% CI (shaded) for PSCRL-reduced (which does not perform 538 
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within-patient learning). Average returns for PSCRL and PSCRL-reduced were computed by first computing the expected return 539 

of the agent (with different numbers of past patients in the database) with 40 simulations on each held-out patient and then by 540 

taking the average over all 50 held-out patients. Orange (dashed): Average return for Uniform benchmark treatment policy. Grey 541 

(dashed): Optimal average return, computed by averaging over the expected return of individualized optimal policies (obtained 542 

using ground-truth parameters). Expected returns for Uniform and optimal policies were estimated using 1000 simulations. 543 

We then tested how well PSCRL could estimate the context parameters linking each covariate to the main 544 

model parameters in the state space model. As discussed above, the exact relationship between contexts 545 

and recovery dynamics was unknown to the clinician-AI team and had to be learned from sequential 546 

patient data (as each patient is associated with a single measurement for each covariate). As shown in 547 

Supplementary Material C, Figure S1, the posterior distribution converges to the true values, showing that 548 

PSCRL achieves learning on the population level via accurate estimation of the relationships between 549 

contextual covariates and patient parameters.  550 

Overall expected gain with AI-determined treatments 551 

The overall quality of the treatment is measured by the regret (see above). Figure 4 clearly shows the 552 

superiority of PSCRL’s treatments against the benchmark treatments in minimizing regret after treating 553 

the same sequence of � � 100 patients. The benchmarks correspond to non-adaptive, “one-size-fits-all” 554 

dosing schedules and thus incur high regret when treating a heterogenous patient population. In contrast, 555 

even without step-by-step replanning, PSCRL-reduced learns to incur low regret, which indicates that it 556 

can still identify high-quality treatment policies for new patients by leveraging the context. The full PSCRL 557 

algorithm incurred the least regret, indicating that policies proposed by PSCRL were the closest to a 558 

hypothetical clinician with perfect information about each patient a priori. 559 
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 560 

Figure 4. Comparison of cumulative regret for PSCRL and benchmark treatments. Solid lines: (cumulative) regret, estima561 

from results of 10 independent simulations for an RL agent or 1000 simulations for a benchmark treatment policy. Shaded re562 

95% CI of the regret (omitted for benchmarks for readability). Given the horizon  and the total budget   therap563 

hours. Uniform allocates  therapy hours at each timestep  for any patient  (regardless of the patient’s state). 564 

Decreasing sets , , and  therapy hours (and 0 dose when  is even) for any patient565 

Increasing uses the reversed dose schedule of Decreasing.  566 

Discussion 567 

Determining the optimal sequential treatment plan that maximizes long-term outcomes for each patie568 

post-stroke is daunting even for experienced clinicians because of the multiple scheduling factors tha569 

modulate recovery, the high between-patient variability, and the multiple scheduling constraints and 570 

patient preferences. Thus, to enhance the effectiveness of rehabilitation, we proposed a collaborative A571 

precision rehabilitation system that uses model-based RL. The system addresses challenges specific to572 
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precision rehabilitation system by 1) utilizing an interpretable, dynamical, Bayesian patient model that 573 

takes into account the time-varying processes of stroke recovery at different time scales modulated by 574 

treatment decisions, 2) updating the patient model via contextual and hierarchical modeling, 3) 575 

collaborating with clinicians and patients to customize the recommended plan based on clinical judgment, 576 

constraints, and preferences, and 4) planning a sequential treatment with respect to the context, 577 

constraints, and uncertainties in the patient model. To design such a system, we extended current medical 578 

RL applications based on MDP (7-10, 63, 77) and bandit models (equivalent to a 1-step MDP) (69, 78) , and 579 

formalized precision rehabilitation as a sequential decision-making problem under a Contextual Markov 580 

Decision Process (CMDP)(64).  CMDP allows explicit modeling of longitudinal treatment-response data 581 

for heterogeneous patients post-stroke via context-dependent dynamics. We further extended the CMDP 582 

framework with realistic treatment constraints (e.g., the total dose and maximum bi-weekly dose). Finally, 583 

towards a concrete implementation of our rehabilitation system, we proposed a novel Posterior Sampling 584 

for Contextual RL (PSCRL) algorithm to balance exploration and exploitation in a CMDP while tackling 585 

the treatment constraints, which can be specified dynamically by the clinician-patient team at any time.  586 

Importantly, the PSCRL algorithm is continuously learning (i.e., self-improving) at the patient and 587 

population levels by leveraging a growing database containing data from current and previous patients. 588 

We then presented a simulation study applying PSCRL to treat a highly variable population of 100 589 

patients. The simulation utilized a previous hierarchical Bayesian state-space patient model of chronic 590 

stroke (29) expanded to include a context made of four covariates. Our results confirmed the multi-level 591 

learning capability of PSCRL as its recommended treatment plans became increasingly more effective in 592 

improving functional gains for each patient over time and across the patient population.   593 
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A strength of the Bayesian approach for patient modeling is that it provides a simple solution to missing 594 

data, which are treated as parameters to estimate. For instance, the model can be designed to incorporate 595 

covariates derived from neuroimaging to generate precise predictions. If, however, there is no brain scan 596 

available for a particular patient, the predictions may be (slightly) less accurate, but all the other data for 597 

this patient can still be used without any changes to the model. Thus, the Bayesian approach provides 598 

great flexibility for predictions with whichever data are available at any time for a specific patient. Further, 599 

hierarchical modeling, by sharing information across patients, improves prediction for new patients, 600 

especially early in the rehabilitation process, and therefore improves the efficacy of treatments. 601 

Limitations and future work 602 

In future work, a large and variable rehabilitation dataset will be essential to train and validate the AI 603 

algorithm, notably by identifying the scheduling and individual factors that significantly affect outcomes.  604 

Hundreds of participants with large ranges of initial deficits will be needed. The database will contain 605 

baseline demographics, clinical, and lesion covariates, repeated clinical outcome measurements (i.e., every 606 

two weeks), and fine-grained practice data. Connected objects for rehabilitation (79) ,  wearable sensors 607 

(80) , or rehabilitation robots (41) can provide doses of treatment (in number of repetitions) for different 608 

tasks that can be used to update the model dynamics.  609 

These data will be used to update the model, as the synthetic patients in the current work were 610 

represented by simple models while actual patients are much more complex, variable, and harder to 611 

model. Further extension of the patient model to acute and sub-acute phases post-stroke should include a 612 

time-dependent “plasticity state” to model the critical window of plasticity as well as the spontaneous 613 

recovery state, both modulated by covariates.  In addition, in our current implementation, the algorithm 614 

made simplistic dose recommendations. Practically, the advantage of this approach is that only the actual 615 
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dose in hours of treatment would need to be recorded and inputted into the model. However, in practice, 616 

treatment needs to be targeted to address the main limitations in UE function and preferences for specific 617 

activities for the patient to practice. Thus, an extension of our algorithm should at least provide 618 

recommendations for targeted training, such as for distal and proximal UE tasks.  619 

The hierarchical Bayesian patient dynamics model used in our simulations was developed for chronic 620 

stroke UE functions based on a subjective patient-reported instrument, the MAL. Future models should 621 

consider widely used, objective, and validated functional clinical assessment scores, such as the ARAT, 622 

and account for the variability in recovery in impairment, function, and participation post-stroke. In a 623 

concurrent work, Cotton et al. (2024)(81) recently presented a related perspective to precision 624 

rehabilitation, advocating for the use of structural causal model for treatment optimization. The causal 625 

models would link the plastic process and neural structure underlying the rehabilitation process to 626 

detailed measurements of impairment of body structure and function to real functional activities of daily 627 

living and participation. Whereas the data requirement for such complex models would be very large, 628 

causal models, thanks to their transportability property, can be fit to a mixture of heterogeneous data.(81) 629 

Nonetheless, we note that MDP (and notably POMDP introduced below) encapsulates state-space models 630 

(such as (29)) and can be seen as simple structural causal models focusing on the interaction between a 631 

few variables at each timestep. Structural causal models can further augment MDPs, e.g., by decomposing 632 

the state and imposing structural causal assumptions among state components and the reward (82).   633 

In our simulation, we assumed no measurement noise to accommodate the MDP model with fully 634 

observed states, i.e., ��,	 � ��,	. For real-world deployment, it could be beneficial to consider a stochastic 635 

observation function*��	|�	� to reflect the measurement errors in the clinical outcomes (e.g. ARAT and 636 

MAL); this corresponds to a Partially Observable MDP (POMDP) where the patient state ��,	 (e.g., motor 637 
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memory) is hidden from the clinician-AI team and partially revealed through the outcome �	. However, 638 

RL in a POMDP is known to be computationally intractable in general. In particular, a theoretically 639 

optimal policy for POMDP needs to be full-history dependent, i.e., it suggests treatments based on the 640 

entire patient history. In practice, when a single observed outcome ��,	  is insufficient for making a clinical 641 

decision, one may consider treatment policies that take as input a sequence of measurements from a few 642 

previous timesteps. 643 

We finally note that POMDPs for precision rehabilitation are highly related to previous work on Dynamic 644 

Treatment Regime (DTR)(83).  As reviewed in(84),  constructing a DTR involves solving a decision 645 

problem that is mathematically equivalent to a POMDP, and indeed an optimal DTR is equivalent to an 646 

optimal (i.e., reward-maximizing) policy under a POMDP. Thus, we may interpret PSCRL as an algorithm 647 

that aims to learn the optimal DTR in a CMDP where the recovery dynamics are unknown and patient-648 

dependent.  Similar to PSCRL, a posterior sampling-based algorithm, PS-DTR, has been applied to the 649 

“causal RL” problem of learning an optimal dynamic treatment regime for an unknown structural causal 650 

model (85).  Future work is needed to validate and compare these two algorithms in identifying the 651 

optimal rehabilitation plan in real life with high data efficiency and low regret, i.e., the least amount of 652 

trial and error.  Note that these two RL algorithms are “online” in the sense that they continuously adjust 653 

the current treatment plan based on the patient data, and the updated plans are deployed to generate new 654 

observations. Online RL is suitable for precision rehabilitation as the interventions pose minimal risk; the 655 

clinician retains the autonomy for making treatment decisions and may reject the algorithm's proposal at 656 

any time. Additional safety can be guaranteed by adjusting the constraints in our framework, in which 657 

case PSCRL can generate updated treatment plans accordingly.  658 
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Conclusion 659 

With self-improving capabilities, our AI-based system has the potential to play a key role in novel learning 660 

health systems in rehabilitation. As discussed above, stroke outcomes vary significantly based on factors 661 

such as the type, location, and severity. Making progress in precision medicine is crucial in stroke 662 

rehabilitation because it will enable the creation of personalized treatment plans tailored to each patient's 663 

unique needs. Our collaborative AI system can transform stroke rehabilitation into a more adaptive and 664 

dynamic process, significantly improving patient outcomes and expanding the possibilities of 665 

personalized healthcare by providing a translatable framework for other clinical fields in which repeated 666 

treatments are needed to optimize outcomes.  667 
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