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Abstract 

Objectives: In clinical and epidemiological studies, the modified Poisson and least-

squares regression analyses for binary outcomes have been standard multivariate analysis 

methods to provide risk ratio and risk difference estimates. However, their ordinary Wald-

type confidence intervals can suffer from biases of the robust variance estimators and the 

coverage probabilities of true effect measures are substantially below the nominal level 

(usually 95%). To address this issue, new accurate inference methods are needed. 

Methods: We provide two accurate inference methods based on the estimating equation 

theory for these regression models. A remarkable advantage of these regression models is 

that we know the correct models to be estimated: the conventional binomial regression 

models with log and identity links. Utilizing this modeling information, we first derive 

the quasi-score statistics, whose robust variances are estimated using the correct model 

information, and propose a confidence interval based on the regression coefficient test 

using 𝜒ଶ-approximation. Also, to further improve the large sample approximation, we 

propose adapting a parametric bootstrap method to estimate the sample distribution of the 

quasi-score statistic using the correct model information. In addition, we developed an R 

package, rqlm (https://doi.org/10.32614/CRAN.package.rqlm), that can implement the 

new methods via simple commands.  

Results: In extensive simulation studies, the coverage probabilities of the two new 

methods clearly outperformed the ordinary Wald-type confidence interval. We also 

illustrate the proposed methods via applications to an epidemiologic study of epilepsy. 

The proposed methods provided wider confidence intervals reflecting the statistical 

uncertainty. 

Conclusions: The current standard Wald-type confidence intervals might provide 

misleading evidence. If erroneous evidence is reported, it can potentially influence 

clinical practice, public health, and policy making. These possibly inaccurate results 

should be circumvented through the use of effective statistical methods. The new 

inference methods would provide more accurate evidence in future medical studies. 

 

Key words: generalized linear model, quasi-likelihood; estimating equation, separation 

problem, small sample inference. 
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Introduction 

Logistic regression has been a standard multivariate analysis method for analyzing binary 

outcome data in clinical and epidemiological studies. However, the resultant odds ratio 

estimator cannot be directly interpreted as an effect measure; it is only be interpreted as 

an approximation of the risk ratio estimator when the frequency of events is small [1,2]. 

Thus, the use of risk ratio and risk difference is recommended as an alternative in recent 

guidelines; for example, the statistical reporting guidelines for The New England Journal 

of Medicine recommended avoiding using the odds ratio when reporting the results of 

clinical trials. 

Because of the substantial limitations of logistic regression, other binomial 

regression models have conventionally been considered using the log or identity link 

functions to provide risk ratio and risk difference estimators [3]. However, the values of 

these binomial regression models are not limited within the range [0, 1], and the 

maximum likelihood (ML) estimates often cannot be defined in practice [4,5]. To address 

these issues, Zou [6] and Cheung [7] proposed modified Poisson and least-squares 

(Gaussian) regression analyses that can provide consistent risk ratio and risk difference 

estimators without computational difficulties. Their ideas are to formally fit the Poisson 

and least-squares regression models to the binary outcome data and calculate the 

regression coefficient estimates by the framework of the generalized linear model (GLM) 

[8]. The resultant estimators then provide consistent estimates of risk ratio and risk 

difference based on the estimating equation theory of GLM [9,10], even if the 

distributional assumptions are misspecified. In addition, the variance estimators should 

be changed to the sandwich variance estimators [11]. 

One relevant issue of the logistic regression is the serious biases of the regression 

coefficient estimator under small samples, and various correction methods have been 
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discussed [12,13]. Recently, Uno et al. [14] showed that the same bias can occur for the 

modified Poisson regression analysis, although this phenomenon does not occur for the 

modified least-squares regression. More importantly, they showed that the robust 

variance estimators for both of the two regression analysis methods can be biased and that 

the resultant Wald-type confidence intervals can seriously underestimate the actual 

statistical errors under small or moderate sample settings. In particular, under small and 

sparse data settings, these properties are especially serious, resulting in what is known as 

the "separation" condition—a situation where the outcome variable separates a predictor 

variable completely. This problem can occur even for large datasets with rare events or 

influential covariates. These properties can lead to seriously misleading evidence in 

clinical and epidemiological studies, and accurate alternative statistical inference methods 

are needed. 

In this article, we propose new confidence intervals for the modified Poisson and 

least-squares regression analyses based on the estimating equation theory, especially for 

accurate inferences under small or moderate sample settings. A remarkable advantage of 

these regression models is that we know the correct models to be estimated: the 

conventional binomial regression models with log and identity links. Using this modeling 

information, we first derive the quasi-score statistics for these regression models, whose 

robust variances are estimated using the correct model information. The quasi-score-

based inferences have been discussed for various pseudo-likelihood inferences (e.g., 

Mantel–Haenszel methods; [15,16]), and they are known to have favorable properties 

compared with the naïve Wald-type inferences. We subsequently propose a confidence 

interval based on the quasi-score test using 𝜒ଶ-approximation. Also, to further improve 

small sample approximations, we propose adapting a parametric bootstrap method to 

estimate the sample distribution of the quasi-score statistic using the correct model 
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information. In extensive simulation studies, we show that the coverage probabilities of 

the two new methods clearly outperform the ordinary Wald-type confidence interval. We 

also illustrate the proposed methods via applications to an epidemiologic study of epilepsy. 

We have developed an R package, rqlm (https://doi.org/10.32614/CRAN.package.rqlm), 

that can implement the new methods via simple commands. 

 

Modified Poisson and least-squares regressions 

We consider a cohort study consisting of 𝑛 participants with binary outcome 𝑌ଵ, … ,𝑌௡ 

(ൌ 1: event occurred, ൌ 0: event did not occur) and covariates 𝒙௜ ൌ ൫𝑥௜ଵ, 𝑥௜ଶ, … , 𝑥௜௣൯
்
 

for the 𝑖th subject (𝑖 ൌ 1, … ,𝑛ሻ. Conventionally, the binomial regressions with log link 

and identity link functions have been considered for multivariate analyses of risk ratio 

and risk difference, but they involve serious theoretical difficulties for defining the ML 

estimates because the values of regression functions do not fall within [0, 1] [4,5]. The 

modified Poisson and least-squares regressions have been proposed by Zou [6] and 

Cheung [7] as effective methods for these multivariate analyses. Their ideas involve 

formally fitting the Poisson and least-squares regression models to the binary outcome 

data, 

logሺEሾ𝑌௜|𝒙௜ሿሻ ൌ 𝛽଴ ൅ 𝛽ଵ𝑥௜ଵ ൅ 𝛽ଶ𝑥௜ଶ ൅ ⋯൅ 𝛽௣𝑥௜௣ 

Eሾ𝑌௜|𝒙௜ሿ ൌ 𝛽଴ ൅ 𝛽ଵ𝑥௜ଵ ൅ 𝛽ଶ𝑥௜ଶ ൅ ⋯൅ 𝛽௣𝑥௜௣ 

The resultant quasi-ML estimators 𝜷෡  of the regression coefficients 𝜷 ൌ

൫𝛽଴,𝛽ଵ, … ,𝛽௣൯
்
 become consistent estimators of the log-transformed risk ratios and risk 

differences on the target population [14]. The principle of these estimating methods is 

founded on the estimating equation theory of GLM [10]; that is, the estimating functions 

are unbiased even if the distribution forms are misspecified as long as the functional forms 

of the regression functions are correctly specified. In particular, for the modified least-
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squares regression, the Gauss–Markov theorem [17,18] is adapted and the quasi-ML 

estimator becomes the best linear unbiased estimator (BLUE); 𝜷෡  is an unbiased 

estimator and the most precise estimator for the regression coefficients of the binomial 

regression function [14]. The standard errors of 𝜷෡  of both models are consistently 

estimated by the sandwich variance estimator [11]. 

 

Confidence intervals for risk ratio and risk difference 

Confidence intervals based on the quasi-score statistics 

The modified Poisson and least-squares regressions are effective methods for multivariate 

analyses of risk ratio and risk difference; however, their ordinary Wald-type confidence 

intervals can seriously underestimate the statistical errors under small or moderate sample 

settings [14]. To address these issues, we first derive quasi-score tests for the regression 

coefficients. The two models are formulated as specific cases of the GLM, and the quasi-

likelihood estimating functions are expressed as 

𝑈ሺ𝜷ሻ ൌ෍𝑫௜
்𝑉௜

ିଵሺ𝑌௜ െ 𝜇௜ሻ
௡

௜ୀଵ

ൌ 0 

where 𝜇௜ is the mean function (ൌ exp ሺ𝜷்𝒙௜ሻ for the Poisson model and ൌ 𝜷்𝒙௜ for 

the Gaussian model) and 𝑫௜ ൌ 𝜕𝜇௜ 𝜕⁄ 𝜷; also, 𝑉௜ ൌ 𝑣ሺ𝜇௜ሻ is the variance function of the 

outcome variable (ൌ 𝜇௜ for the Poisson model and ൌ 1 for the Gaussian model) ሺ𝑖 ൌ

1, … ,𝑛ሻ . If the variance functions are correctly specified, the covariance matrices of 

𝑈ሺ𝜷ሻ become the Fisher information matrices 𝐼ሺ𝜷ሻ ൌ െ𝐸ሾ𝜕𝑈ሺ𝜷ሻ 𝜕𝜷⁄ ሿ. However, the 

variance functions are misspecified for these cases; thus, they become the robust 

covariance matrices, 𝐽ሺ𝜷ሻ ൌ 𝐸ሾ𝑈ሺ𝜷ሻ𝑈்ሺ𝜷ሻሿ . Also, the special feature of these 

inferences is that the correct models are known for us and the expectations can be 

substituted into the binomial regression models. Then, the concrete forms of the models 
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are then expressed for 

𝑈ሺ𝜷ሻ ൌ෍𝒙௜ሺ𝑌௜ െ 𝜇௜ሻ
௡

௜ୀଵ

ൌ 𝑿ሺ𝒀 െ 𝝁ሻ 

𝐽ሺ𝜷ሻ ൌ෍𝑉ሾ𝑌௜ሿ𝒙௜𝒙௜
்

௡

௜ୀଵ

ൌ෍𝜇௜ሺ1 െ 𝜇௜ሻ𝒙௜𝒙௜
்

௡

௜ୀଵ

ൌ 𝑿𝑾𝑿் 

where 𝒀 ൌ ሺ𝑌ଵ, … ,𝑌௡ሻ் ,𝝁 ൌ ሺ𝜇ଵ, … , 𝜇௡ሻ் ,𝑿 ൌ ሺ𝒙ଵ, … ,𝒙௡ሻ , and 𝑾 ൌ diagሼ𝜇ଵሺ1 െ

𝜇ଵሻ, … , 𝜇௡ሺ1 െ 𝜇௡ሻሽ. Although the definitions of the mean function 𝜇௜ differ between 

the two models, the function forms are the same. Note that 𝜇ଵ, … , 𝜇௡ should be truncated 

on [0, 1] on 𝑾  because the individual variance functions substantially estimate the 

variances of binomial variables and should not be negative values. However, those in 

𝑈ሺ𝜷ሻ should not be truncated; if they are truncated, the quasi-score functions are biased 

and unrealistically singular results can be obtained. We also note that 𝐸ሾ𝑈ሺ𝜷ሻሿ ൌ 𝟎 and 

𝑉ሾ𝑈ሺ𝜷ሻሿ ൌ 𝐽ሺ𝜷ሻ without large sample approximations. The quasi-score test statistics for 

the joint null hypotheses H0: 𝜷 ൌ 𝜷୬୳୪୪  are constructed using the exact means and 

covariance matrices. However, these null hypotheses are usually outside the scope of 

interest in practice. 

    We consider tests for composite null hypotheses H0: 𝛽ଵ ൌ 𝛽ଵ,୬୳୪୪ that correspond to 

the hypothesis tests for individual risk ratio and risk difference; without loss of generality, 

we consider the tests of regression coefficients of first explanatory variables and denote 

𝜷௖ ൌ ൫𝛽ଶ,𝛽ଷ, … ,𝛽௣൯
்
 . The quasi-score statistics are then constructed as 

𝑇ሺ𝛽ଵ,୬୳୪୪ሻ ൌ 𝑈்൫𝜷෩൯𝐽ିଵ൫𝜷෩൯𝑈ሺ𝜷෩ሻ 

where 𝜷෩ ൌ ൫𝛽෨଴,𝛽ଵ,୬୳୪୪,𝜷෩௖൯
்
; 𝛽෨଴ and 𝜷෩௖ ൌ ൫𝛽෨ଶ,𝛽෨ଷ, … ,𝛽෨௣൯

்
 are the constrained quasi-

ML estimates of ሼ𝛽଴,𝜷௖ሽ  under H0. The constrained quasi-ML estimates can be 

calculated via the same modified Poisson and least-squares regression analyses when 𝑥ଵ௜ 

is dropped from the explanatory variables and offsets 𝛽ଵ,୬୳୪୪𝑥ଵ௜ are added (𝑖 ൌ 1, … ,𝑛). 
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Under the null hypotheses, the quasi-score test statistics follow the 𝜒ଶ-distribution with 

approximately one degree of freedom [19]. Also, using these quasi-score tests, we can 

construct the 100 ൈ ሺ1 െ 𝛼ሻ% confidence intervals of 𝛽ଵ by the sets of null values that 

satisfy 

𝑇൫𝛽ଵ,୬୳୪୪൯ ൑ 𝜒ଵ,ଵିఈ
ଶ  

where 𝜒ଵ,ଵିఈ
ଶ  is the upper 𝛼 th percentile of the 𝜒ଶ -distribution with one degree of 

freedom. The confidence limits can be calculated by adequate numerical methods (e.g., 

the bisectional methods [20]). 

As shown in the simulation studies, the confidence intervals based on the quasi-score 

statistics have generally favorable properties compared with the ordinary Wald-type 

confidence intervals obtained using the standard sandwich variance estimators. However, 

the confidence intervals when using the large sample 𝜒ଶ  approximations still have 

limitations with respect to achieving sufficient coverage performance under small sample 

settings [21]; in addition, more accurate approximations of the sample distributions are 

needed for valid inferences. 

 

Bootstrap confidence intervals based on the quasi-score statistics 

To improve the accuracy of approximations of the sample distributions of the quasi-score 

statistics, we propose using the bootstrap method. Again, we focus on the advantage of 

these regression methods—that the correct distributional assumptions on the target 

population are known (binomial regression models). Thus, we propose performing 

parametric bootstrap resampling from the "correct" binomial regression models by 

substituting the regression coefficients 𝜷 for the null value and the constrained quasi-

ML estimates. The bootstrap algorithm for the tests of H0: 𝛽ଵ ൌ 𝛽ଵ,୬୳୪୪ is as follows. 
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Algorithm (bootstrap tests for the quasi-score statistics) 

1. For the modified Poisson and least-squares regression models, compute the constrained 

quasi-ML estimates 𝛽෨଴ and 𝜷෩௖ under H0: 𝛽ଵ ൌ 𝛽ଵ,୬୳୪୪. 

2. Resample 𝑌ଵ
ሺ௕ሻ, … ,𝑌௡

ሺ௕ሻ from the binomial regression models with log or identity links 

whose regression coefficients 𝜷 are fixed to 𝜷෩, 

Pr ሺ𝑌௜ ൌ 1|𝒙௜ሻ ൌ exp ሺ𝛽෨଴ ൅ 𝛽ଵ,୬୳୪୪𝑥௜ଵ ൅ 𝛽෨ଶ𝑥௜ଶ ൅ ⋯൅ 𝛽෨௣𝑥௜௣ሻ 

Pr ሺ𝑌௜ ൌ 1|𝒙௜ሻ ൌ 𝛽෨଴ ൅ 𝛽ଵ,୬୳୪୪𝑥௜ଵ ൅ 𝛽෨ଶ𝑥௜ଶ ൅ ⋯൅ 𝛽෨௣𝑥௜௣ 

via parametric bootstraps, 𝐵 times (𝑖 ൌ 1, … ,𝑛; 𝑏 ൌ 1,2, … ,𝐵). Note that, if the values 

of regression functions on the right-hand sides of these equations exceed the range [0, 1], 

they should be truncated at 0 or 1. Also, the design matrix 𝑿 is not altered from the 

original data across the resampling. 

3. Compute the quasi-score statistic 𝑇ሺ௕ሻሺ𝛽ଵ,୬୳୪୪ሻ  for the 𝑏 th bootstrap sample 

𝑌ଵ
ሺ௕ሻ, … ,𝑌௡

ሺ௕ሻ (𝑏 ൌ 1,2, … ,𝐵).  

4. Calculate the empirical distribution function of 𝑇ሺଵሻ൫𝛽ଵ,୬୳୪୪൯, … ,𝑇ሺ஻ሻሺ𝛽ଵ,୬୳୪୪ሻ—

specifically, 𝐹ത் ሺఉభ,౤౫ౢౢሻሺ𝑡ሻ, which is the bootstrap estimate of the sample distribution of 

𝑇൫𝛽ଵ,୬୳୪୪൯. 

5. Implement the hypothesis test for 𝑇൫𝛽ଵ,୬୳୪୪൯ using 𝐹ത் ሺఉభ,౤౫ౢౢሻሺ𝑡ሻ for the reference 

distribution. 

 

Because accurate tail area estimation of the null distribution requires a large number of 

replications [22], the number of bootstrap resamplings 𝐵 should be sufficiently large 

(usually, at least 1000). 

    The corresponding 100 ൈ ሺ1 െ 𝛼ሻ%  confidence intervals of 𝛽ଵ  can be 

constructed by the sets of 𝛽ଵ,୬୳୪୪ that satisfy 

𝑇൫𝛽ଵ,୬୳୪୪൯ ൑ 𝐹ത் ሺఉభ,౤౫ౢౢሻሺ1 െ 𝛼ሻ 
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The confidence limits can also be calculated by adequate numerical methods (e.g., the 

bisectional methods; [20]). The parametric bootstrap approach effectively uses the 

distributional information of the correct models; thus, the approximation is expected to 

be improved compared with the naïve asymptotic normal approximation. The actual 

performances are demonstrated in the simulation studies. 

 

Software 

We developed an R package, rqlm (https://cran.r-project.org/web/packages/rqlm), to 

perform all of the proposed methods via simple commands. 

 

Simulations 

To illustrate the operating characteristics of the proposed methods, we performed 

simulation studies. For data generation, we considered the binomial regression models 

with log and identity link functions; parameter settings were selected to mimic the 

epilepsy epidemiologic study described in the next section. Four explanatory variables 

were considered: 𝑥௜ଵ was the main treatment/exposure variable; it followed a Bernoulli 

distribution with probability 0.20 or 0.10; 𝑥௜ଶ was a confounding variable that followed 

a Bernoulli distribution with probability 0.773 and was found to have a correlation with 

𝑥௜ଵ  through measurement of the odds ratio [OR] 

Pr ሺ𝑥௜ଵ ൌ 1ሻPr ሺ𝑥௜ଶ ൌ 0ሻ Pr ሺ𝑥௜ଵ ൌ 0ሻPr ሺ𝑥௜ଶ ൌ 1ሻ⁄   = 25, 15, and 5; 𝑥௜ଷ  followed a 

Bernoulli distribution with probability 0.455, and 𝑥௜ସ  followed N(29.0, 7.37). The 

outcome variable 𝑌௜ was then generated from a Bernoulli distribution with probability 

Pr ሺ𝑌௜ ൌ 1ሻ ൌ expሺ𝛽଴ ൅ 𝛽ଵ𝑥௜ଵ ൅ 𝛽ଶ𝑥௜ଶ ൅ 𝛽ଷ𝑥௜ଷ ൅ 𝛽ସ𝑥௜ସሻ 

Pr ሺ𝑌௜ ൌ 1ሻ ൌ 𝛽଴ ൅ 𝛽ଵ𝑥௜ଵ ൅ 𝛽ଶ𝑥௜ଶ ൅ 𝛽ଷ𝑥௜ଷ ൅ 𝛽ସ𝑥௜ସ 

The intercept 𝛽଴ was set by controlling the overall event rate of the cohort; the event rate 
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was varied as 0.40 and 0.20. The other regression coefficients were set as 

ሺ𝛽ଵ,𝛽ଶ,𝛽ଷ,𝛽ସሻ ൌ ሺ0.205,െ0.271, 0.000, 0.153ሻ  for the former model, and ൌ

ሺ0.116,െ0.041, 0.0037,0.023ሻ for the latter model. We considered the sample size 𝑛 ൌ

20, … ,100. We performed 5,000 simulations for the 108 scenarios, for both the risk ratio 

and risk difference regression models. 

    For comparisons, we analyzed the individual dataset by the ordinary modified 

Poisson and least-squares regressions using the Wald-type confidence intervals obtained 

by the standard sandwich variance estimator. We then applied the two proposed 

confidence intervals based on the quasi-score statistic and the bootstrap approach. For the 

latter method, we performed 2,000 bootstrap resamplings to estimate the bootstrap 

distributions. We assessed the coverage probabilities of 95% confidence intervals for 𝛽ଵ 

of the three methods. 

    The results of the simulation studies are presented in Figures 1 and 2 for the modified 

Poisson regression and in Figures 3 and 4 for the modified least-squares regression. The 

empirical coverage rates of 95% confidence intervals for the 5,000 simulations are plotted. 

For the modified Poisson regression, the Wald-type 95% confidence intervals generally 

suffered undercoverage under small or moderate sample settings. These results were 

caused by the biases of both of the regression coefficient estimates and the robust standard 

error estimates. The degrees of undercoverage became serious if the event rate or the 

exposure rate became too small and the correlations of 𝑥௜ଵ and 𝑥௜ଶ became too large; 

these settings possibly coincide with the separation or quasi-separation settings. In 

addition, the two proposed confidence intervals retained the coverage probabilities 

around the nominal level (95%) for most of the scenarios. The quasi-score-based 

confidence interval could reflect undercoverage bias under some small sample settings 

(generally, 𝑛 ൑ 50 ); however, the coverage properties were consistently favorable 
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compared with those of the Wald-type confidence interval. In addition, the bootstrap-

based confidence interval showed better coverage probabilities in general, as expected. 

Even for especially small sample settings (𝑛 ൌ 20), the coverage probabilities had values 

around the nominal level (95%) consistently. 

    For the modified least-squares regression, the overall features of the results of 

simulations were similar to those for the modified Poisson regression cases. The Wald-

type 95% confidence intervals were generally prone to undercoverage bias under small 

or moderate samples. Note that the quasi-ML estimates correspond to the BLUE 

according to the Gauss–Markov theorem; thus, there were no biases for the point 

estimator. However, the robust variance estimator was seriously biased under small or 

moderate sample settings. The degrees of undercoverage also became serious if the event 

rate or the exposure rate became excessively small and the correlations of 𝑥௜ଵ and 𝑥௜ଶ 

became large. In addition, the proposed confidence intervals showed favorable coverage 

properties. The quasi-score-based confidence interval could be prone to undercoverage 

under some settings; however, the coverage properties were much better than those of the 

Wald-type confidence interval. Also, the bootstrap-based confidence interval further 

improved the coverage properties consistently. Even for especially small sample settings 

(𝑛 ൌ 20), the coverage probabilities consistently have values close to the nominal level 

(95%). These simulation results would indicate the proposed bootstrap-based confidence 

interval provide accurate interval estimates generally, and the validity is retained even 

under small and sparse data settings. 

 

Applications 

To illustrate the usefulness of the proposed methods, we applied them to an epidemiologic 

study of epilepsy by Arai et al. [23], which is a retrospective cohort study to evaluate the 
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factors associated with the employment statuses of patients with a history of childhood-

onset drug-resistant epilepsy (N = 56). We analyzed this cohort data using the modified 

Poisson and least-squares regressions. The outcome was employment status (1 = 

nonemployment, 0 = employment; the number of events was 14), and four explanatory 

variables were involved: age at follow up, gender, mood disorder symptoms, and 

graduating from a school for special needs education. Note that the last two variables 

were highly correlated, and both of these variables were found to be strongly associated 

with the outcome through univariate analyses [23]. 

    The results are presented in Table 1. The confidence intervals based on the quasi-

score statistic and bootstrap approach were asymmetric around the quasi-ML estimates 

for many cases. In some cases, the locations of the confidence intervals also differed 

substantially from those of the Wald-type confidence intervals. This phenomenon is 

generally known to occur in the case of efficient score-based confidence intervals [21]. 

For the modified Poisson regression, only the 95% Wald-type confidence interval of the 

fourth covariate did not cover the null value (= 1). The proposed two confidence intervals 

also did not cover 1; however, the bootstrap confidence interval showed a large effect 

compared with the Wald-type confidence interval. For the third covariate, the confidence 

interval based on the quasi-score statistic was narrower than the Wald-type confidence 

interval and did not cover 1; however, the bootstrap-based confidence interval was much 

wider and did not involve 1. These results might be influenced by the strong correlation 

between these two covariates. In addition, for the modified least-squares regression, the 

Wald-type confidence interval of the third covariate was substantially widened by the 

bootstrap-based approach. Also, the bootstrap confidence interval for the fourth covariate 

was wider than the Wald-type confidence interval. Considering the operating 

characteristics shown by simulations, the conclusions obtained from the ordinary Wald-
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type confidence intervals might be misleading; the improved methods would likely 

provide more precise evidence. 

 

Discussion 

The modified Poisson and least-squares regressions have been widely used in recent 

clinical and epidemiological studies because they can provide interpretable effect 

measure estimates without computational difficulties. Considering the difficulty of the 

interpretability of the odds ratio, these methods will be increasingly adopted in future 

studies as effective alternatives to the conventional logistic regression. In this article, we 

revealed that the ordinary Wald-type confidence intervals of these methods are prone to 

serious undercoverage under small or moderate sample settings, especially under 

separation or quasi-separation settings. As clearly shown in the real data example, the 

ordinary confidence intervals might provide misleading evidence; if erroneous evidence 

is reported, it can potentially influence clinical practice, public health, and policy making. 

These possibly inaccurate results should be circumvented through the use of effective 

statistical methods. The new accurate confidence intervals and their numerical evidence 

provided in this article will be useful in future medical studies. 

    In the simulation-based evidence, the ordinary Wald-type confidence interval 

showed serious undercoverage performance. For the modified Poisson regression, a 

relevant reason for the invalid property is the small sample bias; although the bias of the 

ML estimator for the GLM is well known [24], a similar bias can occur for the quasi-ML 

estimator for the misspecified models. Effective solutions to address this bias would be 

the Firth-type bias correction [25] and higher-order bias correction methods [24]. We will 

discuss these bias reduction methods in subsequent papers. In addition, for the modified 

least-squares regression, the resultant estimator is unbiased because it corresponds to the 
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BLUE according to the Gauss–Markov theorem and no corrections are needed if this 

criterion is considered. However, the undercoverage properties shown in the simulation 

studies were severe and the bias of the ordinary robust variance estimator should be 

adequately addressed in practice. The proposed new methods are expected to be a good 

solution. 

Another future issue is adapting improved robust variance estimators for the Wald-

type confidence interval [26]. Although the accuracies of existing improved robust 

variance estimators are generally better than that of the ordinary sandwich variance 

estimator, deterministic conclusions cannot be provided for their relative performances 

generally [26] because all the methods are founded on approximations (e.g., higher-order 

approximations). Although simulation-based numerical evidence can provide good case-

by-case comparative performance, they would not be generic properties. However, the 

bootstrap-based approach proposed in the present article is founded on the quasi-score 

statistic that effectively uses information of the null hypothesis and adapts the flexible 

sample distribution estimate. We therefore believe it is one of the most effective methods 

among the competing methods. The proposed methods can be used as accurate and 

effective alternatives to the ordinary Wald-type inference methods in clinical and 

epidemiological studies. 
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Figure 1. Results of the simulations for the modified Poisson regression (black: ordinary Wald CI, blue: quasi-score CI, red: bootstrap CI by the 

quasi-score statistic; CI: confidence interval).  
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Figure 2. Results of the simulations: modified Poisson regression (black: ordinary Wald CI, blue: quasi-score CI, red: bootstrap CI by the quasi-

score statistic; CI: confidence interval).  
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Figure 3. Results of the simulations: modified least-squares regression (black: ordinary Wald CI, blue: quasi-score CI, red: bootstrap CI by the 

quasi-score statistic; CI: confidence interval).  

Event rate 40%, Exposure rate 20%, OR=25 Event rate 40%, Exposure rate 20%, OR=15 Event rate 40%, Exposure rate 20%, OR=5

Event rate 40%, Exposure rate 10%, OR=25 Event rate 40%, Exposure rate 10%, OR=15 Event rate 40%, Exposure rate 10%, OR=5

20 40 60 80 100

0.
80

0.
85

0.
90

0.
95

1.
00

n

C
ov

er
ag

e 
Pr

ob
ab

ilit
y

20 40 60 80 100

0.
80

0.
85

0.
90

0.
95

1.
00

n

C
ov

er
ag

e 
Pr

ob
ab

ilit
y

20 40 60 80 100

0.
80

0.
85

0.
90

0.
95

1.
00

n

C
ov

er
ag

e 
Pr

ob
ab

ilit
y

20 40 60 80 100

0.
80

0.
85

0.
90

0.
95

1.
00

n

C
ov

er
ag

e 
Pr

ob
ab

ilit
y

20 40 60 80 100

0.
80

0.
85

0.
90

0.
95

1.
00

n

C
ov

er
ag

e 
Pr

ob
ab

ilit
y

20 40 60 80 100

0.
80

0.
85

0.
90

0.
95

1.
00

n

C
ov

er
ag

e 
Pr

ob
ab

ilit
y

 . 
C

C
-B

Y
-N

C
-N

D
 4.0 International license

It is m
ade available under a 

perpetuity. 
 is the author/funder, w

ho has granted m
edR

xiv a license to display the preprint in
(w

h
ich

 w
as n

o
t certified

 b
y p

eer review
)

preprint 
T

he copyright holder for this
this version posted January 10, 2025. 

; 
https://doi.org/10.1101/2025.01.10.25320320

doi: 
m

edR
xiv preprint 

https://doi.org/10.1101/2025.01.10.25320320
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
 

 

Figure 4. Results of the simulations: modified least-squares regression (black: ordinary Wald CI, blue: quasi-score CI, red: bootstrap CI by the 

quasi-score statistic; CI: confidence interval).  
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Table 1. Results of the modified Poisson and least-squares regression analyses for the epilepsy epidemiologic study (N = 56) †. 

 Risk ratio estimation by the modified Poisson regression Risk difference estimation by the modified least-squares regression 

 Quasi-ML estimate 
(Wald 95%CI) 

95%CI by the quasi-
score statistic 

Bootstrap 95%CI by 
the quasi-score 

statistic 

Quasi-ML estimate 
(Wald 95%CI) 

95%CI by the quasi-
score statistic 

Bootstrap 95%CI by 
the quasi-score 

statistic 

Age at follow up 
1.013 

(0.982, 1.045) 
(0.981, 1.050) (0.978, 1.067) 

0.006 
(−0.003, 0.014) 

(−0.003, 0.014) (−0.003, 0.022) 

Gender (male vs. female) 
1.372 

(0.638, 2.950) 
(0.669, 3.030) (0.614, 3.509) 

0.097 
(−0.089, 0.283) 

(−0.063, 0.237) (−0.071, 0.426) 

Mood disorder symptoms 
2.076 

(0.781, 5.519) 
(1.001, 3.230) (0.882, 7.385) 

0.498 
(0.153, 0.842) 

(0.103, 0.721) (0.067, 1.000) 

Graduating from a school 
for special needs education 

0.240 
(0.075, 0.765) 

(0.100, 0.686) (0.028, 0.721) 
−0.422 

(−0.758, −0.087) 
(−0.688, −0.098) (−0.781, −0.086) 

† CI: confidence interval. 
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