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Abstract

Dengue fever is a public health concern that demands efforts to mitigate its impact. We
aim to investigate the influence of key parameters temperature-dependent on dengue trans-
mission dynamics in Foz do Iguaçu, a triple border municipality in south Brazil, applying
a mathematical model composed by systems of ordinary differential equations. Adjusted
model simulation is consistent with the observed data. The effective reproduction number
was calculated for detecting changes in dengue transmission over time and to timely detect
the beginning of epidemics. Additionally, we explore the potential effects of climate variabil-
ity on dengue dynamics. Our findings show the importance of vector population dynamics,
climate and incidence, contributing to a deeper understanding of dengue transmission dy-
namics in Foz do Iguaçu and providing a foundation for optimizing intervention strategies,
also, in other cities, enhancing our ability to predict and manage dengue outbreaks and
supporting public health efforts to control measures. Keywords: Dengue, Arboviruses,
Climate, Mathematical model, Epidemiological model, Infectious diseases

1 Introduction

Dengue is a viral vector-borne disease with a complex transmission dynamic and fast-growing
burden, posing challenges for surveillance and control programs worldwide. The dengue virus,
classified into four serotypes (DENV1-4) [7], is endemic in tropical and subtropical regions of
the world and has its distribution expanding to higher altitudes and latitudes, due to the erosion
of climate barriers [29].

The primary dengue vectors, Aedes aegypti and Aedes albopictus mosquitoes, are highly
anthropophilic and well-adapted to urban environments. In Brazil, Ae. aegypti reinvaded the
country after elimination campaigns in the mid-20th century and is now present in most mu-
nicipalities. These mosquitoes also transmit Zika and Chikungunya viruses, which have been
circulating in Brazil since 2014[16].
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Dengue transmission dynamics are inherently linked to climatic factors, as they influence
the ecology of its invertebrate vectors. Vector density, often measured as the average number
of mosquitoes per person, depends on the availability of breeding sites and suitable climate
conditions for survival and reproduction [12, 22]. Additionally, there is also a large amount of
literature on the effects of climate on mosquito life cycle and vector capacity. Temperature affects
the transmission cycle of dengue, by shortening the extrinsic incubation period [10]. The role of
temperature on dengue dynamics [30, 22, 13, 46] is well-recognized, with many countries using
seasonal climate data to build predictive models and issue dengue warnings [37, 28, 40, 12, 23].

Mathematical models are essential tools for understanding arbovirus transmission dynamics.
By incorporating both human and vector components and being parameterized with compre-
hensive datasets, these models provide valuable insights for testing hypotheses about disease
transmission and exploring intervention scenarios. Such exploratory simulations can predict
future outbreaks, improve preparedness, and support the planning of effective vector control
interventions and timely responses — a critical challenge for public health authorities. However,
despite this potential, modelers rarely have access to long-term measures of both entomological
(adult mosquito indices) and epidemiological time series (incidence) to fit these models and test
hypotheses [41, 42, 12]. Foz do Iguaçu, located in southern Brazil, serves as a unique and strate-
gic site for assessing dengue transmission at the fringe of the disease distribution. This city lies
in the tri-border area with Argentina (Puerto Iguazu) and Paraguay (Ciudad del Este), making
it a critical point for studying transboundary dengue dynamics. The region is characterized by
a humid subtropical climate with cool winter and warm summer. Foz do Iguaçu has recorded
dengue fever since 1998, with nine outbreaks between 2010 and 2021 according to [5] data. Since
2017, the city has operated an unique integrated entomological and epidemiological surveillance
system. The system monitors a large set of adult mosquito traps across the city every two
months and detects viruses in mosquitoes and human samples, showing good predictive value
[25]. This system detected a drastic increase in mosquito abundance during the 2020-2022 pe-
riod. This rich dataset provides an opportunity to investigate the relationship between mosquito
dynamics and dengue outbreaks using mathematical models. With this aim, in this paper, we
propose an enhanced deterministic model assuming functions of temperature and time for the
entomological parameters to analyze and simulate the temporal dynamic of dengue in Foz do
Iguaçu, evaluating the influence of climate on the vector population and their consequent impact
on the dengue incidence.

2 Materials and Methods

2.1 Data description and processing

Foz do Iguaçu is situated in the Western part of the Paraná State, Brazil, at 25°32’49 S
latitude and 54°35’18” W longitude. The city stands at an elevation of 164 meters above sea
level and covers a total area of 618.352 km2. The mean annual temperature in the region is
20.4°C, and the annual average rainfall amounts to 1,800 mm. The municipality is home to a
population of 256 thousand inhabitants and has a HDI of 0.751 [20].

2.1.1 Epidemiological data

The linelist of anonymized dengue cases by local of residence in Foz do Iguaçu was obtained
from Notifiable Diseases Information System (SINAN), [5], provided by Foz do Iguaçu Health
Department. The dataset contains daily georeferenced information on reported cases, for the
period between 07/01/2010 and 30/12/2022. In this period, 23.52% of the notified cases were
lab-confirmed, and 2.05% had serotype information.
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2.1.2 Entomological data

Data on mosquito traps are aggregated according to high-quality bimonthly collection. We
use data (odd months) from 09/01/2017 to 13/05/2022, totaling 33 collections about trapped
mosquitoes provided by the city’s Zoonosis Control Center (CCZ). There are 2500 georeferenced
mosquito traps (Adultrap) distributed throughout the city. The trap is designed to attract and
capture female mosquitoes seeking oviposition sites. The entomological data came from the Foz
do Iguaçu citywide vector surveillance program that bimonthly deploys adult mosquito traps
throughout the city.

We calculated the MFAI (Mean Female Aedes sp. index) as the ratio between the number
of females captured and the number of traps inspected [25]. Based on observations from Foz
do Iguaçu field entomologists, mosquito counts per trap are considered reliable only for those
captured within a maximum of 15 days prior to the collection date. Mosquitoes collected earlier
than this period are at a significant risk of deterioration or predation. Consequently, for model
fitting purposes, we assume that the MFAI metric represents the mosquitoes captured in the
trap within the last 15 days.

2.1.3 Climate data

Meteorological data collected by the Meteorological Station at Foz do Iguaçu was obtained
from SistemaMeteorológico do Paraná (SIMEPAR) (http://www.simepar.org/prognozweb/simepar).
It contains daily information about the average and the minimum and maximum tempera-
tures, precipitation, average humidity and wind speed for the period between 01/01/2010 and
30/12/2022. Meteorological data with missing values were filled using the average of the previous
seven days.

2.2 Mathematical modelling

2.2.1 Complete dengue model

Aiming to mathematically describe dengue transmission dynamics in Foz do Iguaçu, we
departed from the deterministic model proposed by [35], referred here as complete dengue model
(Fig. 1, eq. 1). The model describes the transmission of a single dengue serotype between
mosquitoes and humans in a homogeneous setting whereM consists of the adult female mosquito
population and A aquatic stage mosquitoes. The total number of adult females, M , is divided
into three subdivisions: susceptible Ms, exposed Me and infected mosquitoes Mi.

As for the total human population, it is considered constant and has four compartments:
susceptible Hs, exposed He, infectious Hi and recovered Hr. Thus, we have M = Ms+Me+Mi

and H = Hs +He +Hi +Hr.
Figure 1 shows a diagram of the complete dengue model. The entomological parameters that

assume different values for different temperatures are: δ(T (t)) is the oviposition rate, γm(T (t))
is the rate at which mosquitoes emerge from the aquatic phase, µa(T (t)) and µm(T (t)) are the
aquatic and adult phase mosquito mortality rate, respectively. C(t) is the mosquito carrying
capacity, assumed constant, but later this assumption was relaxed, as seen in the results. The
ca and cm are death rates of immature and adult mosquitoes, respectively, induced by control
efforts. The human mortality rate is written as µh. We denote the average number of bites
per mosquito per day as b, the per capita mosquito biting rate. We consider βm and βh as the
transmission probabilities from human to mosquito and from mosquito to human, respectively.
The parameters θm and θh are the rates at which mosquitoes and humans become infectious
and their reciprocal quantities, 1/θm and 1/θh are known as extrinsic and intrinsic incubation
periods, respectively.
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Figure 1: Diagram of the complete model proposed by [35] showing the population compartments
and the transition rates.

We reproduce (1), the system of non-linear differential equations of the complete model [35].

dA

dt
= kδ(t)

(
1− A

C(t)

)
M − (γm(t) + µa(t) + ca(t))A,

dMs

dt
= γm(t)A− b(t)βm(t)MsHi

H
− (µm(t) + cm(t))Ms,

dMe

dt
=

b(t)βm(t)MsHi

H
− (θm(t) + µm(t) + cm(t))Me,

dMi

dt
= θm(t)Me − (µm(t) + cm(t))Mi,

dHs

dt
= µh(H −Hs)−

b(t)βh(t)HsMi

H
,

dHe

dt
=

b(t)βh(t)HsMi

H
− (θh + µh)He,

dHi

dt
= θhHe − (αh + µh)Hi,

dHr

dt
= αhHi − µhHr.

(1)

To fit this model to Foz do Iguaçu’s data, it was necessary to modify some of its assumptions,
as explained in subsection 2.2.3.

2.2.2 Mosquito capture model

We proposed a sub-model containing only the mosquito population, without infection to fit
the mosquito component of the complete model with available trap data, refereed as mosquito
capture model. In this model, we additionally represented the trapping process, in a similar way
to [24]. The population of trapped mosquitoes is included in the model as an extra equation,
however the variables and parameters are the same as in the complete model.
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

dA

dt
= kδ(t)

(
1− A

C(t)

)
M − (γm(t) + µa(t))A,

dM

dt
= γm(t)A− µm(t)M − Trapped,

dTrapped

dt
= α

Ntr

Ho
M.

(2)

Note that the mosquito capture model is a particular case of the complete model for which
there is no infection; due to that, there are only the aquatic and adult phases of the mosquito
population. The third equation counts the captured mosquitoes, where the variable Trapped(t)
represents the accumulated number of mosquitoes captured during the surveillance period from
time 0 until t.

To fit the model with data from mosquitoes captured in each bimonthly collection, we cal-
culate the MFAI as in [24], which is the ratio between the number of females captured and
the number of traps inspected in the collection. The theoretical MFAI is calculated every two
months tb by the equation,

MFAIteo(tb) =
Trapped(tb)− Trapped(tb − 1)

Ntr
. (3)

2.2.3 Temperature-dependent entomological parameters

Following [44], we assume that the entomological parameters show temporal variation as-
sociated with the daily temperature in Foz do Iguaçu. Table 1 describes the complete model
parameters including the entomological ones, as well as the range of values.
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Table 1: Complete dengue model: symbols, description, values, and references.

Parameter Biological meaning Range of values Value/Comment Sources

N Foz do Iguaçu’s population − 256088 [19]

Ntr number of mosquito traps − 2412 data*

Ho number of households − 102751 data*

α mosquito trap capture rate 0− 1 0.02 data*

µh human mortality rate [3.425 − 5.479] ×
10−5day−1

3.605 · 10−5 [35]

θh intrinsic incubation rate 0.1− 0.33 day−1 0.125 [8]

αh recovering rate 0.083 − 0.333
day−1

0.125 [2]

k fraction of female hatched
from all eggs

0− 1 0.5 [35]

ca aquatic control effort rate 0− 1 0 [35]

cm adult control effort rate 0− 1 0 [35]

δ(t) oviposition rate 0− 8.8960 day−1 δ(t) = δ(T (t)) [45]

µm(t) mosquito mortality rate 0.0301− 1 day−1 µm(t) = µm(T (t)) [45]

µa(t) aquatic mortality rate 0.0234− 1 day−1 µa(t) = µa(T (t)) [45]

γm(t) aquatic transition rate 0− 0.1724 day−1 γm(t) = γm(T (t)) [45]

θm(t) extrinsic incubation rate 0.02− 0.2 day−1 θm(t) = θm(T (t))
according to eq.
(4)

[45]

b(t) bite per mosquito per day 0− 1 day−1 b(t) = b(T (t)) ac-
cording to eq. (5)

[6]

βm(t), βh(t) effective contact rates 0− 1 βm,h(t) =
βm,h(T (t)) ac-
cording to eq.
(5)

[6]

ab coefficient of the biting rate
function b(t)

0− 1 5.22× 10−4 fitted

am coefficient of effective contact
rate function βm(t)

0− 1 4.203× 10−4 fitted

ah coefficient of effective contact
rate function βh(t)

0− 1 1.05× 10−3 fitted

C(t) mosquitoes carrying capacity [0− 3]× 105 according to eq.
(6)

fitted

C0 initial carrying capacity 0− 3 1.33 fitted

bcap coefficient of carrying capac-
ity function

0− 1.2 0.3165 fitted

ϵ carrying capacity threshold 0− 1820 days 909 fitted

ϕ proportion of susceptible in-
dividuals

0− 1 0.14 fitted

* Data provided by Foz do Iguaçu Health Department and Foz do Iguaçu Zoonosis Control
Center (CCZ).

We used the values for five entomological parameters that vary with temperature, δ(t),
µm(t), µa(t), γm(t) and θm(t) proposed by [45]. The expressions for parameters δ, µm, µa, γm
are obtained in [45] and [44], to a polynomial of degree n, Pn(T ) = b0 + b1T + · · ·+ bnT

n. Now,
for the extrinsic incubation θm, according to [27], it depends on the temperature as follows:
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θm(T (t)) =
Ts

T (t)− Tm
, (4)

where T (t) is the average daily temperature in degrees Celsius °C, Ts is the thermal sum (°C
× day−1), measured in degree-days representing the accumulation of temperature units over
time, and Tm is the threshold of temperature below which dengue virus cannot multiply, hence
T > Tm. We assume Tm = 14°C and Ts = 135°C × day−1 according to [13].

Using the above expressions, and the daily temperature of Foz do Iguaçu as input, we
calculated the daily varying entomological parameters for the model.

Between 2010 and 2022, the minimum temperature in Foz do Iguaçu was Tmin = −1.8°C and
the maximum Tmax = 41.8°C. Parameters extrapolations were proceeded based on biological
literature regarding mosquito survival outside these ranges from [44]. Different temperature
intervals are defined for the interpolation of each parameter. Except for θm, which, due to its
formulation, does not allow values of T ≤ 14°C. Parameter values for temperatures outside the
interpolation range were fixed at their extreme values within the range as follows.

It is important to address the borders from the entomological parameters ranges of variation
with temperature. For the oviposition rate, from [44], there is not any oviposition for the
following temperatures: δ(T ≤ 10.8°C) = δ(T ≥ 37.3°C) = 0.

Concerning the aquatic transition rate γm, for the following temperature ranges, there is not
aquatic transition because the aquatic mortality rate is high and the oviposition rate is almost
zero so the adjusted polynomial crosses the temperature axis on: γm(T ≤ 12.0°C) = γm(T ≥
40.3°C) = 0. For the average aquatic mortality rate µa, from data on [44], larva mortality is
very high for low and high temperatures, so: µa(T ≤ 5.2°C) = 1.0. For the average adult
mortality rate µm, we see from the data on [44] that for very low temperatures, the mortality
µm(T ≤ −0.9°C) = 1.0. For b, βm, βh is b, βm, βh(T ≤ 18.0°C) = b, βm, βh(T ≥ 34.0°C) = 0.
The extrinsic incubation rate θm is defined as θm(T ≤ 16.4°C) = 0.02 e θm(T ≥ 38°C) = 0.2.

The temperature dependence of the parameters b(t), βm(t), and βh(t) is described by the
asymmetric Brière function [30]:

B(T (t)) = aT (T − Tmin)(Tmax − T )1/2. (5)

Following [30], we set for b(t) the following temperatures: Tmin = 13.35°C and Tmax = 40.08°C.
Now for βm(t) we have Tmin = 12.22°C and Tmax = 37.46°C and for βh(t), Tmin = 17.05°C and
Tmax = 35.83°C. Assuming that virus transmission occurs only within this temperature range.
In cases where B(T (t)) < 0, this value is replaced by zero. The coefficient a is fitted in the
complete model for the three parameters b(t), βm(t), and βh(t) (see section 2.3). Figure 2 shows
the behavior of the three parameters described by the Brière function.
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Figure 2: Parameters behavior b(t), βm(t), and βh(t) with temperature according to the Brière
functions with fitted parameters. ab = 5.0366 · 10−4, am = 6.5093 · 10−4, ah = 1.0546 · 10−3.

2.2.4 Carrying capacity

Thus, for the carrying capacity parameter, it is observed that there was a significant increase
in captured mosquitoes from 2019 onwards during the period 2017-2021 (figure 3). It seems
there is no significant temperature or precipitation variation that justifies this increase, and
furthermore, the number of traps analyzed throughout the period was nearly constant in the
study period.

To achieve the formulation of the carrying capacity, different models were tested, as proposed
by [44], considering ranges of temperature and precipitation. Also, we consider a linear relation-
ship with precipitation according to [36]. The best formulation was the one which provided the
best goodness-of-fit with the captured mosquito data following a temporal dependence without
explicit dependence with climate variables, the Heaviside function.

C(t) = C0 + bcapu[t− ϵ](t− ϵ). (6)

In the expression (6), C0 represents the initial carrying capacity, u(t) is the Heaviside function,
bcap is a constant rate associated with the growth of carrying capacity, and ϵ is a constant
parameter that represents the time at which the carrying capacity begins to increase. C(t)
assumes values of the order of 104.

Based on the above considerations about the entomological parameters and on the literature
about other parameters, we complete table 1 with the values range of the complete model, includ-
ing the ones presented by the temperature-dependent functions of entomological parameters.

2.2.5 Mosquito capture model parameters

For the mosquito model, we assume the trapping process described by αNtr/Ho, where α
is the trap attractiveness (attracted mosquito proportion by the trap within a household), and
Ntr and Ho are the number of traps and households in Foz do Iguaçu, respectively. Therefore,
the ratio Ntr/Ho is the trap density per household. We assume α = 0.02 arbitrarily, meaning
that 2% of mosquitoes in a trap are captured per day. This value is chosen as previous studies
[39] indicate a low capture rate.
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2.3 Sensitivity analysis and model calibration

A sensitivity analysis from the Sobol method ([15]) was conducted to decide which parameters
should be fitted. In the mosquito trapped model, we focused on parameters δ, γm, µa,µm, C0, ϵ
and bcap to analyze their impact on the total number of mosquitoes trapped (2). In the complete
dengue model (1), we examined how the model is sensible to the parameters ab, aβm , aβh

, C0,
αh, and θh regarding the total number of infected humans.

After analyzing the sensitivity, the parameters C0, bcap, ϵ, ϕ ab, aβm , aβh
,ah, were fitted in the

models. To achieve this, we use the lmfit package of Python, based on the Levenberg-Marquardt
(damped least-squares) fitting method [32].

For the mosquito model calibration, we use the trap data to estimate the coefficients C0,
bcap and ϵ of the carrying capacity equation (eq. (6)).

With the fitted mosquito model, we proceed to fit the parameters ϕ, ab, am, ah, C0, of the
complete model, using the time series of cases, where ϕ refers to the proportion of susceptible
individuals and ab, am, ah correspond to the parameter a in the respective Brière functions (5)
for b(t), βm(t), and βh(t) and C0 the initial carrying capacity.

When we fit the model to the data, the following expression is minimized:

1

N

N∑
i=1

(Ŷ (ti;ϕ, ab, am, ah, C0)− Y (ti))
2. (7)

Here, Ŷ (ti) represents the new infections (θhHe(ti)) from the complete model, and Y (ti) repre-
sents the daily reported new cases data in the same period.

2.4 Reproduction number of dengue in Foz do Iguaçu

The basic reproduction number R0 is an important indicator of transmission, that measures
how fast the number of cases increases, with values larger than 1 implying when there is an
epidemic process. Here, we use the expression for the dengue basic reproduction number, R0, as
derived from the complete model [35] using the next-generation matrix method. This calculation
assumes an exponential increase in cases at the beginning of an epidemic. The expression for
R0 is presented in equation (8):

R0 =

√√√√( Λ

θm(T (0)) + µm(T (0))
+ 1

)(
Λ

θh + µh
+ 1

)(
Λ

µm(T (0))
+ 1

)(
Λ

αh + µh
+ 1

)
, (8)

where the force of infection Λ corresponds to the exponent of new cases at the beginning of
the epidemics.

To calculate R0 from data, we need to define the time interval for which there is exponential
growth. For that time interval, it results in a linear growth in the plot of new cases against the
cumulative number of cases.

After the initial growth, the temporal evolution of the epidemic is not constant and its
velocity is measured by the time-dependent reproduction number, R(t). An expression for R(t)
was derived from the complete model by [35] using the method described in [43]. Thus, R(t) is
estimated by:

R(t) =

√
b(t)∫∞

a=0 b(t− a)g(a) da
, (9)

where b(t) is the number of new cases at week t and g(a) is the dengue generation time interval
distribution, which is defined as the probability distribution of the time an infected individual
takes to infect a secondary case. In [35], following [3], the expression is
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g(t) =
4∑

i=1

s1(t)s2(t)s3s4e
−si(t)t∏4

j=1,j ̸=i(sj(t)− si(t))
, (10)

where s1(t) = θm(t) + µm(t) + cm(t), s2(t) = µm(t) + cm(t), s3 = θh + µh, s4 = αh + µh. The
parameters and their values are presented in table 1.

Unlike [35], which utilized fixed temperature values for the entomological parameters, our
analysis for Foz do Iguaçu considers the parameters θm(t) and µm(t) as functions of the observed
temperature data.

3 Results

The results will be presented in four subsections. First, we show time series data for
dengue cases and trapped mosquitoes with temperature and precipitation. Then, we present the
mosquito dynamics model in section 3.2, followed by the dengue dynamics in section 3.3 and,
at last, the reproduction number in section 3.4.

3.1 Dengue cases and trapped mosquitoes

The time series data from mosquitoes and dengue cases in Foz do Iguaçu are illustrated in
figure 3. Figures 3b and c specifically show the time series for trapped mosquitoes, along with
temperature and precipitation, respectively.

From 2010 to 2021, Foz do Iguaçu experienced nine dengue outbreaks, in the years 2010, 2011,
2013, 2015, 2016, 2019, 2020, and 2021. For modeling, we selected the 2015-2016 and 2019-2020
outbreaks (highlighted by green shaded areas in figure 3) because these epidemic years exhibited
double peaks. This pattern is likely due to the predominant presence of a single serotype, which
aligns with one of the assumptions in our model. Entomological data are available only for the
2019-2020 epidemic period.
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Figure 3: Panel showing the datasets used in this study: a) Time series of dengue cases in Foz
do Iguacu - Brazil from 2010 to 2022. The shaded green area represents the periods used for
curve fitting. The inset graph shows both trapped mosquito and dengue cases, for comparison
from 2017 to 2022. b) Time series of bimonthly trapped mosquitoes and temperature, with a
two-week moving average, for the period we have mosquito data. c) Time series of bimonthly
trapped mosquitoes and precipitation, with a three-week moving average, for the period we have
mosquito data.

Furthermore, the occurrence of different DENV serotypes over the years is shown in 4.
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Figure 4: Description of the predominant DENV serotypes between 2010 and 2020 in Foz do
Iguaçu, Brazil. The figure shows DENV-1 was prevalent between 2010 and 2016 while we
observed a strong detection of DENV-2 in 2020.

3.2 Mosquito dynamics

First, we performed a local sensitivity analysis where each parameter was varied while all
the others were fixed. Then, a Sobol analysis was performed and the output is in figure 5.

The parameters that affects the number of trapped mosquitoes the most were the carrying
capacity threshold (ϵ) and the aquatic transition rate (γm).
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Figure 5: Sensitivity of mosquito total number of trapped mosquitoes to model parameters.
S1 and ST represent first-order and total sensitivity indices, respectively. The parameters and
scanned intervals for this analysis were: δ: [0,9]day−1, γm: [0, 0.2]day−1, µa: [0.0234,0.5]day

−1,
µm: [0.0301, 0.109]day−1, C0: [10, 100], ϵ: [0, 1000], bcap: [0.001, 1.2].

3.2.1 Fitting and numerical simulations

For the initial conditions of the mosquito model, we assumed M(0) = 0.7N where N =
256, 088 is the total population of Foz do Iguaçu. A similar mosquito-to-human ratio was the
same used by [4], based on measures from [31]. As for the aquatic phase, it was assumed
A(0) = 0.85C0, with C0 being the carrying capacity at t = 0, as estimated by the model. The
initial number of trapped mosquitoes was considered Trapped(0) = 0.

In order to fit the parameters C0, bcap and ϵ of the carrying capacity C(t)(eq.6) we use the
captured mosquito data. The model fits the data well, predicting its seasonality and growth
trend (figure 6).
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Figure 6: Observed data and simulated curve of mosquito model with the following fitted pa-
rameter values: C0 = 1.27 · 105, bcap = 0.3165, ϵ = 909 days.

3.3 Dengue dynamics

Here we consider the complete dengue model (1) based on the simulated results of the
mosquito model, performing a sensitivity analysis and fitting the model with notified dengue
cases.

Figures 5 and 7 display the contributions of these parameters to the model, where S1 and
ST represent the first-order, and total sensitivity indices, respectively. These indices provide a
decomposition of output variance relative to each parameter. Notably, if the total-order indices
(ST) are significantly larger than the first-order indices (S1), it indicates the presence of higher-
order interactions among the parameters.

When integrating the complete model, the total number of simulated infected humans is
used as input to assess the model’s sensitivity to each parameter. The results of this sensitivity
analysis are shown in figure 7. ab associated with the bite rate b is the most significant parameter
with respect to the total number of infected humans.
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Figure 7: Sensitivity analysis of complete model parameters with respect to total infected hu-
mans. S1 and ST represent first-order and total sensitivity indices, respectively. The parame-
ters and scanned intervals for this analysis were: ab : [0.0007, 0.00138], aβm : [0.0007, 0.00138],
aβh

: [0.0007, 0.00138], C0 : [12, 28], αh : [0.083, 0.25]day−1, θh : [1/12, 1/3]day−1.

3.3.1 Fitting and numerical simulations

To fit the model to the dengue data during the 2015-2016 outbreaks, we used data from
01/01/2015 to 01/07/2016. The parameters ϕ, ab, am, ah and C0 were fitted. During both seasons
considered here, we did not have mosquito population data to estimate C(t) so we assume that
the carrying capacity was constant following the expression C = C0 ·0.7N . The initial conditions
were: A(0) = 0.85·C(0) = 1.85×105, Ms(0) = 0.7·N,Me(0) = Mi(0) = 0.7·Hi(0) = 13, Hs(0) =
N −He(0)−Hi(0)−Hr(0) = 19243, He(0) = 18 = Hi(0), Hr(0) = (1− ϕ)N = 236881.

As for the 2019-2020 seasons, we used data from 06/01/2019 to 30/12/2020. The model was
fitted calibrating ϕ, ab, am, ah, C0. For these outbreaks, the initial conditions for the mosquito
compartment are obtained from the fitted mosquito model: A(0) = 1.33× 105, Ms(0) = 3.63×
105. For the human compartment, we set Me(0) = Mi(0) = 0.7Hi(0) = 43, Hs(0) = N−He(0)−
Hi(0)−Hr(0) = 31433, He(0) = Hi(0) = 62, Hr(0) = (1− ϕ)N = 226979. In table 1, the range
of values of the model parameters and the goodness-of-fit parameters estimated in the complete
model for 2019-2020 are presented.

The dengue model captured well the seasonality of dengue in both periods. There was an
overshoot in the 2016 outbreak, but all the other three were correctly described by the model.
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(a)

(b)

Figure 8: Fitting complete model to data. The black line represents the data of new weekly
cases, and the orange line represents the curve estimated by the model. The goodness-of-fit
model parameters for the outbreak of 2015-2016 (a) are: ϕ = 0.075, ab = 5.316 × 10−4, am =
6.616× 10−4, ah = 1.06× 10−3, C0 = 0.999 with constant carrying capacity. For the outbreak of
2019-2020 (b), we have: ϕ = 0.14, ab = 5.22× 10−4, am = 4.203× 10−4, ah = 1.05× 10−3, C0 =
1.33 presented in Table 1.

3.4 Basic and Effective reproduction numbers for epidemic years

The estimated values of R0 and Λ for the epidemic years in Foz do Iguaçu are shown in
table 2. The precision of the R0 estimation is better during epidemic years where there is a
well-defined exponential growth. The largest estimated values were found for the years 2010 and
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2020. Figure 9 shows the linear phase for these years.

Table 2: Force of infection and basic reproduction number by epidemic year in Foz do Iguaçu,
Brazi

Year Λ R0

2010 0.61 4.22
2011 0.31 2.37
2013 0.33 2.51
2015 0.33 2.47
2016 0.39 2.80
2019 0.25 2.10
2020 0.48 3.33
2021 0.32 2.46

In figure 9, we show the force of infection and basic reproduction number for the 2010 and
2020 epidemic years in Foz do Iguaçu. The two periods highlighted in bold coincide with the
entrance of serotype DENV-1 and DENV-2 respectively, where we can see the initial exponential
growth as fitted by a straight line, using data and equation. (8).

Figure 9: The black line represents the data of new cases against the cumulative number of
cases, the red dashed line represents the end of the linear phase, and the red solid line represents
the estimated curve. On the left side (a), it is shown data for 2010 dengue epidemics, and on
the right side (b), data for 2020.

To calculate the time-dependent reproduction number R(t), we consider the following depen-
dence with temperature for parameters θm, µm which takes part into the generation interval g(t)
composing the rates of leaving the exposed and infectious compartments s1(t) and s2(t). The
result of the calculated effective reproduction number can be seen in figure 10, where we observe
the instantaneous effect of temperature, in comparison to its value for an average temperature.
The results suggest that high heat waves may promote large time intervals for which R(t) > 1.
Also, note its high sensitivity to small variations of the weekly new cases and a tendency to
grow near the outbreaks, as expected of a reproduction number, presenting the maximum R(t)
values associated with 2020 and 2022 outbreaks.
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Figure 10: Effective reproduction numbers (eq. 9) with and without temperature dependence.
Each parameter value used is present in table 1 and is multiplied by seven for weekly values.

4 Discussion

In this work, we analyze the expansion of dengue in Foz do Iguaçu through a mathematical
modeling perspective, counting a rich dataset of mosquito and human infection data. This city
has experienced a sequence of dengue outbreaks in the last two decades, as seen in figures 3a
and 3b. In response, Foz do Iguaçu has implemented a comprehensive entomological surveillance
program since 2017 [14], integrated with a sensible and responsive disease surveillance program.

During the study period, the largest epidemics occurred in 2016 and 2020, both preceded by a
shorter epidemic in the previous year. Sequences of epidemics like this suggest that transmission
was interrupted during the winter to return in the next year. A pattern of two subsequent waves
has been observed in other cities, like Taiwan [9], and Rio de Janeiro [34], and has been attributed
to multiple serotypes or viral evolution.

Our analyses indicate that a one-serotype model with temperature as external forcing can
produce the two-wave pattern observed in the data, with the second peak larger than the first.
That is, the effect of temperature on mosquito dynamics in Foz do Iguaçu is sufficient to induce
the observed dengue seasonality, even in the absence of a new serotype.

The sensitivity analyses of both, the mosquito and complete models reveal that climate-
dependent parameters, such as carrying capacity C(T ), aquatic transition rate γm and bite rate
b(T (t)), are the most sensitive in relation to mosquitoes’ population and dengue incidence. Since
the bite rate is multiplied by the infection rates between humans and mosquitoes, its action,
combined with the infection rates, affects the nonlinear terms of the complete model responsible
for the interaction between humans and mosquitoes, considering both approaches related to the
vector population and the human infection load.

Another important result from this study refers to the mosquito dynamics. The data suggests
that mosquito abundance increased sharply from 2020 onwards. Initial versions of the model
with constant or seasonal carrying capacity, were not capable of representing this increasing
abundance. Only a model with a linear trend of the carrying capacity correctly captured the
observed pattern. Increasing carrying capacity indicates a relaxation of the density-dependence
effects on mosquito population growth. Such a fact can occur if the number of breeding sites
increases, thus reducing the competitive pressure in the aquatic stage. It is noteworthy that the
2020 - 2022 period corresponds to the first two years of the COVID-19 pandemic, during which
significant changes occurred in human behavior and vector control efforts. Similar observations
have been made in other locations [38]. We hypothesize that these changes may have contributed
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to alterations in mosquito abundance in Foz do Iguaçu.
We also investigated the temporal dynamics of dengue transmission and its relationship with

climate variables, such as temperature, considering that it reflects much more than seasonal
features. Through the complete model (1), [35], we assumed the dependence on the average
temperature in the entomological parameters vary with daily temperature according to some
considered temperature-dependent functions [44, 45].

Through the model, we could confront data about human infection generated by simulation
and reported dengue cases from surveillance data (see figure 8b),considering the mosquito pop-
ulation and climate effect, as previously demonstrated by [26]. The numerical results confidence
of the dengue complete model [35] is based on the confrontation of the mosquito population dy-
namics model with observed data (see figure 6) of the trap model to set up realist entomological
parameter values to be used in the complete model.

The basic reproduction number, R0, shows higher transmission in 2010 compared to 2020.
This result reinforces neither the number of cases nor the incidence captures the information
revealed in R0, which is associated with the impact of transmission during the beginning of the
epidemic. Some hypotheses can explain this phenomenon. First, this observation occurs in years
of new viral variants introduction, DENV-1 in 2010 and DENV-2 in 2020, as shown by data from
dengue serological surveillance. Another hypothesis is that R0 estimations are more associated
with the ecological characteristics of the vector associated with the circulation of non-specific
serotypes ([33]). Another hypothesis, as discussed by [18], is the association between the timing
of the start of interventions and the epidemic magnitude.

In this study, we also compared the estimation of R(t) using expressions that either include or
do not include the temperature data. Despite the small difference in magnitude between the two
estimates, our results indicate the expression incorporating temperature consistently produces
higher values of R(t) compared to the one that does not. This implies the temperature-inclusive
expression will more frequently exceed the transmission threshold (R(t) > 1), making it a
more sensitive measure of R(t) for use in alert systems. These findings are consistent with the
observations reported by [10].

As the disease progresses, several factors, such as control measures and changes in the sus-
ceptible population can alter the scenario of disease dynamics so that it is less reasonable to
consider its development in a constant environment with exponential growth of cases. There-
fore, the time-dependent effective reproduction number, R(t), captures the temporal evolution
of the reproduction number. Furthermore, ecological factors, urbanization, population mobility,
deforestation and insecticide resistance, together with climatic events and anomalies in recent
decades, have created conditions for pathogens and arbovirus vectors to emerge in new areas
or re-emerge in regions, even with powerful antimicrobial campaigns. [42], [7], [1], [17]. These
heterogeneous characteristics also lead to different epidemic scenarios according to susceptibility
and other factors [21].

5 Final considerations

In conclusion, our results call attention to the relevance of mosquito trap data in constructing
a confidence time series of mosquito population dynamics to get a more precise scenario of
dengue dynamics. Both fitted models for Foz do Iguaçu display good fitting to data, showing
a promising methodology of performing a previous fitting of the entomological parameters in a
population mosquito model and then applying it to the dengue model. Particularly, this analysis
may provide elements to help the description of dengue dynamics for other regions with sub-
tropical climates where dengue infection is expanding. They can be used to plan interventions
on pre-epidemic moments and generate timely alerts.

The results also highlight the role of climate variables, particularly temperature, directly af-
fecting mosquitoes’ entomological characteristics or modifying human behavior, which, in turn,
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may impact the mosquito population. However, many other factors are relevant for the under-
standing of the complex dengue; in that direction, our results also emphasize that the climate
alone does not explain either the increase of mosquitoes or the expansion of dengue.

Therefore, studies taking into account the link between modeling and data as well as the
inclusion of other elements in the model. Co-circulation of serotypes [11] and other diseases
also transmitted by the same vector (Zika and chinkugunya) [16] may help to lead to a more
complete description of dengue dynamics and, as therefore, a more efficient design of control
scenarios with vaccine and vector control procedures.

6 Funding

This work was supported by funding from the INOVA Fiocruz Program with grant num-
ber VPPCB-002-FIO-20. C.R. was supported by Fundação de Amparo a Pesquisa da Bahia
(FAPESB) with a master’s fellowship to carry out this work in project 4439/2022. S.T.R.P.
was supported by the Brazilian National Council for Scientific and Technological Development
(CNPq) due to her grant (305941/2021-6) and participation in the National Institute of Sci-
ence and Technology — Complex Systems. L.S.B acknowledges support from the FAPERJ
(http://www.faperj.br/) grant E-26/201.277/2021 and CNPq (https://www.gov.br/cnpq/) grant
310530/2021-0. RML was supported by the Beatriu de Pinós program (2021 BP 00197) from
the Secretariat of Universities and Research of the Research and Universities Department of the
Generalitat de Catalunya.

7 Acknowledgment

We would like to thank the Infodengue project (https://info.dengue.mat.br/), Brazil, for
their contribution to data collection. We would also like to thank the Foz do Iguaçu Health
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[23] R. M. Lana, T. G. Carneiro, N. A. Honório, and C. T. Codeço. Seasonal and nonseasonal
dynamics of aedes aegypti in rio de janeiro, brazil: Fitting mathematical models to trap
data. Acta tropica, 129:25–32, 2014.

[24] R. M. Lana, M. M. Morais, T. F. M. d. Lima, T. G. d. S. Carneiro, L. M. Stolerman,
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[34] R. M. R. Nogueira, M. P. Miagostovich, E. Lampe, R. W. Souza, S. M. O. Zagne, and H. G.
Schatzmayr. Dengue epidemic in the state of rio de janeiro, brazil, 1990–1: co-circulation
of dengue 1 and dengue 2 serotypes. Epidemiology and Infection, 111(1):163–170, 1993.

[35] S. T. R. d. Pinho, C. P. Ferreira, L. Esteva, F. R. Barreto, V. Morato e Silva, and M. Teix-
eira. Modelling the dynamics of dengue real epidemics. Philosophical Transactions of the
Royal Society A: Mathematical, Physical and Engineering Sciences, 368(1933):5679–5693,
2010.

[36] E. P. Pliego, J. Velázquez-Castro, and A. F. Collar. Seasonality on the life cycle of aedes
aegypti mosquito and its statistical relation with dengue outbreaks. Applied Mathematical
Modelling, 50:484–496, 2017.

[37] A. L. Ramadona, L. Lazuardi, Y. L. Hii, Å. Holmner, H. Kusnanto, and J. Rocklöv. Pre-
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