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Abstract 
Background 
The development and approval of novel drugs are typically time-intensive and expensive. 
Leveraging a computational drug repurposing framework that integrates disease-relevant 
genetically regulated gene expression (GReX) and large longitudinal electronic medical record 
(EMR) databases can expedite the repositioning of existing medications. However, validating 
computational predictions of the drug repurposing framework remains a challenge. 
Methods 
To benchmark the drug repurposing framework, we first performed a 5-method-rank-based 
computational drug prioritization pipeline by integrating multi-tissue GReX associated with 
COVID-19-related hospitalization, with drug transcriptional signature libraries from the Library of 
Integrated Network-Based Cellular Signatures. We prioritized FDA-approved medications from 
the 10 top-ranked compounds, and assessed their association with COVID-19 incidence within 
the Veterans Health Administration (VHA) cohort (~9 million individuals). In parallel, we 
evaluated in vitro SARS-CoV-2 replication inhibition in human lung epithelial cells for the 
selected candidates. 
Results 
Our in silico pipeline identified seven FDA-approved drugs among the top ten candidates. Six 
(imiquimod, nelfinavir and saquinavir, everolimus, azathioprine, and retinol) had sufficient 
prescribing rates or feasibility for further testing. In the VHA cohort, azathioprine (odds ratio 
[OR]=0.69, 95% CI 0.62–0.77) and retinol (OR=0.81, 95% CI 0.72–0.92) were significantly 
associated with reduced COVID-19 incidence. Conversely, nelfinavir and saquinavir 
demonstrated potent SARS-CoV-2 inhibition in vitro (~95% and ~65% viral load reduction, 
respectively). No single compound showed robust protection in both in vivo and in vitro settings. 
Conclusions 
These findings underscore the power of GReX-based drug repurposing in rapidly identifying 
existing therapies with potential clinical relevance; four out of six compounds showed a 
protective effect in one of the two validation approaches. Crucially, our results highlight how a 
complementary evaluation—combining epidemiological data and in vitro assays—helps refine 
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the most promising candidates for subsequent mechanistic studies and clinical trials. This 
integrated validation approach may prove vital for accelerating therapeutic development against 
current and future health challenges. 

Background 
The traditional process of developing and approving novel therapeutics is notoriously 
time-consuming and expensive, often requiring more than a decade and substantial financial 
resources, averaging over $2.8 billion per drug [1]. This lengthy process poses significant 
challenges, especially in the face of emerging health threats or diseases lacking effective 
treatments. Drug repurposing—the practice of identifying new therapeutic uses for existing 
medications—offers a promising alternative that circumvents many of the barriers associated 
with de novo drug development. By leveraging known safety profiles and existing clinical data, 
drug repurposing provides a cost-effective and rapid pathway to bring medications into clinical 
practice or guide a second wave of targeted drug development efforts. 
 
Despite its promise, the success of drug repurposing efforts hinges on the availability of robust 
and scalable methodologies to identify and validate candidate compounds. Advances in 
computational approaches [2], coupled with the growing availability of electronic medical 
records (EMRs) [3] and in vitro validation platforms [4, 5], have revolutionized the landscape of 
drug repurposing. Integrating genetically regulated gene expression (GReX) data with 
perturbagen signature libraries, for instance, allows for the identification of compounds capable 
of reversing disease-associated predicted gene expression dysregulation [6, 7]. However, a 
critical gap remains in systematically validating these computational predictions to ensure their 
translational potential. 
 
To address this need, we developed a comprehensive computational drug repurposing 
framework that integrates multi-tissue GReX with EMR-based pharmacoepidemiological 
analysis and in vitro assays. This pipeline not only prioritizes candidate compounds but also 
provides a benchmark for their validation using orthogonal approaches. By combining 
computational predictions with real-world evidence from EMR data and mechanistic insights 
from in vitro experiments, our framework offers a robust, scalable solution for accelerating drug 
discovery and development. 
 
As a proof of concept, we applied this pipeline to the context of COVID-19, a global health crisis 
that demanded unprecedented speed in therapeutic discovery. This application demonstrates 
the versatility and efficacy of our approach, highlighting its potential to inform drug repurposing 
efforts across a wide range of diseases and clinical scenarios. 
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Methods 

GReX-based computational drug repurposing 
COVID-19 GReX. Publicly available COVID-19 transcriptome-wide association study (TWAS) 
summary statistics were obtained from our prior study [8]. Specifically, we used the TWAS 
based on the “hospitalized COVID vs. population” (B2) phenotype from the COVID-19 Host 
Genetics initiative [9] (Release 4; 2020-10-20; https://www.covid19hg.org/results/r4/). 
Multi-tissue TWAS input data utilized transcriptomic imputation models from 17 tissues (Table 
S1; tissues with significant gene-trait associations after FDR [10] adjustment was applied to A1, 
A2, B1, B2, C1, C2, and D1 COVID-19 phenotypes, and 42 transcriptomic imputation models) 
trained with EpiXcan [7] on two independent cohorts: GTEx (v8 [11]) and STARNET [12]. 
Perturbagen library. We leveraged the compounds in the LINCS Phase II L1000 dataset 
(GSE70138) perturbagen reference library [13]. All inferred genes (n=12,328) were considered. 
Only “gold” (si_gold) signatures were analyzed. 
Computational drug repurposing (CDR). For CDR, we integrated GReX with drugs in LINCS. 
Each signature from the perturbagen signature library (e.g. treatment with x compound for n 
hours in MCF7 cells) is assessed and ranked for its ability to reverse the trait-associated 
imputed transcriptomes using a 5-method-rank approach [6] (with 100 permutations). Thus, 
analysis was limited to 495 potentially repurposable compounds. Drug information for the 
compounds under consideration (e.g. clinical phase, mechanism of action, and molecular 
targets) was obtained from http://www.broadinstitute.org/repurposing (file date: 3/24/2020). The 
compounds under investigation were compared with all the other compounds. For the 
“mechanism of action comparison”, all compounds with a known mechanism of action 
represented by two or more candidates were evaluated. Final recommendations are restricted 
to launched medications, and FDR correction was applied only to launched compounds. 
Summarization of the effect of signatures across tissues. To summarize the ability of 
different signatures to antagonize GReX at the compound and mechanism of action level, we 
leveraged our previously developed [8] non-parametric ranking approach. Briefly, for each 
treatment condition (signatures), we obtained the average rank from the 5-method-rank. After 
pooling these signature-level results, we performed a Mann-Whitney U test for each candidate 
compound against all other signatures to assess whether a candidate’s rankings significantly 
deviate from the median. For each candidate, we also estimated a GReX antagonism 
pseudo-z-score, which is defined as the negative Hodges-Lehmann estimator (of the median 
difference between that specific candidate vs. the other candidates) divided by the standard 

deviation of the ranks across all perturbations ( ). A positive −
𝐻𝑜𝑑𝑔𝑒𝑠−𝐿𝑒ℎ𝑚𝑎𝑛𝑛 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑜𝑟

𝑝𝑒𝑟𝑡𝑢𝑟𝑏𝑎𝑔𝑒𝑛

𝑆𝐷 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑟𝑎𝑛𝑘𝑠 𝑜𝑓 𝑎𝑙𝑙 𝑝𝑒𝑟𝑡𝑢𝑟𝑏𝑎𝑔𝑒𝑛𝑠

pseudo-z-score suggests that a given compound is a potential therapeutic candidate, whereas a 
negative pseudo-z-score implies that the compound is likely to exacerbate the phenotype. FDR 
was estimated using the Benjamini–Hochberg procedure [10]. Signatures were grouped by 
compound or mechanism of action (minimum requirement of 2 compounds) to derive respective 
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ranks. Signature-GReX combinations of all tissues were considered jointly. Only “launched” 
medications with 2 or more eligible signatures were retained in the final ranking and FDR [10] 
correction (Table S2). 
Software availability. Our R package for computational drug repurposing, antagonist, can be 
accessed from our center’s GitHub repository: 
https://github.com/DiseaseNeuroGenomics/antagonist. 

Population-level analysis of the effect of compound and 
compound category use against COVID-19 incidence 
Data. We used the VA COVID-19 Shared Data Resource (CSDR), a data domain that includes 
demographic and clinical information related to COVID-19 on all patients who tested for 
SARS-CoV-2 within the Veterans Health Administration (VHA) or whose positive test result 
outside VHA was recorded in VHA clinical notes. The CSDR was supplemented with additional 
data elements from the VHA’s Corporate Data Warehouse (CDW), a national repository of 
electronic health records of all individuals who received care in the VHA.  
Cohort. The base cohort included all Veterans alive as of February 15, 2020. Since the earliest 
testing date reported in the CSDR was February 16, 2020, we considered all living patients 
through February 15 to be eligible to be tested for SARS-CoV-2 (Table S3). From this base 
cohort (Table S4), we derived two separate samples to examine the incidence of COVID-19 
among users of the top 10 compounds and antiretroviral medications (Table S5). For the top 10 
compound analysis, we assembled a sample of patients who underwent SARS-CoV-2 testing 
matched to patients who did not undergo SARS-CoV-2 testing on age, race, and VHA facility. 
The index date was defined as February 15, 2020. For the antiretroviral medication analysis, we 
created a sample of patients ever diagnosed with human immunodeficiency virus (HIV) prior to 
the index date and actively on selected antiretroviral medications in the 90 days prior to the 
index date. Analysis of national VA data was conducted under the protocol, “Leveraging 
Electronic Health Information to Advance Precision Medicine (LEAP)", which was approved by 
the VA Central Institutional Review Board and by the Research & Development Committees at 
Palo Alto, Salt Lake City, and West Haven VA Medical Centers.  
Exposure. Exposure to the top 7 FDA-approved compounds (imiquimod, nelfinavir, saquinavir, 
everolimus, azathioprine, nisoldipine, and retinol), and selected antiretroviral medications 
(Tables S6 and S7) was determined based on prescription records from the 90 days preceding 
the index date. 
Outcome. We used a binary variable indicating a positive reverse transcriptase polymerase 
chain reaction (RT-PCR) SARS-CoV-2 test result through November 30, 2020.  
Covariates. We assessed, at the index date, patients’ age, race, marital status, body mass 
index, smoking status, the Charlson Comorbidity index [14] in the prior two years, VHA 
utilization in the prior year, the number of days to first SARS-CoV-2 positivity, and the presence 
of drug-specific FDA-approved and common off-label indications (Table S8) as determined by 
International Classification of Diseases. We also included the VHA facility of SARS-CoV-2 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 14, 2025. ; https://doi.org/10.1101/2025.01.10.25320348doi: medRxiv preprint 

https://sciwheel.com/work/citation?ids=3624100&pre=&suf=&sa=0
https://github.com/DiseaseNeuroGenomics/antagonist
https://sciwheel.com/work/citation?ids=3819675&pre=&suf=&sa=0
https://doi.org/10.1101/2025.01.10.25320348
http://creativecommons.org/licenses/by-nc-nd/4.0/


testing as a fixed effect in the individual compound models and as a random effect in the 
antiretroviral medication model.  
Statistical analysis. Multivariable ordinal logistic models were used to test the association of 
drug exposure with COVID-19 incidence, weighted by the inverse of the predicted probabilities 
of being tested for SARS-CoV-2 (Tables S9 and S10). Due to the limited availability of 
SARS-CoV-2 tests and resources, testing was prioritized based on a wide range of factors (e.g., 
patients’ demographics, comorbidities, and symptom severity). This targeted testing likely 
resulted in a non-random subset of patients tested for SARS-CoV-2 [15]. To adjust for this, we 
employed the inverse probability weighting method, where the weight is based on the predicted 
probabilities (propensity scores) of being tested, estimated by a logistic regression model using 
drug exposure, selected patient covariates, and VHA facility [16, 17] (Table S11). For this 
propensity model, we implemented a nested case-control design with incidence density 
sampling to match each tested patient (case) to five patients who were eligible to be tested 
(controls) at the time of the case’s testing on age, race, and VHA facility [18]. 

In vitro anti-SARS-CoV-2 activity of top candidate compounds 
Cell line used. Human lung epithelial cells (A549), expressing the angiotensin-converting 
enzyme 2 receptor (ACE2), the primary entry receptor for SARS-CoV-2, were used for drug 
treatment and subsequent infection with SARS-CoV-2. These cells, gifted to us, were previously 
established by the Rosenberg lab to express the ACE2 receptor [4].  
SARS-CoV-2 virus propagation and infections. SARS-CoV-2, isolate USA-WA1/2020 
(NR-52281), was deposited by the Center for Disease Control and Prevention and obtained 
through BEI Resources, NIAID, NIH. SARS-CoV-2 was propagated in Vero E6 cells in DMEM 
supplemented with 2% FBS, 4.5 g/L D-glucose, 4 mM L-glutamine, 10 mM Non-Essential Amino 
Acids, 1 mM Sodium Pyruvate, and 10 mM HEPES. The virus stock was filtered by 
centrifugation using an Amicon Ultra-15 Centrifugal filter unit (Sigma, Cat # UFC910096) and 
resuspended in viral propagation media. All infections were performed with either passage 3 or 
4 SARS-CoV-2. Infectious titers of SARS-CoV-2 were determined by plaque assay in Vero E6 
cells in Minimum Essential Media supplemented with 4mM L-glutamine, 0.2% BSA, 10 mM 
HEPES, 0.12% NaHCO3, and 0.7% Oxoid agar (Cat #OXLP0028B). All SARS-CoV-2 infections 
were conducted in the CDC/USDA-approved BSL-3 facility of the Global Health and Emerging 
Pathogens Institute at the Icahn School of Medicine at Mount Sinai, in accordance with 
institutional biosafety requirements. Virus inoculation used a multiplicity of infection (MOI) of 0.1 
or mock infection for 24 hours.  
Compound screen. Imiquimod (Alfa Aesar, Cat # J63990MC), everolimus (Alfa Aesar, Cat # 
J60139MA), azathioprine (Alfa Aesar, Cat # J6231403), retinol (Alfa Aesar, Cat # J6207903), 
and the aHIV protease inhibitors; nelfinavir (MCE, Cat # HY-15287) and saquinavir (MCE, Cat # 
HY-17007) were reconstituted in 100% DMSO. Stocks were further diluted in DPBS to a working 
concentration of 100x. A549 cells expressing the ACE2 receptor were first treated with 10μM of 
each drug or 0.01% DMSO (negative control) for 24 hours in triplicate. We selected 10 μM as a 
commonly used screening concentration to detect strong inhibitory activity in cell-based assays. 
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Cells were then infected with SARS-CoV-2 at an MOI of 0.1 for 24 hours before harvesting cells 
in QIAzol lysis reagent.  
SARS-CoV-2 quantification. RNA was isolated using the RNeasy mini kit (Qiagen, Cat # 
74106) supplemented with RNAse inhibitor (Takara, Cat # 2313A) at 5% by volume. After 
quantification by QuBit, 400 ng of RNA was used to prepare cDNA via the High-Capacity cDNA 
Reverse Transcription Kit (Applied Biosystems, Cat # 4368813). TaqMan probes for the 
SARS-CoV-2 spike protein and control genes (GAPDH and Actin-B) were obtained from Thermo 
Fisher (Cat # 4331182). Real-time PCR was performed in triplicate using the Applied 
Biosystems QuantStudio 5. SARS-CoV-2 was quantified using the delta-delta Ct (2-ΔΔCt) method.  

Results 

Overview of the approach 
Towards prioritizing readily available candidate compounds for potential preclinical or clinical 
testing (Fig. 1), we performed in silico computational drug repurposing (CDR) by integrating [6] 
genetically regulated gene expression (GReX) for COVID-19 associated hospitalization [9] 
(covering 17 tissues with significant gene-trait associations, including lung and blood; Table S1) 
[8] with a perturbagen signature library that includes readily repurposable medications [13]. This 
approach prioritizes compounds with the potential to reverse GReX profiles linked to COVID-19 
susceptibility. To maximize translational potential, we restricted candidates to FDA-approved 
medications prescribed to individuals who tested positive for SARS-CoV-2 in the VHA. We 
subsequently (1) examined whether these candidates were associated with a decreased 
likelihood of testing positive for SARS-CoV-2, and (2) evaluated each compound’s in vitro 
activity against SARS-CoV-2 replication. 
 

 
Fig. 1. Data-driven GReX-based approach for computational drug repurposing in COVID-19. 
The schematic illustrates how genetically regulated gene expression (GReX) was combined 
with perturbagen signature libraries (LINCS) to identify candidate medications that may reverse 
the molecular dysregulation associated with COVID-19 susceptibility. Ranked compounds were 
subjected to two independent validation steps: (1) electronic medical records (EMR) validation 
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based on the VHA’s Leveraging Electronic Health Information to Advance Precision Medicine 
(LEAP) program and (2) in vitro validation in an anti-SARS-CoV-2 replication assay in A549 
cells. 

Genetically regulated gene expression (GReX-) based 
computational drug repurposing (CDR) analysis for COVID-19 
The CDR pipeline ranked compounds based on their ability to antagonize the polygenic 
COVID-19 GReX signature, quantified by a pseudo-z-score (Table S2). We further limited 
selection to those with ranks significantly lower than the median (FDR-adjusted Mann-Whitney 
U test p < 0.05; Table S1). From this process, the top 10 candidates included imiquimod, 
nelfinavir, saquinavir, everolimus, azathioprine, nisoldipine, cerulenin, pyrvinium-pamoate, 
retinol, and selamectin (Table 1). The leading mechanism of action (MOA) was anti-HIV 
protease inhibition, with nelfinavir and saquinavir both appearing in the top 10 (Table 1). 
  
Rank Compound MW FDR Mechanism of action (MOA) MOA Rank 
1 imiquimod 1.07×10-4 interferon inducer|toll-like receptor agonist N/A 
2 nelfinavir 5.40×10-3 anti-HIV protease inhibitor 1 
3 saquinavir 2.66×10-2 anti-HIV protease inhibitor 1 
4 everolimus 4.57×10-9 mTOR inhibitor 20 
5 azathioprine 8.36×10-4 dehydrogenase inhibitor N/A 
6 nisoldipine 2.34×10-2 calcium channel blocker 33 
7 cerulenin 3.65×10-11 fatty acid synthase inhibitor N/A 
8 pyrvinium-pamoate 5.15×10-20 androgen receptor antagonist 7 
9 retinol 4.13×10-2 retinoid receptor ligand N/A 
10 selamectin 1.15×10-2 nematocide N/A 
 
Table 1. Top 10 candidate compounds identified by the GReX-based computational drug 
repurposing pipeline. FDA-approved compounds are indicated in bold, and compounds that 
were prescribed to at least 100 veterans tested for SARS-CoV-2 in the Veterans Health 
Administration (VHA) are underlined. The leading mechanism of action (MOA) is anti-HIV 
protease inhibition. Each compound’s “MW FDR” represents the Mann–Whitney U (MW) test 
p-values (estimated across all signatures to get the null distribution), adjusted for multiple 
testing (FDR; among considered “launched” compounds). “MOA Rank” refers to the rank of the 
mechanism of action among “launched” compounds. 

Population-level and in vitro validation of top candidate 
compounds against COVID-19 incidence 
After excluding cerulenin, pyrvinium-pamoate, and selamectin (none currently FDA-approved), 
we investigated whether any remaining candidates were associated with reduced COVID-19 
incidence. From the broader VHA cohort of over 9 million U.S. veterans, 755,346 individuals 
received a SARS-CoV-2 test. We estimated the odds of a positive SARS-CoV-2 test if a 
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candidate compound was prescribed within 90 days prior to testing. Because nelfinavir, 
saquinavir, and nisoldipine were each prescribed to fewer than 100 individuals (Table S3), they 
were excluded from the final population-level analysis, leaving imiquimod, everolimus, 
azathioprine, and retinol (Table 1). We also examined compounds by MOA; while no mechanism 
of action was significant when adjusting for multiple test corrections (Table S2), the top class 
was anti-HIV protease inhibitors (Table 1). Since there is evidence that some protease inhibitors 
developed against HIV can bind the 3C-like protease (3CLpro) of SARS-CoV-2 [19], an additional 
analysis was performed for anti-HIV protease inhibitors. 
 
Among the four compounds tested individually (Table S9), azathioprine and retinol were each 
significantly associated with lower odds of testing positive for SARS-CoV-2 (Fig. 2A), after 
adjusting for important epidemiologic factors, medication indications, and propensity to be 
tested (Table S11). Adjusting for specific medication indications (Table S8) was critical, as it 
additionally controls for potential effects of the disease under treatment on COVID-19 incidence 
and disease-specific behavioral modification (e.g. immunocompromised patients may be more 
careful in adhering to rules or may get tested more frequently). Azathioprine (odds ratio=0.69, 
95% CI: 0.62-0.77) and orally administered retinol (odds ratio = 0.81, 95% CI: 0.72-0.92) both 
exhibited a significant association with reduced COVID-19 incidence (Fig. 2A). 
Imiquimod—despite documented systemic absorption when applied topically in humans [20] 
and mouse models [21]—did not show a significant association, potentially due to insufficient 
blood levels for systemic effects. Everolimus also lacked significance, likely because of a 
smaller exposed population (an order of magnitude fewer individuals) and insufficient power. 
 
For the leading MOA category (anti-HIV protease inhibitors), we analyzed HIV-positive patients 
on antiretroviral therapy, comparing those receiving protease inhibitors versus other 
antiretroviral regimens (Table S5). Despite similar comorbidity profiles between the two groups 
(Table S5), we detected no significant protective effect against SARS-CoV-2 (Fig. 2A; Table 
S10). 
 
Following these epidemiologic analyses, we assessed the in vitro anti-SARS-CoV-2 activity of 
imiquimod, everolimus, azathioprine, retinol, nelfinavir, and saquinavir using A549 cells 
(adenocarcinomic human alveolar basal epithelial cells) expressing ACE2. Nelfinavir and 
saquinavir—ranked second and third, respectively (Table 1)—demonstrated robust 
anti-SARS-CoV-2 activity, with viral load reductions of approximately 95% and 65% (2-ΔΔCt 
method), respectively (Fig. 2B). These results corroborate earlier findings in Vero E6 cells 
[22–24], underscoring the potential therapeutic relevance of these anti-HIV protease inhibitors. 
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Fig. 2. Epidemiological and in vitro validation of top candidates. A. Four individual compounds 
(imiquimod, everolimus, azathioprine, and retinol) and the highest-ranked medication category 
(anti-HIV protease inhibitors) were tested for their association with a reduced likelihood of a 
positive SARS-CoV-2 test. In total, 755,346 Veterans were included, and labels on the y-axis 
indicate the number of individuals who tested positive or negative. For the anti-HIV protease 
inhibitor category, participants receiving antiretroviral therapy with an anti-HIV protease inhibitor 
(n=1,105) were compared to those receiving other anti-HIV medications (n=5,450); the relative 
prescription frequency of anti-HIV protease inhibitors is also provided. The effect size (log(OR)) 
is plotted with 95% confidence interval (CI) error bars. ***, **, and * correspond to 
Bonferroni-adjusted p-values ≤0.001, ≤0.01, and ≤0.05, respectively. B. In vitro 
anti-SARS-CoV-2 activity was evaluated in ACE2-expressing A549 cells for imiquimod, 
nelfinavir, saquinavir, everolimus, azathioprine, and retinol (all at 10 μM for 24 hours). The effect 
on SARS-CoV-2 replication is shown as 2-ΔΔCt (normalized to 0.01% DMSO vehicle) with 95% CI 
error bars (n=3). Negative values reflect reduced viral replication. ***, **, and * correspond to 
Bonferroni-adjusted p-values ≤0.001, ≤0.01, and ≤0.05, respectively. 

Discussion 
Our study underscores the transformative potential of CDR as a strategy to accelerate the 
identification and validation of candidate therapeutics. By integrating GReX and perturbagen 
signature libraries (Fig. 1), we identified existing compounds that could be repositioned for 
COVID-19 [6, 7]. Previously, we validated a related pipeline by demonstrating that predicted 
therapeutics were progressively enriched for higher physician-curated indication levels across 
diverse disease categories (e.g., cardiovascular, autoimmune, neuropsychiatric) [7]. In this work, 
we employed an improved computational framework—a 5-method-rank approach [6] coupled 
with non-parametric aggregation and prioritization [8]—and extended its validation via (1) 
population-level analysis to assess whether predicted compounds were associated with reduced 
COVID-19 susceptibility, and (2) in vitro assays to evaluate anti-SARS-CoV-2 effects. 
 
The strength of the CDR pipeline lies in its multi-tiered validation strategy. Our method 
capitalizes on the polygenic nature of gene expression dysregulation related to 
COVID-19–associated hospitalization. Compounds are first selected through GReX and 
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perturbagen signature analyses, which identify agents that antagonize disease-linked imputed 
transcriptomes. We then incorporate real-world data from the Veterans Health Administration to 
evaluate whether these agents confer protective effects at the population level. Finally, we 
conduct in vitro assays to confirm their ability to inhibit SARS-CoV-2 replication. This layered 
approach increases confidence in candidates before dedicating the resources necessary for 
extensive clinical testing. Indeed, we identified multiple immunomodulators and two anti-HIV 
protease inhibitors as top candidates. Notably, azathioprine and retinol emerged as significantly 
protective against a positive SARS-CoV-2 test in our retrospective epidemiologic analysis (Fig. 
2a), while nelfinavir and saquinavir demonstrated robust (~95% and ~65%, respectively) in vitro 
viral load reductions (Fig. 2b). 
 
Although the pipeline was applied to COVID-19 as a proof of concept, its utility extends far 
beyond this specific context. The dual success of azathioprine and retinol in epidemiologic 
analyses underscores the promise of targeting immunomodulation in other conditions where 
immune system overactivation contributes to increased morbidity and mortality [25]. In parallel, 
nelfinavir and saquinavir’s strong in vitro anti-SARS-CoV-2 activity—despite low prescription 
rates (<0.5%) in the VHA population—highlights the potential for reusing less prescribed, often 
less-specific drugs. While initially focused on COVID-19, the core principle of harnessing host 
vulnerabilities via GReX-based computations is widely generalizable, offering a blueprint for 
rapid response in future outbreaks or for diseases with limited therapeutic options. 
 
One of the key findings of this study is the importance of complementary validation approaches. 
In some cases (e.g., azathioprine or retinol), in vitro experiments using a simple alveolar 
epithelial cell system may fail to capture the immunomodulatory mechanisms that likely 
contribute to their protective signals at the population level [26–32]. Conversely, nelfinavir and 
saquinavir exhibited potent antiviral effects in vitro; however, their medication class showed no 
overall protective effect in the cohort, partly because the class was represented by other drugs 
with higher prescription rates including anti-HIV protease inhibitors that had previously been 
proven ineffective in clinical trials [33]. This underscores why a multilayered —computational, 
real-world epidemiological, and mechanistic—strategy is essential for prioritizing the most 
promising leads, while acknowledging that different validation modalities capture different 
biological dimensions. 
 
Despite its advantages, the CDR pipeline is not without limitations. Our population-level analysis 
focused on COVID-19 incidence rather than disease severity, which was precluded by limited 
statistical power. As a result, we cannot infer whether azathioprine or retinol might reduce 
hospitalization or mortality. Additionally, among the seven FDA-approved compounds we 
investigated, only four were prescribed to at least 1,000 individuals in the 90-day window—an 
underrepresentation in a cohort of approximately seven million. Such constraints reflect the 
complexities inherent in real-world data, including prescription patterns and testing availability. 
Furthermore, the in vitro cell culture model does not recapitulate the complexities of in vivo 
immune interactions, which likely explains why certain immunomodulatory drugs were not 
similarly protective in the assay. 
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In conclusion, our CDR pipeline is a cost-effective and scalable approach to rapidly identify and 
validate candidate therapeutics. By uniting computational predictions, EMR-based 
population-level insights, and in vitro assays, we reduce the risk of pursuing false leads and 
clarify the mechanisms underlying observed clinical signals. Although demonstrated here in the 
context of COVID-19, the pipeline’s foundational principles—particularly its emphasis on 
targeting host vulnerabilities—can be extended to a wide array of complex diseases. Future 
studies integrating more extensive epidemiological data, preclinical animal models, and 
advanced molecular profiling techniques will help refine this approach and further expedite the 
discovery of high-impact therapies for diverse clinical challenges. 

Conclusions 
Our study highlights the transformative potential of the CDR pipeline as a cutting-edge approach 
to accelerate the identification and validation of candidate therapeutics. To demonstrate its 
utility, we applied this pipeline to COVID-19, showcasing its ability to respond rapidly to a global 
health crisis requiring swift therapeutic discovery By integrating GReX-based pipelines with 
cost-effective pharmacoepidemiologic and in vitro analyses, we efficiently filtered a broad range 
of existing medications to prioritize those warranting deeper investigation which could provide 
further mechanistic insight. Among the six computationally predicted FDA-approved agents 
selected for validation (either prescribed to individuals tested for SARS-CoV-2 or belonging to 
the top-ranked class of anti-HIV protease inhibitors), four (66.67%; azathioprine, retinol, 
nelfinavir, and saquinavir) exhibited epidemiological or in vitro evidence of protective effects, 
though none exhibited both simultaneously. Future research, including large-scale clinical trials, 
mechanistic studies, and analyses in expanded population cohorts, will be essential to validate 
and refine candidate therapies. 

Data availability 
All relevant information is included in the manuscript and supplementary tables. 

Code availability 
Our R package for computational drug repurposing, antagonist, can be accessed from our  
center’s GitHub repository: https://github.com/DiseaseNeuroGenomics/antagonist. 
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COVID-19  Coronavirus Disease 2019  
SARS-CoV-2  Severe Acute Respiratory Syndrome Coronavirus 2  
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GReX   Genetically Regulated Gene Expression  
EMR   Electronic Medical Record  
FDA   Food and Drug Administration  
VHA   Veterans Health Administration  
TWAS   Transcriptome-Wide Association Study  
LINCS   Library of Integrated Network-Based Cellular Signatures  
OR   Odds Ratio  
CI   Confidence Interval  
RT-PCR  Reverse Transcriptase Polymerase Chain Reaction  
ACE2   Angiotensin-Converting Enzyme 2  
BSL-3   Biosafety Level 3  
MOI   Multiplicity of Infection  
HIV   Human Immunodeficiency Virus  
FDR   False Discovery Rate 
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