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Abstract 
Background: Lung cancer is the leading cause of cancer-related deaths. Diagnosis 
at late stages is common due to the largely non-specific nature of presenting 
symptoms contributing to high mortality. There is a lack of specific, minimally 
invasive low-cost tests to screen patients ahead of the diagnostic biopsy. 

Patients and Methods: 344 symptomatic patients from the lung clinic of Lister 
hospital suspected of lung cancer were recruited. Predictive covariates were 
successfully generated on 170 patients from Computed Tomography (CT) scans 
using CT Texture Analysis (CTTA) and Deep Learning Autoencoders (DLA) as well 
as from peripheral blood data for immunity using high depth flow-cytometry and for 
exosome protein components. Predictive signatures were formed by combining 
covariates using Bayesian regression on a randomly chosen 128-patient training set 
and validated on a 42-patient held-out set. Final signatures were generated by fusing 
the data sources at different levels. 

Results: Immune and DLA were the best single modality signatures with test set 
AUCs of 0.76 (95% CI: 0.61 – 0.91) and 0.75 (95% CI: 0.60 - 0.90) respectively. The 
final combined signature had a ROC AUC of 0.86 (95% CI:  0.73 - 0.99) on the 
withheld test set. The overall sensitivity and specificity were 0.722 and 0.901 
respectively.  
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Conclusions: Combining immune monitoring with CT scan data is an effective 
approach to improving sensitivity and specificity of Lung cancer screening even in 
symptomatic patients. 
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Highlights: 

 Combining immune monitoring in peripheral blood with CT scan data 
improves lung cancer screening sensitivity and specificity. 

 Elevated levels of KIR3DL1+ CD8 T cells may be indicative of cancer. 

 A cancer biomarker that combines a deep learning autoencoder with 
peripheral immune profiling achieved a 0.86 ORC AUC. 
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Introduction 

Lung cancer and importance of early detection 
Lung cancer is by far the leading cause of cancer-related deaths worldwide with an 
estimated 1.8 million death in 2020 1. In the U.S.A., lung cancer accounts for about 
two and a half times the number of cancer deaths than the second leading cause, 
colorectal cancer. This is despite the fact that lung cancer only contributes to about 
12% of newly diagnosed cancer cases, which is far less than prostate cancer and 
breast cancer, the leading cancer diagnoses for men and women, respectively 2. This 
high mortality of lung cancer has been linked to diagnosis at late stages. 48% of lung 
cancer cases are diagnosed with a distant metastasis and an expected 5-year survival 
rate of 8% compared to the ≥60% rate when diagnosis happens at a localized stage 
3.  In England, 5-year survival for a stage I diagnosis is 63%, which drops down to 
4.3% for a stage IV diagnosis 4. Delayed diagnosis can be attributed to the largely 
asymptomatic nature of early-stage lung cancer 5. Other data have shown that patients 
delaying their first general practitioner (GP) visit after manifestation of early symptoms 
is another obstacle to a timely diagnosis 6. Beyond that, a study from 2013 showed 
that a third of lung cancer patients have 3 or more visits with their GP with lung cancer 
associated symptoms before special referral, which forms a sharp contrast to the 3% 
observed in breast cancer patients 7. Similarly, the UK’s National Cancer Diagnosis 
Audit reported primary care delays of 60 and 90 days experienced by 17.9% and 
10.8% of suspected lung cancer patients, respectively 8. This highlights the need for 
lung cancer screening, which to a certain extent has been implemented in the form of 
low dose computed tomography (LDCT) for high-risk patients. Despite this practice 
leading to about a 20% reduction in mortality across multiple clinical trials, there is still 
room for improvement 9, 10. LDCT screening excludes younger patients and those at 
lower risk as it has been shown to be not reliable as a screening tool for the broader 
population, owing to its high chance of false positives 11, 12. Lung cancer screening also 
heavily relied on smoking history, which excludes the early detection of lung cancer in 
non-smokers which represent around 25% of cases 13. There is a clear need for a 
minimally invasive robust screening test for lung cancer with similar sensitivity and 
specificity to a mammography for breast cancer, or the faecal occult blood test 
currently in use for colorectal cancer. Furthermore, this needs to be extended beyond 
screening, as numerous healthcare systems, including the NHS in the UK, have put in 
place a rapid diagnostic pathway for already symptomatic patients suspected of lung 
cancer 14.  

Role of radiologist and importance of alternative image analysis 
The diagnostic pathway for lung cancer is heavily reliant on radiologist assessment at 
multiple stages. According to the UK NHS National Optimal Lung Cancer Pathway 
(NOLCP) 15 and National Institute for Health and Care Excellence (NICE) guidelines, 
the typical pathway may include a chest radiograph (CXR), a CT scan, a PET-CT, a 
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CT guided biopsy, all of which require a radiologists intervention, bronchoscopy 
(EBUS-TBNA, EUS-FNA or navigational) and pleural procedures. This reliance is 
further exacerbated by the large amount of CT imaging data from lung cancer 
screening programmes. This workload combined with the shortage of radiologists in 
the UK and other European countries is manifesting in delays in examinations as 
recently reported by the Royal College of Radiologists 16, 17. Implementing automated 
image analysis approaches like radiomics-based texture and deep learning analyses 
is a viable approach, especially given the availability of large screening datasets for 
training purposes. The low-dose radiation used in LDCT, to minimize patient exposure, 
does negatively impact the visibility of small or low-contrast lesions due to increased 
noise and reduced spatial resolution and artificial intelligence can alleviate this in many 
areas of CT screening 18,19.  In this study we exploit the latent vector of a deep 
autoencoder as a low dimensional representation of the lesion image characteristics 
and evaluate its predictive performance. 

Liquid biopsy 
Using a liquid biopsy for early detection and diagnosis of lung cancer has been heavily 
assayed to varying degrees of success 20. Of note, Galleri® which is a circulating 
tumoral DNA (ctDNA) methylation-based multicancer early detection (MCED) test is 
seeing adoption across clinics. Early results seem very promising in the symptomatic 
setting, though these are not comparable across all cancer types. Of note, sensitivity 
for stage I lung cancer was 8.7% and 0% in the symptomatic and asymptomatic 
settings, respectively 21, 22. Combining LDCT with minimally invasive blood test is one 
approach that can improve the shortcoming of either approach. This has proven useful 
in the BioMilk study that showed that double positivity LDCT and microRNA signature 
doubles the sensitivity of LDCT alone 23. Similarly, other studies combined circulating 
proteins with LDCT achieving improved specificity 24.  However, there is still room for 
improvement using other blood biomarkers which include circulating tumour cells, 
microRNA, exosomes, tumour educated platelets, metabolites, tumour associated 
proteins, and autoantibodies.   

Immunology in lung cancer 
Little research exists on the feasibility of immune profiling of circulating immune cells 
as a biomarker for early lung cancer. Peripheral blood mononuclear cells (PBMCs) are 
a heterogenous population of immune cells usually classified into subsets. The 
numbers, relative frequencies and functional status these subsets provide information 
on the state of the immune response and there have been recent advents in 
technology beyond classical multiparametric flow cytometry. Using patient PBMCs, 
single cell RNA sequencing was used to identify circulating anti-tumor CD8 cells, and 
Cytometry by time of flight (CyTOF) was used to correlate the frequency of HLADR 
expressing monocytes with response to ICB therapy 25, 26. Numerous research groups, 
including ours, have shown that changes at the tissue level of a solid cancer immune 
response are reflected as systemic changes in the immune response that can be 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 10, 2025. ; https://doi.org/10.1101/2025.01.10.24319412doi: medRxiv preprint 

https://doi.org/10.1101/2025.01.10.24319412
http://creativecommons.org/licenses/by/4.0/


detected at the peripheral level 25-27. Lung cancer promotion after initial mutagenesis 
has been shown to be inflammation driven, with a recent link established to air pollution 
28, further highlighting the potential of an immune based biomarker for early detection. 
Cancer specific T cell receptor repertoire has been shown to be effective at identifying 
early-stage lung cancer in an LDCT screened cohort. This proves that cancer specific 
immune cells can be reflected in the periphery 29. 

 

Methods 
 

Study design and data collection 
The study entitled “Improving the Early Detection of Lung Cancer by Combining 
Exosomal Analysis of Hypoxia with Standard of Care Imaging (LungExoDETECT)” 
(https://clinicaltrials.gov/ct2/show/NCT04629079) is a prospective cohort study of 
patients referred to secondary care for the investigation of clinical symptoms or signs 
suspicious of lung cancer. The study analysis will determine whether the assay can 
detect clinical lung cancer at the time of imaging, and interval cancers during 
subsequent follow up. The study aimed to establish preliminary ROC AUC and 
sensitivity/specificity data for the "combined CT/blood risk stratification marker" and 
provide initial data on the potential association of the "combined CT/blood risk score" 
with the subsequent cancer progression and treatment response. 

The study included patients who have been referred to the Lung Cancer Clinic and 
Multi-Disciplinary Team (MDT) at The Lister, Hertford County, UK and New QEII 
Hospitals, Welwyn Garden City, UK for investigation of suspected lung cancer. 
Participants were recruited between October 2020 and November 2021 (344 patients). 
As part of the standard of care pathway they received a CT scan, at that time 
peripheral blood samples were collected. 174 cases were excluded, 162 due to lack 
of visible lesion or lesion <6mm and 12 cases with non-lung cancer. The patient 
pathway and study design is illustrated in Figure 1 and patient characteristics are in 
Table 1.  
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Figure 1. Showing the patient pathway and study design. 344 patients referred to the clinic were 
recruited to the study. As part the standard of care pathway they received a CT scan, at which time we 
collected the peripheral blood samples. 174 cases were excluded from the analysis set due to lack of 
visible lesion, the lesion was smaller than 6mm or the diagnosis was a non-lung cancer diagnosis. The 
analysis was performed on the remaining patients. 
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Patient 
Characteristic 

Non-cancer 
patients n = 91 

Lung cancer 
patients n = 79 

p-value* 

Age   
    Mean 71.9 74.9 

0.152 
    Range 27.0 to 94.0 33.0 to 97.0 
Sex   
    Male 43 38 0.646 
    Female 48 41 
Smoking status       
    Ex-Smoker 33 31 

0.07 
    Non-Smoker 29 12 
    Smoker 17 21 
    Unknown 12 15 
Cohort   
    Training 64 64 0.1 
    Test 27 15 
Staging   

   No Cancer 91  

  
        Stage I  23 
        Stage II  9 
        Stage III  18 
        Stage IV  29 

 

Table 1. Patient characteristics and distribution. The table shows the difference between cancer and 
non-cancer as well as staging for cancer patients. *P-values were calculated to compare data from 
individuals with and without lung cancer for the following variables: mean ages using Student’s unpaired 
two-tailed t-test whereas for sex distribution, smoking status and cohort using a χ2 test. 

 

Sample and Data Processing 
The details of CT scan acquisition, CT Texture Analysis (CTTA), the Deep Learning 
Autoencoder (DLA), peripheral blood sampling and processing, flow cytometry and 
model (aka signature) generation are given in the Supplementary Material. The total 
number of features generated by each modality are: 42 from CTTA, 32 from DLA, 45 
from flow cytometry and 68 from exosome dot-blots. 

Model Performance Analysis 
Of all the study samples, one quarter was held out of the model training and served 
as an internal test set. The performance of both univariate biomarkers and model 
predicted outcomes from the training and test sets were judged by the area under the 
receiver operator characteristic curve (ROC AUC) with the cancer diagnosis result 
from the clinic as the gold standard using the R ‘pROC’ package and the ‘ci.auc’ 
function. Sensitivity and specificity were calculated at the Youden point of the ROC. A 
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Risk Score can be generated by combining covariate raw values in a linear model 
according to their given weights and intercept.  

Results 

Patient Characteristics 
The characteristics of the patients suspected of lung cancer and included in the final 
analysis set are shown in Table 1. Of those suspected of having lung cancer 46.5% 
(79 patients) were diagnosed with lung cancer over the follow up period. There were 
no significant differences between the cancer and not cancer patients with regards to 
sex, age, smoking status nor assignment to training or test set. The division of 
patients between training (3/4) and test set (1/4) was retrospective and at random, 
with the condition of having an equal balance of cancer and non-cancer patients in 
the training set for signature generation (Supplementary material). Amongst the lung 
cancer patients, the division across stage is shown in Table 1. Of note, 23 of the lung 
cancer patients (29.1%) were stage I, signifying that this is a good cohort for the 
potential development of a screening signature. 12 patients of the total recruited 
were diagnosed with a cancer that is not lung cancer (characteristics in 
Supplementary Table S4). 

Generation of a Predictive Model from CTTA and DLA 
The imaging data were analysed using CTTA and DLA, as explained in the 
methodology. Separately, using the data from each analysis, a risk signature was 
generated using Bayesian multi-variate regression (BMR) which also performed 
covariate selection (supplementary material). The signatures are presented in Figure 
2A. The DLA signature performed better than the texture analysis signature on both 
the training and test cohorts. On the training set DLA had an AUC of 0.78 (95% CI: 
0.70 - 0.86), whereas CTTA had an AUC of 0.75 (95% CI: 0.67 - 0.84). On the test 
set DLA had an AUC of 0.75 (95% CI: 0.6 - 0.9), whereas CTTA had a much lower 
AUC of 0.64 (95% CI: 0.47 - 0.82) (Figure 2B). The CTTA and DLA risk signatures 
could significantly segregate cancer from non-cancer patients in the training cohort 
(Figure 2B, p<0.001), whereas only the DLA risk signature reached significance in 
the test cohort (Figure 2C, p=0.004). Figure 2D presents the result of combining 
CTTA and DLA analyses. 

The CTTA features selected by BMR were the mean intensity at spatial scale filter 
(SSF) = 0 (Mean_0) – which relates to the CT attenuation / density of the tumour, the 
mean intensity of positive pixels at scale SSF=2 (mpp_2) – which relates to the 
average brightness at fine texture scale (corresponding to features of 2mm in size) 
within the tumour, and the histogram skewness at SSF=4 – which relates to bright or 
dark objects at medium texture scale (corresponding to features of 4mm in size) 
within the tumour. The CTTA and DLA combined model uses a combination of 
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features from the single analysis models, except the standard deviation of pixel 
values at scale SSF=3 (sd_3). 

The DLA latent space features selected by BMR (numbered 11, 15, 18, 20 and 26 
from 32 total latent variables) can be interpreted visually by varying these values and 
observing the effect on the image reconstruction of the decoder (Supplementary 
Figure 3). The significant parameters relate to lesion size and the morphology of the 
lesion and surrounding tissue.  
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Figure 2. Risk generation by BMR from CT images comparing CT texture analysis to deep 
learning autoencoder. (A) Forest plot of the covariates within each of the risk score for each CTTA 
(left) and DLA (right) with dotted line indicating the performance range of randomised data, covariate 
model Beta value (with 95% CI) and weight in signature. (B) ROC AUC curves of the risk signature for 
the training set and test set, with AUC (and 95% CI). (C) Box plots with overlaid scatter points, 
showing the distribution of each risk score CTTA (left) and DLA (right) across non-cancer and cancer 
patients. (D) Results, as above, for model generation from features of CTTA and DLA combined. 

Generation of a Predictive Model from Peripheral Blood 
The peripheral blood samples were analysed for their immune and their exosome 
protein content (dot-blot) as indicated in the methods. Separately, using the data 
from each analysis modality, a risk signature was generated (Figure 3A). The flow 
cytometry signature performed far better on the training and test cohort than the 
exosome protein content signature. On the test set, the immune signature had an 
AUC of 0.76 (95% CI: 0.61 – 0.91), whereas the exosome derived signature had an 
AUC of 0.58 (95% CI: 0.41 - 0.76) (Figure 3B). Of note, the flow cytometry signature 
was driven by two significant features: a high proportion of type 2 dendritic cells 
indicated a non-cancer pathology, whereas a high proportion KIR3DL1 expressing 
CD8 T lymphocytes indicated lung cancer (Figure 3A). The flow cytometry risk score 
was significantly different between cancer and non-cancer, whereas the exosome 
dot-blot score was not and hence that signature was not used for further combined 
risk signature generation (Figure 3C).   
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Figure 3. Risk generation by BMR from peripheral blood samples comparing flow cytometry to 
plasma exosome dotblot analysis. (A) Forest plot of the covariates within each of the risk score for 
each flow cytometry (left) and exosome dotblot (right) with dotted line indicating the performance 
range of randomised data, covariate model Beta value (with 95% CI) and weight in signature. (B) 
ROC AUC curves of the risk signature for the training set and test set, with AUC (and 95% CI). (C) 
Box plots with overlaid scatter points, showing the distribution of each risk score flow cytometry (left) 
and exosome dotblot (right) across non-cancer and cancer patients.  

 

Combining CT Analyses with Peripheral Blood Data 
We proceeded to combine the data from the blood sample with the CTTA and DLA 
individually, at the covariate level (early fusion). Both combined signatures from BMR 
featured covariates from the immune and imaging data with the upregulation of 
KIR3DL1 CD8 T cells being the strongest predictor of a lung cancer (Figure 4A). The 
risk signature generated from the combination of flow cytometry and DLA performed 
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far better on the training set with an AUC of 0.85 (95% CI: 0.78 - 0.91) (Figure 4B). 
However, these combinations did not generate a signature that outperformed the 
immune signature alone, as shown by the AUC on the testing set where the Immune-
DLA signature had an AUC of 0.77 (95% CI: 0.61 - 0.92). The risk signature 
generated from the combination of peripheral immunity and CTTA on the training set 
had an AUC of 0.78 (95% CI: 0.70 - 0.86), whereas for the testing set the AUC was 
0.67 (95% CI: 0.51 - 0.84). The immune-CTTA signature performed far worse than 
the immune alone signature.  

 

Figure 4. Risk generation by BMR from CT image analysis combined with flow cytometry, 
comparing deep learning and texture analysis. (A) Forest plot of the covariates within each of the 
risk score for each flow cytometry with DLA (left) and flow cytometry with CTTA (right) with dotted line 
indicating the performance range of randomised data, covariate model Beta value (with 95% CI) and 
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weight in signature. (B) ROC AUC curves of the risk signature for the training set and test set, with 
AUC (and 95% CI). (C) Box plots with overlaid scatter points, showing the distribution of each risk 
score of flow cytometry with DLA (left) and flow cytometry with CTTA across non-cancer and cancer 
patients.  

 

Generation of a Combined Model by Data Fusion 
Given that combination of the peripheral immune signature with either CT analysis 
modality (CTTA or DLA) did not impact the predictive power of the signature, we 
proceeded to combine all methods of CT and blood analyses using data fusion at 
different levels. Combination at the covariate level (early fusion) did not show a 
major improvement of the risk signature with AUC 0.76 (95% CI:  0.61 - 0.91) on the 
test set (Figure 5A, “All Combined early fusion”). The signature generation process 
included co-variates from all three modalities, but no CTTA covariates were selected 
in the final signature (Figure 5B).  

We also generated predictive signatures by fusing the features included in individual 
signatures (feature level or intermediate fusion) and by fusing the individual 
signatures themselves (signature level or late fusion). With feature level fusion 
(intermediate) the covariate selection again only maintained covariates from the 
immune and DLA analyses, although CTTA was included in the generation process, 
with the signature still being driven by the upregulation of KIR3DL1+ CD8 T 
lymphocytes as a strong predictor of lung cancer (Figure 5C). The ROC AUC for 
feature level combination was 0.79 (95% CI: 0.65 - 0.93) on the test set (Figure 5A, 
“All Combined Int. Fusion”). Finally, the best signature was obtained when fusing the 
individual CTTA, DLA and immune signatures (late fusion), previously generated 
from the three separate analyses. The signature was almost equally driven by the 
immune and DLA signatures (Figure 5D), and to a lesser degree by the CTTA 
signature. This final signature had the highest ROC AUC of 0.86 (95% CI:  0.73 - 
0.99) on the hold-out test set (Figure 5A, “All Combined late fusion”). All of the fusion 
models could significantly split the training set between cancer and non-cancer 
patients (Figure 5 B, C, D), with late fusion being more robust against overfitting to 
the training set.   

An equivalent approach to data combination and signature generation was 
performed using an Elastic Net algorithm (glmnet R package) 30, 31 which produced 
better signatures on the training set, but struggled with overfitting which impacted the 
ROC AUCs on the test set. Of note, the final combined signature from Elastic Net 
only had a ROC AUC of 0.67 (95% CI: 0.5 - 0.84) on the test set. Because of this, we 
are focusing on the results from BMR. A summary of all the Elastic net signatures is 
in Supplementary Figure 4. 
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Figure 5 Risk signature generation from fusion models. (A) Summary of ROC AUC values on the 
training set (grey) and test set (black) for all the generated signatures using BMR, from individual 
signatures from immune, CTTA and DLA analyses, as well as early fusion (covariate level fusion) 
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models from immune and CTTA, and immune and DLA, and all three combined, and all three 
combined using intermediate and late fusion methods. (B) Covariate level (early fusion) of all three 
analyses showing a forest plot of the covariates within the risk signature using covariate level fusion 
model with dotted line indicating the range, test set cancer prediction box plot and ROC curve. (C) 
Feature level (intermediate fusion) of all three analyses showing a forest plot of the covariates within 
the risk signature using the feature level fusion model, box plot and ROC curve. (D) Signature level 
(late fusion) of all three analyses showing a forest plot of the covariates within the signature level 
fusion model, box plot and ROC curve.  

 

Combined Signature Specificity and Sensitivity to Detect Lung Cancer 
at DiƯerent Stages and Across Other Cancers 
Disease staging was intentionally excluded from the data sets for both signature 
generation and testing. As current methodologies struggle at detecting early-stage 
lung cancer 21, 22 where current available therapies are most effective, we assessed 
the ability of the final signature to detect cancer across all stages for the training and 
test sets (Figure 6A). As expected, test set sensitivity (53%) was lower than that of 
the training set (76%). In the test set, Stage I sensitivity was far lower at 25% 
compared to all the other stages. Interestingly, the specificity was high at 92% for the 
training set despite the fact that these are heavily symptomatic patients (Figure 6B) .  

Data were analysed for the 12 patients who received a non-lung cancer diagnosis. 
As the primary disease was not a lung cancer, the efficacy of the lung imaging data 
was unclear, and hence we used the immune signature alone. The sensitivity of this 
signature to detect cancer in these cohorts was 82%, with 9/11 cancers detected 
(Figure 6C). The two missed cancers were both breast cancer. 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 10, 2025. ; https://doi.org/10.1101/2025.01.10.24319412doi: medRxiv preprint 

https://doi.org/10.1101/2025.01.10.24319412
http://creativecommons.org/licenses/by/4.0/


 

Figure 6 Tables of the performance of the final signature (the combined late-fusion model) when 
thresholding the risk score according to Youden’s criterion: sensitivity (A) and specificity (B). Table C 
shows the performance of the immune signature with those patients who were diagnosed with a non-
lung cancer; the lung CT scan therefore not being relevant as a predictor of non-lung cancer. 

Discussion  
 

Immune Subpopulations 
We have previously shown that early on-treatment changes in peripheral levels of 
memory CD8 T-cells can predict response in head and neck cancer patients 27, and 
that pre-treatment levels of a subpopulation antigen presenting capable myeloid cells 
can predict treatment outcome. We therefore postulated that that the systemic 
immune response may also be indicative of diagnosis of cancer in this study and 
highlight the fact that the signature obtained from a simple blood sample had a 
stronger predictive power than a chest CT scan. The strongest predictor in the 
signatures was the upregulation of KIR+ CD8 T lymphocytes. KIR3DL1 is part of the 
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inhibitory KIR family. Its expression on CD8 T cells has been linked to effector CD8 T 
cells with reduced proliferative capabilities and poor IFNg production following TCR 
engagement 32, 33. The inhibitory effect of KIR binding to HLA has been shown to not 
directly impact the T lymphocyte’s ability to degranulate but rather to compromise 
activation induced transcription which is required for clonal expansion and cytokine 
production 34. KIR expression has been linked to demethylation following chronic 
TCR stimulation which is consistent with cancer immunosurveillance 35, 36. In our 
data set, the KIR+ CD8 population exhibited a low level of expression of CD107a 
(Lamp1) indicating that those cells did not engage in degranulation which is even 
more indicative of their exhausted functional state (Supp. Fig 5).  

Of particular interest is that this signature could distinguish between a cancer and a 
non-cancer pathology.  As most of the other pathologies were linked to an infection 
or an allergic reaction, the upregulation of cDC2 in those patients is only logical. 
cDC2 are a subtype of DCs that play a key role for antigen presentation for a type 2 
helper response (TH2) 37 which is key in controlling humoral immunity. cDC2 have 
also been correlated with their ability to activate a TH17 response, which has been 
shown to be upregulated in chronic allergy 38, 39. The cDC2 cells expressed high 
levels of HLADR and CD38, indicating that they were indeed functional and pro-
inflammatory. This subpopulation of myeloid cells did not express PDL2 indicating 
that it was not functionally suppressed (Supp. Fig. 6). 

Deep Learning Radiomics and Combined Model Generation 
There has been significant recent activity in the development of techniques to extract 
novel information from medical images and other patient sample data and exploit it for 
clinical use40. Links between imaging and the immune system have also been made41-

45. Grossman et al.Error! Bookmark not defined. evaluated radiomic texture and shape 
features in NSCLC and found correlations with immune response, inflammation and 
survival, and a combined signature that combined clinical, genetic and radiomics 
achieved a test set concordance index of 0.73 against OS.  

Deep Learning networks have shown great promise in several fields, including cancer 
diagnosis, for extracting significant features from complex data, but their often black-
box nature is one barrier to clinical use46. Autoencoders are able to learn semantically 
meaningful representations of images in an unsupervised manner and offer some 
advantages: training on an external data set and transparency through the exploration 
of the latent space parameters. Examples have been published in using epigenetic 
data to determine subtypes of lung cancer47, and image-based lesion detection and 
segmentation48.  

The method for combining radiomics with blood data, needs consideration (i.e. data 
fusion49) as do the algorithms used to generate the predictive models. A model formed 
from many covariates can easily have exceptional performance on the training set, but 
this often does not translate to test and validation data sets (the problem of overfitting). 
Many studies use parameter regularisation such as LASSO or Elastic Net algorithms 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 10, 2025. ; https://doi.org/10.1101/2025.01.10.24319412doi: medRxiv preprint 

https://doi.org/10.1101/2025.01.10.24319412
http://creativecommons.org/licenses/by/4.0/


for signature generation and covariate selection. In particular, a study investigated the 
feasibility of preoperative 18F-fluorodeoxyglucose (FDG) PET/CT radiomics with 
machine learning (LASSO) to predict microsatellite instability (MSI) status in colorectal 
cancer (CRC) patients with a test set performance (ROC AUC) of 0.867 from a 
published set of radiomics features50. Methods more advanced than regularisation 
offer a greater potential for generalisation to test and validation sets. For instance, 
neural networks and XGBoost models have achieved high ROC AUC of 0.75-0.8 in 
multimodal data sets51-53. Bayesian methods offer robust models that are 
generalisable and more interpretable and can have automatic feature selection that 
aid interpretability54, 55.  

A ROC AUC of 0.8 is within the realms of what may be clinically useful depending on 
the context. Choosing the optimal point on the ROC curve, to define operational 
sensitivity and specificity, may not be an obvious one for the clinical situation. Indeed, 
the multi-cancer Grail tests21, 56 have a similar AUC. The Galleri test, currently under 
clinical trial in the UK, has a specificity of around 99% but a sensitivity as low as 17% 
(depending on cancer and stage)57. 

This present study has data collected in a prospective and standardised manner and 
used Bayesian machine learning techniques that emphasise reproducibility. 
Furthermore, ours is a “white box” method that generates an optimal set of parameters 
and weights that are available for interpretation. We explore a combination of novel 
deep learning radiomics and pre-determined standardized features in the form of the 
well-published filtration-histogram based texture analysis approach (using the 
commercially available TexRAD software) for feature selection from CT images. 
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