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Abstract 25 

Integrating non-invasive brain imaging techniques, particularly computed tomography 26 

(CT) and magnetic resonance imaging (MRI), coupled with the advancement of artificial 27 

intelligence, is forging a key pathway for brain disease diagnosis, playing a vital role in 28 

safeguarding human health1–4. A robust artificial intelligence copilot is essential for 29 

clinical emergencies, functioning as the central processing unit for brain medical imaging 30 

systems, aiming to revolutionize the imaging process, expedite the diagnosis of diseases, 31 

and support treatment5–7. In this study, we developed an advanced multi-modal brain 32 

medical imaging foundational model named Brainfound, utilizing AI-generated content 33 

and image-text alignment technology, pre-trained on over 3 million brain CT images and 34 

over 7 million brain MRI images with their paired reports. As a clinical brain medical 35 

imaging multi-modal model, Brainfound achieved state of the art on seven downstream 36 

tasks, including brain disease diagnosis, brain lesion segmentation, MRI image 37 

enhancement, MRI cross-modality translation, automatic report generation, zero-shot 38 

brain disease classification, and free human-AI conversation. After thorough human-39 

machine validation, Brainfound surpassed the current leading model by 51.75% in 40 

automatic report generation for brain imaging. In multiple-choice questions related to 41 

brain imaging, the accuracy of Brainfound outstripped GPT-4V by 47.68%, comparable 42 

to experienced doctors. We anticipate Brainfound, a clinical model with flexible visual 43 

and text input-output capabilities, will provide substantial support in brain medical 44 

imaging, clinical education, and human-in-the-loop medical diagnosis. 45 

  46 
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Introduction  47 

Brain computed tomography (CT) and magnetic resonance imaging (MRI) have 48 

become essential non-invasive diagnostic tools in clinical scenarios. These imaging 49 

studies are critical for accurately diagnosing various brain conditions, including tumors, 50 

strokes, and neurodegenerative diseases8–11. CT is renowned for its rapid assessment 51 

capabilities, especially in acute settings, providing more reliable detection of hemorrhagic 52 

stroke. In contrast, MRI excels at producing high-resolution images of soft tissues, 53 

significantly increasing early detection rates for brain tumors and neurodegenerative 54 

changes. Collectively, these advancements highlight the significance of brain imaging in 55 

safeguarding patient health and facilitating timely medical interventions12–14.  56 

Artificial intelligence (AI) plays a multifaceted role in augmenting the capabilities of 57 

brain CT and MRI15,16. AI technologies enable automated image analysis, rapidly 58 

identifying abnormalities such as lesions, tumors, and hemorrhages, thereby significantly 59 

enhancing diagnostic efficiency17–20. Deep learning models improve diagnostic accuracy 60 

by recognizing complex image features, sometimes matching or even surpassing the 61 

assessments of expert radiologists21,22. Additionally, AI supports clinical decision-62 

making by integrating the clinical and imaging data of patients and providing 63 

personalized treatment recommendations23,24. Predictive analytics further enhance the 64 

early identification of high-risk patients and potential disease progression. Overall, AI 65 

optimizes resource allocation, ensuring that high-risk cases receive prompt and effective 66 

care. These advancements highlight the critical role of AI in improving diagnostic 67 

accuracy, clinical decision-making, and patient outcomes in neuroimaging25. 68 

The challenges posed by limited labeled data and the complexities of acquiring multi-69 

modal annotations significantly impact the development of AI models26. In medical 70 

imaging, the scarcity of high-quality labeled data hampers training efficacy, preventing 71 

models from achieving optimal performance27,28. The annotating of multi-modal data, 72 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted January 10, 2025. ; https://doi.org/10.1101/2025.01.09.25320293doi: medRxiv preprint 

https://doi.org/10.1101/2025.01.09.25320293
http://creativecommons.org/licenses/by-nc/4.0/


Page 4 of 49 

 

such as the combination of brain CT and MRI, necessitates advanced expertise, leading 73 

to increased time and costs associated with data preparation. This complexity not only 74 

heightens the risk of human error but also limits the diversity and richness of the training 75 

datasets, restricting the capacity of the model for generalization to unseen data. 76 

Additionally, the issue of data imbalance, where common conditions often overshadow 77 

rare diseases, exacerbates the risk of overfitting and diminishes overall model robustness. 78 

Addressing these challenges necessitates innovative methodologies, including semi-79 

supervised and transfer learning approaches, to enhance model training and performance 80 

despite data limitations29,30. Such strategies are essential for ensuring that AI applications 81 

in clinical practice remain effective and reliable. 82 

Large AI models have emerged as a promising solution to these challenges. Inspired 83 

by breakthroughs in large language and vision models like ChatGPT31,32, CLIP33, 84 

SimCLR34, and DINO35, medical foundational models are thriving and pushing the 85 

frontiers in computational pathology36, ophthalmic disease diagnosis37, ultrasonography38, 86 

and cancer biomarker innovation2. These advancements bolster diagnostic accuracy, 87 

facilitate knowledge sharing, and advance medical education39. By leveraging large-scale 88 

pre-training on diverse, unannotated datasets, foundation models capture robust feature 89 

representations, enabling effective performance even when labeled data is limited6,40. 90 

Their capability to integrate multimodal information further enhances their reliability in 91 

clinical applications. In addition, foundational models support advanced techniques such 92 

as self-supervised learning and generative models, which can synthesize annotated data, 93 

thereby expanding the training datasets and improving model generalization. 94 

Consequently, the introduction of foundation models not only provides innovative 95 

strategies for overcoming the challenges posed by the scarcity of annotated data and the 96 

integration of multimodal information but also opens new avenues for enhancing CT and 97 

MRI image analysis to identify brain diseases. 98 
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In this study, we introduce Brainfound, a multimodal AI copilot for brain medical 99 

imaging based on the AIGC and image-text alignment technology (Fig. 1), which has 100 

been pre-trained on BrainCT-3M and BrainMRI-7M (Supplementary Fig. 1, 101 

Supplementary Fig. 2) collected from the Chinese PLA General Hospital to achieve the 102 

aforementioned purpose. BrainCT-3M is a massive brain CT scan dataset containing 103 

107,754 brain CT scans and corresponding diagnostic reports, totaling over 3 million 104 

images. BrainMRI-7M is a brain multi-sequence MRI scan dataset containing 68,653 105 

brain multi-sequence MRI scans and corresponding diagnostic reports, totaling over 7 106 

million images. By harnessing these two datasets, we pre-train image encoders and 107 

decoders based on the Denoising Diffusion Probabilistic Model (DDPM, Fig. 1b) strategy, 108 

as well as text decoders based on the LLaMa41 framework (Fig. 1b). We aligned the visual 109 

module and language module of Brainfound, which comprehended brain medical imaging 110 

and knowledge during pre-training, empowering Brainfound to tackle diverse and flexible 111 

downstream tasks. In comparison with multimodal models like GPT-4V, Brainfound 112 

achieved the best performance across seven types of tasks, including brain disease 113 

diagnosis, brain lesion segmentation, MRI image enhancement, MRI cross-modality 114 

translation, automatic generation of reports from images, zero-shot brain disease 115 

classification, and free human-AI conversation. Especially in two tasks: one is in 116 

automatic report generation, where Brainfound scored about 50% higher than the current 117 

top model in human-machine evaluation; the other is in multiple-choice question 118 

answering, where Brainfound outperformed GPT-4V by 47.68% in accuracy, comparable 119 

to experienced doctors. 120 

Results 121 

Brainfound serving as a multimodal AI copilot for brain medical imaging 122 

Large-scale datasets are essential for building robust AI models. We assembled a 123 

comprehensive national Brain medical imaging dataset, to our knowledge, this is the 124 

largest multimodal brain medical imaging dataset available, containing BrainCT-3M and 125 
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BrainMRI-7M collected from the Chinese PLA General Hospital. BrainCT-3M originates 126 

from a larger multicenter dataset, which catalogs 630,992 scans (enrolled between 2008 127 

and 2022, comprising 366,123 males and 264,869 females) (Supplementary Fig. 1). The 128 

dataset was refined based on image quality, specifically the level of signal-to-noise ratio 129 

(SNR) and the diagnostic details provided in the reports (Methods), resulting in 105,184 130 

CT scans (59,935 males and 45,249 females) and paired diagnostic reports. This refined 131 

dataset includes approximately 46,066 cases of normal individuals, 25,197 cases of 132 

ischemia, 20,798 cases of hemorrhage, 19,497 cases of fractures, and 3,282 cases of 133 

tumors. Additionally, we gathered 68,653 MRI scans and paired diagnostic reports, 134 

including 36,002 males and 32,651 females, with admission dates from 2018 to 2023, 135 

covering ages from 1 to 105 years (Supplementary Fig. 2). The BrainMRI-7M 136 

encompasses several primary modalities: T1-weighted imaging (T1WI), T2-weighted 137 

imaging (T2WI), Diffusion-weighted imaging (DWI, low-b-value and standard-b-value), 138 

Fluid attenuated inversion recovery (FLAIR), etc. We employed the GPT-4 API to 139 

automatically tokenize MRI reports, allowing us to count the image types and quantities 140 

involved in BrainMRI-7M. The statistical results revealed the top 10 most frequent terms: 141 

Ischemia 32,021 times, Softening Focus 6,574 times, Normal 4,273 times, Inflammation 142 

3,936 times, Cyst 3,565 times, Atherosclerosis 3,035 times, Senile Brain Changes 2,865 143 

times, Cerebral Infarction 2,751 times, Hemorrhage 1,934 times, Vascular Stenosis 1,498 144 

times (Supplementary Fig. 2). Meanwhile, we collected a wide range of data for 145 

downstream validation tasks. These include publicly available datasets and hospital-146 

acquired data. The publicly available datasets include the RSNA Intracranial Hemorrhage 147 

Classification dataset42 for validating classification tasks and the BraTS MRI8 dataset for 148 

image quality enhancement. The hospital-acquired data consists of physician-annotated 149 

intracranial hemorrhage segmentation data, midline shift segmentation data, MCQ data, 150 

report generation data, zero-shot classification data from both internal and external 151 

centers, and MRI data for modality conversion. 152 
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In the training phase of the image encoder and decoder (Brainfound-v), we utilized 153 

a U-net architecture augmented by transformer blocks featuring cross-attention43 154 

mechanisms, comprising approximately 78 million trainable parameters (Supplementary 155 

Fig. 3, Methods). Paired clinical information, such as image modality, was randomly 156 

selected and encoded using BERT44, then integrated with corresponding brain images to 157 

serve as input for the primary network architecture of Brainfound-v. The self-supervised 158 

pre-training of Brainfound-v is anchored on the fundamental principles of 159 

DDPM45(Methods). A two-dimensional Brain CT or MRI image, along with its basic 160 

information, is randomly selected from the BrainCT-3M and BrainMRI-7M datasets and 161 

subjected to data augmentation. In the course of forward propagation, Gaussian noise 162 

with a defined intensity is systematically introduced into the image. Upon reaching 1000 163 

iterations, this procedure culminates in the conversion of the image into pure noise (Fig. 164 

1b, Supplementary Fig. 4a). Throughout backward propagation, the neural network 165 

meticulously learns to perform denoising and reconstructs the clean image 166 

(Supplementary Fig. 5), thereby cultivating advanced representation learning capabilities 167 

(Supplementary Fig. 6). Modality information from brain CT or MRI images serves as 168 

guidance and is concurrently input into the model. To bolster the robustness of the main 169 

backbone network against this modality information, we randomly occlude portions or 170 

the entirety of it as input. In the process of report generation, we employed the text 171 

encoder and decoder of BERT (102 million trainable parameters) and initialized them 172 

with pre-trained weights, along with diagnostic reports to pre-train the text encoder and 173 

decoder (Supplementary Fig. 7, Methods). For the task of open conversation, we utilized 174 

a LLaMA-like model (8 billion parameters) and its weights for initialization, using Lora46 175 

for fine-tuning with our self-collected instruction datasets about brain medical imaging 176 

(Supplementary Fig. 8, Methods). 177 

During the inference phase, we design task-specific adapters to fully harness the 178 

capabilities of Brainfound. For the cerebral hemorrhage classification task, a trainable 179 
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multilayer perceptron (MLP) is utilized to convert the final output features of the 180 

Brainfound image encoder into diagnostic labels (Supplementary Fig. 4b, Methods). In 181 

the segmentation tasks for cerebral hemorrhage and midline shift, a set of learnable MLP 182 

classifiers is employed to independently classify the intermediate features extracted by 183 

the image encoder-decoder (Supplementary Fig. 4c, Methods). For the modality transfer 184 

task, the diffusion model is fine-tuned using the image encoder-decoder with modality-185 

conditioned images. In the denoising task, we develop a zero-shot learning denoising 186 

diffusion model based on the image encoder-decoder module. For contrastive learning, a 187 

set of aggregation modules is introduced to merge the features from the image encoder 188 

and achieve scan-level alignment with reports (Supplementary Fig. 7, Methods). Finally, 189 

in the construction of the AI assistant, the features extracted by the image encoder are 190 

transformed into tokens and integrated with text inputs into a LLaMa-like large language 191 

model for unified processing (Supplementary Fig. 8, Methods). 192 

 193 

Brainfound performs precise diagnosis and localization of brain diseases 194 

As a potentially life-threatening condition, intracranial hemorrhage requires an 195 

accurate diagnosis for proper treatment. We compared the full parameter fine-tuning 196 

performance and only the tail MLP fine-tuning performance of Brainfound with other 197 

methods on the publicly available RSNA intracranial hemorrhage classification dataset. 198 

We used 222,218 images from the RSNA intracranial hemorrhage dataset, with half used 199 

for model training and the other half for model testing. We conducted four experiments. 200 

The first experiment involved full parameter fine-tuning of models with different amounts 201 

of training data to compare the accuracy of intracranial hemorrhage classification. We 202 

compared Brainfound, MAE pre-trained on natural images (MAE)47, MAE pre-trained 203 

on medical images (MAE pre-trained), and models pre-trained on RadImagenet48. The 204 

models underwent full fine-tuning using the entire training set (about 110,000 images) 205 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted January 10, 2025. ; https://doi.org/10.1101/2025.01.09.25320293doi: medRxiv preprint 

https://doi.org/10.1101/2025.01.09.25320293
http://creativecommons.org/licenses/by-nc/4.0/


Page 9 of 49 

 

and reduced portions of the training set (1/2, 1/4, 1/8, 1/16, and 1/32). Brainfound 206 

achieved the best AUC across all training data volumes (Fig. 2a). For instance, with fine-207 

tuning on the 1/32 training set (Fig. 2b, Supplementary Fig. 9a), Brainfound achieved an 208 

AUC of 0.8739 (95% CI 0.8690-0.8769), with ResNet49 in second place reaching an AUC 209 

of 0.8739 (95% CI 0.8690-0.8769). The second experiment focuses on fine-tuning just 210 

the tail MLP under varying training data volumes, with the pre-trained model serving as 211 

a feature extractor for brain CT images. Brainfound achieved the highest AUC across all 212 

training data volumes (Fig. 2c). For instance, with 1/32 of the training set (Fig. 2d, 213 

Supplementary Fig. 9b), Brainfound achieved an AUC of 0.7776 (95% CI 0.7731-0.7817), 214 

whereas ResNet, in second place, reached an AUC of 0.7267 (95% CI 0.7215-0.7317). 215 

In addition, we incorporated the state-of-the-art method from the RSNA Brain 216 

Hemorrhage Classification competition to demonstrate the plug-and-play performance of 217 

Brainfound as the foundation model. This method is based on an ensemble learning 218 

approach with three different backbones. During comparison, we replaced one of the 219 

backbones (Densenet12150) with Brainfound. In all experiments, models based on 220 

Brainfound achieved the highest AUC scores (Supplementary Fig. 9c-d). 221 

The visual module of Brainfound is built upon DDPM, a robust image generation 222 

tool that effectively learns the prior knowledge needed for dense prediction. We evaluated 223 

this in brain hemorrhage segmentation and midline shift detection tasks. For the brain 224 

hemorrhage segmentation task, we gathered 2060 brain CT scans from the Chinese PLA 225 

General Hospital, with 220 cases in the training set (1397 images), 760 cases in the 226 

validation set (5440 images), and 1080 cases in the test set (7917 images). In the full 227 

parameter fine-tuning process for Brainfound and three other comparative methods, we 228 

established four groups of training data volumes, using 12.5%, 25%, 50%, and 100% of 229 

the training set data (Fig. 2e). In all segmentation tasks for intracerebral hemorrhages, 230 

Brainfound achieved the best performance (Fig. 2e). For example, when fine-tuning with 231 

only 12.5% of the training data, the Dice coefficient of Brainfound was 0.6671 (95% CI 232 
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0.6536-0.6805), surpassing the second-place InternImage by approximately 31.99%. 233 

Brainfound excels at segmenting small hemorrhages located near the skull (Fig. 2f). The 234 

shift in the brain midline is a reliable indicator of the severity of brain diseases. For the 235 

task of brain midline localization and segmentation, we collected data from 301 patients, 236 

including 12 cases in the training set (439 images), 50 cases in the validation set (1629 237 

images), and 239 cases in the test set (7743 images). In the experiment, we tested four 238 

different training data volumes: 12.5% training set (1 case, 72 images), 25% training set 239 

(3 cases, 138 images), 50% training set (6 cases, 236 images), and 100% training set (12 240 

cases, 439 images), to assess the performance of four models in few-shot learning (Fig. 241 

2g). In the comparison with MedSAM51, MAE, and InternImage52, Brainfound 242 

outperformed the other models, achieving the highest Dice coefficient (Fig. 2g). The best 243 

performance was observed with 12.5% of the training data, where Brainfound scored 244 

0.6848 (95% CI 0.6682-0.7014), exceeding the second-place model by 17.47% (Fig. 2g). 245 

With a pixel-level visual model, Brainfound delivers more accurate masks in brain 246 

midline segmentation (Fig. 2h). From the results of the saliency map analysis, it is evident 247 

that the attention of Brainfound effectively concentrated on the necessary hemorrhage 248 

area or midline region for the task (Supplementary Fig. 10-12). 249 

Brainfound boosts the imaging capability of brain medical equipment 250 

MRI is a fundamental tool in clinical neuroimaging applications. Unlike CT, MRI 251 

is non-invasive, non-ionizing, inherently quantitative, and multi-parametric. By utilizing 252 

strong magnetic fields and radiofrequency signals, MRI generates high-contrast images 253 

of soft tissues, which makes it particularly advantageous in detecting brain conditions 254 

such as tumors, inflammation, and vascular abnormalities. From the standpoint of the 255 

main magnetic field strength, MRI covers a range from low-field to high-field and even 256 

ultra-high-field. Low-field MRI (such as 0.3T) has the advantages of lower equipment 257 

and maintenance costs and higher patient comfort, but the acquired images have lower 258 

spatial resolution and image quality, with longer acquisition times53–55. High-field MRI 259 
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(such as 3T) provides higher signal-to-noise ratio (SNR) and spatial resolution with 260 

shorter scan times. However, it is expensive and has limited availability. 5T MRI is 261 

gradually entering clinical practice and is helping to solve many clinical problems by 262 

improving resolution56. From the standpoint of acquisition sequences, MRI allows for the 263 

acquisition of high-resolution brain images with different contrasts. For MRI imaging, 264 

reducing scanning time would greatly expand its clinical application scenarios. Along 265 

with the rapid development of AI-enhanced MRI imaging, current AI methods can both 266 

recover clear images from low signal-to-noise ratio MRI images taken with fast 267 

acquisition and enable virtual multi-modal MRI imaging through modality transformation. 268 

The visual module of Brainfound, based on DDPM, has an inherent advantage in pixel-269 

level tasks, as we have validated its performance in zero-shot learning for MRI denoising 270 

and few-shot learning for modality translation. 271 

We first utilized the publicly available 3T MRI high SNR image dataset: the Brain 272 

Tumor Segmentation (BraTS) Challenge 2023, randomly selecting 10 brain T1WI scans 273 

(a total of 1380 images) to construct a zero-shot learning test set. Different intensities of 274 

simulated Rican noise were added to the clear MRI images to produce six test sets with 275 

varying noise levels (Methods), with average image SNRs of 9.6808 dB, 11.7425 dB, 276 

14.7979 dB, 15.6190 dB, 16.5326 dB, and 17.5389 dB. We constructed a zero-shot 277 

learning iterative denoising architecture using Brainfound (Supplementary Fig. 13, 278 

Methods) and compared it with pre-trained SCUnet57, Neighbor2neighbor58 (Nei2nei), 279 

and Noise2self59. We assessed the quality of the enhanced images using PSNR, RMSE, 280 

SNR, and SSIM(Methods), which are commonly used metrics in computer vision. 281 

Brainfound achieved optimal scores on all four metrics across six different noise levels 282 

in the test sets (Fig. 3a-d). For instance, when the average SNR of test images is 14.7979 283 

dB (95% CI 14.7171-14.8786 dB), the SNR of the images enhanced by Brainfound is 284 

19.7580 dB (95% CI 19.6456-19.8704 dB), surpassing the second-place SCUnet by 6.89% 285 

(Fig. 3c), whose enhanced image SNR is 18.4848 dB (95% CI 18.3855-18.5842 dB). 286 
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Brainfound manages to remove noise while retaining details (Supplementary Fig. 14). 287 

Moreover, we gathered paired MRI images with both high and low SNR from various 288 

sequences spanning low field (0.3T) to high field (5T) to assess the denoising capabilities 289 

of Brainfound. The 0.3T low-field MRI images were sourced from the M4Raw dataset, 290 

including T1WI (25 scans, 450 images), T2WI (25 scans, 450 images), and FLAIR (25 291 

scans, 450 images). The 5T ultra-high field MRI images were collected at Beijing 292 

Friendship Hospital, including T2WI (1 scan, 10 images) and T1WI (1 scan, 19 images), 293 

and 25 images were collected from a 5T MRI at Shanghai United Imaging as the external 294 

test set (Methods). Brainfound secured the best scores on almost all datasets and metrics 295 

(Fig. 3e-h). For instance, in terms of PSNR, Brainfound surpassed the second place by up 296 

to 5% (Fig. 3e). Detailed comparisons and case studies are available in the supplementary 297 

materials (Supplementary Fig. 15-20). 298 

We then validated the ability of Brainfound in MRI image modality 299 

transformation on clinically common MRI sequences. We collected 182 cases of brain 300 

3T MRI scan data from the Chinese PLA General Hospital, including T1WI, T2WI, 301 

FLAIR, low-b-value DWI, and standard-b-value DWI modalities. We used AI methods 302 

to virtually generate images of the other four modalities from T1WI. We used 94 scans 303 

(2205 images) as the training set and 88 scans (1936 images) as the test set. We compared 304 

Brainfound with SynDiff60, ResViT61, pGAN62, and cGAN63 in modality transformation, 305 

which covers the commonly used MRI modality transfer network structures and methods. 306 

We employed PSNR, RMSE, SNR, and SSIM to quantify the comparison of modality 307 

transformation results. Brainfound achieved the best results across four modality 308 

transformation tasks (Fig. 3i-l). In SNR comparisons (Fig. 3k), Brainfound showed 309 

improvements of 8.17% for T1WI to T2WI, 7.52% for T1WI to FLAIR, 12.23% for 310 

T1WI to standard-b-value DWI, and 11.17% for T1WI to low-b-value DWI over the 311 

second place. In PSNR comparisons (Fig. 3i), Brainfound showed improvements of 3.90% 312 

for T1WI to T2WI, 3.78% for T1WI to FLAIR, 4.17% for T1WI to standard-b-value DWI, 313 
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and 3.40% for T1WI to low-b-value DWI over the second place. The T1WI to T2WI 314 

modality transformation results show that the output of Brainfound more clearly 315 

generates lesion areas and highlights important structural regions (Fig. 3j). Additional 316 

examples of modality conversion are available in the supplementary materials 317 

(Supplementary Fig. 21-24). 318 

Brainfound autonomously drafts high-quality clinical reports 319 

Automatically generating brain imaging reports has the potential to improve the 320 

medical experience of patients and the work efficiency of radiologists. Based on the 321 

BrainCT-3M and BrainMRI-7M datasets, we pre-trained the text encoder and decoder 322 

using a strategy similar to Bidirectional Encoder Representations from Transformers 323 

(BERT). Then, we aligned the image encoder and text encoder using the Contrastive 324 

Language-Image Pre-Training (CLIP) strategy, thereby training strategy the capability of 325 

Brainfound for automatic report generation (Supplementary Fig. 7, Methods). For a 326 

comprehensive understanding of a brain CT or MRI scan, Brainfound processes an entire 327 

brain CT or MRI scan stack when drafting reports (Fig. 4a, Methods). The alignment of 328 

text encoders and image encoders also serves the significant purpose of enabling zero-329 

shot classification of brain CT or MRI scans based on text tokens.  330 

We first evaluated the capabilities of Brainfound with GPT-4V, RadFM64, and 331 

MiniGPT-Med65 in terms of automatic report generation. The default prompt was utilized 332 

to generate brain CT reports in the final three methods (Supplementary Fig. 25). We 333 

collected 990 brain CT scans and their corresponding reports, authored by experienced 334 

clinicians, from the Chinese PLA General Hospital to serve as a test set for these four 335 

methods. Data for evaluation in this dataset is not included in the pretraining dataset. We 336 

employed commonly used natural language processing metrics to quantitatively evaluate 337 

the report quality generated by each method, including BLUE-1, BLUE-2, BLUE-3, 338 

ROUGE-L, METEOR, and Bert similarity. Brainfound secured the highest scores in all 339 
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metrics: for BLUE-1(Fig. 4c), Brainfound scored 0.5275 (95% CI 0.5144-0.5405), 340 

outperforming the second-place GPT-4V by 110.24%, which scored 0.2509 (95% CI 341 

0.2482-0.2537). In METEOR (Fig. 4f), Brainfound scored 0.3182 (95% CI 0.3098-342 

0.3266), surpassing GPT-4V by 101.46%, which scored 0.1579 (95% CI 0.1563-0.1594). 343 

In Bert similarity (Fig. 4h), Brainfound scored 0.9258 (95% CI 0.9233-0.9283), 344 

exceeding MiniGPT-Med by 11.42%, which scored 0.8309 (95% CI 0.8284-0.8334). 345 

Similar trends are observed in the results of other metrics (Fig. 4d,f,h). A report for a 346 

normal brain CT, a report for an ischemic brain CT, and a report for a hemorrhagic brain 347 

CT are presented in the supplementary materials(Supplementary Fig. 26-28). In parallel, 348 

we randomly selected 33 cases from the results to form a test set and established a human 349 

evaluation framework to assess the accuracy of reports generated by four methods 350 

(Methods). Based on the 3D slicer, we developed a human scoring framework for report 351 

evaluation (Supplementary Fig. 29). Five radiologists from three different hospitals, with 352 

an average practice duration of 6.4 years (5, 3, 2, 5, and 17 years respectively), 353 

participated in scoring the reports. The reports were evaluated on nine aspects according 354 

to clinical guidelines: the overall impression and completeness of the report, the 355 

descriptions of lesions for count, localization, morphology, boundary, density, type, and 356 

normal structure. For the overall impression (Fig. 4i), Brainfound scored 3.9455 (95% CI 357 

3.9104-3.9805), surpassing the second-place GPT-4V by 51.75%, which scored 2.600 358 

(95% CI 2.4943-2.7057).  For the lesion count (Fig. 4j), Brainfound scored 3.4848 (95% 359 

CI 3.3382-3.6315), surpassing the second-place GPT-4V by 51.75%, which scored 360 

1.5394 (95% CI 1.4118-1.667). For the lesion localization (Fig. 4k), Brainfound scored 361 

3.4788 (95% CI 3.3322-3.6254), surpassing the second-place MiniGPT-Med by 113.33%, 362 

which scored 1.6303 (95% CI 1.4595-1.8011). For the shape description (Fig. 4l), 363 

Brainfound scored 3.4788 (95% CI 3.2955-3.6621), surpassing the second-place GPT-364 

4V by 118.91%, which scored 1.5879 (95% CI 1.4156-1.7601). Detailed scoring results 365 

are available in Supplementary Fig. 30. We also leveraged the understanding of medical 366 
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knowledge by current large language models, having GPT-4 and GPT-4o score the 367 

reports generated by the four methods like doctors. Reports written by experienced 368 

doctors were used as the reference standard for GPT-4 and GPT-4o scoring. GPT-4 and 369 

GPT-4o each scored three times, obtaining results close to human scores (Supplementary 370 

Fig. 31-32). 371 

Once the image and text encoders are aligned, zero-shot classification tasks can 372 

be seamlessly accomplished using the tokens from the text encoder(Fig. 4b). We 373 

developed internal and external test sets to evaluate the performance of Brainfound and 374 

RadImageNet in zero-shot brain CT classification tasks. The internal test set was gathered 375 

at the Chinese PLA General Hospital, containing 588 brain CT scans with corresponding 376 

diagnostic results, including 190 normal brain CTs, 71 cases of cerebral hemorrhage, 122 377 

cases of cerebral ischemia, 173 cases of skull fracture, and 32 cases of brain tumor. The 378 

external test set was collected in Brains Hospital of Hunan Province and contains 363 379 

brain CT scans with corresponding diagnostic results, including 92 normal brain CTs, 62 380 

cases of cerebral hemorrhage, 160 cases of cerebral ischemia, 24 cases of skull fracture, 381 

and 25 cases of brain tumor. Brainfound achieved the highest AUC scores for the 382 

classification of the five types of CT scans in both the internal and external test sets (Fig. 383 

4m-q, Supplementary Fig. 33). In internal dataset testing, the AUC of Brainfound for 384 

normal brain CT is 0.9892, while RadImageNet is 0.9737, with a difference of 1.59%(Fig. 385 

4m); for brain hemorrhage CT, the AUC of Brainfound is 0.9602, and RadImageNet is 386 

0.8354, with a difference of 14.94%(Fig. 4n); for brain ischemia CT, the AUC of 387 

Brainfound is 0.9736, and RadImageNet is 0.8658, with a difference of 12.45%(Fig. 4o); 388 

for brain fracture CT, the AUC of Brainfound is 0.9664, and RadImageNet is 0.9071, 389 

with a difference of 6.54%(Fig. 4p); for brain tumor CT, the AUC of Brainfound is 0.9627, 390 

and RadImageNet is 0.6977, with a difference of 37.98%(Fig. 4q). We visualized the 391 

probability distributions of Brainfound for five labels in the brain ischemia and hemorrage 392 

CT classification(Fig. 4m-n), where it is evident that the image encoder and text encoder 393 
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assign higher confidence to the correct label token afterward. Additional visualization 394 

results are available in Supplementary Fig. 34. In external dataset tests, the AUC 395 

difference between Brainfound and RadImageNet is more pronounced, with the AUC of 396 

Brainfound nearly twice that of RadImageNet (Supplementary Fig. 33). Through 397 

significance analysis, the attention of Brainfound is concentrated on the regions that 398 

determine the image category (Supplementary Fig. 35). The label probability 399 

visualizations for the external test set are shown in Supplementary Fig. 33. 400 

Brainfound handles medical MCQs and free conversations 401 

Finally, as an AI copilot tailored for brain imaging clinical applications, we 402 

assessed the capability of Brainfound via more flexible and challenging tasks. By 403 

leveraging the image sequences and corresponding diagnostic reports from BrainCT-3M 404 

and BrainMRI-7M, in combination with the strong text understanding capabilities of the 405 

current large language model (GPT-4), we created an instruction dataset named 406 

BrainInstru-1M, which contains 1,003,732 cases (Fig. 4a). BrainInstru-1M includes 407 

multiple-choice questions (MCQs) or free conversations: for MCQs, each instruction data 408 

contains a brain CT or MRI sequence, the question stem and options, and the correct 409 

answer; for free conversations, each instruction data contains a brain CT or MRI sequence 410 

along with three rounds of conversations. We employed different prompts to guide GPT-411 

4 in generating data from various knowledge depths and perspectives, enriching the data 412 

diversity of BrainInstru-1M. 413 

To evaluate the performance of Brainfound in answering MCQ, we created a test 414 

set called BrainMCQ. BrainMCQ consists of 70 brain CT scan samples: 12 normal brain 415 

CTs, 14 brain hemorrhage CTs, 20 brain ischemia CTs, 12 brain fracture CTs, and 12 416 

brain tumor CTs (Fig. 5d). Each CT scan contains 3-4 MCQs, with a total of 229 MCQs, 417 

which include 3 three-option questions, 215 four-option questions, and 11 five-option 418 

questions (Fig. 5e). In terms of the options, we ensure the correct answer is randomly 419 
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distributed, with no bias towards any specific option (Fig. 5f). We recruited three 420 

experienced doctors from three different hospitals, with an average of 3.3 years of 421 

professional experience (2, 3, and 5 years, respectively), to compare their accuracy in 422 

answering BrainMCQ questions with that of Brainfound and GPT-4V. To evaluate the 423 

performance, we asked both Brainfound and GPT-4V to independently answer 424 

BrainMCQ three times and calculated the average accuracy. The average accuracy of 425 

Brainfound is 0.7846, the average accuracy of GPT-4V is 0.5313, the accuracy of Doctor 426 

1 is 0.5749, the accuracy of Doctor 2 is 0.5072, and the accuracy of Doctor 3 is 0.7393. 427 

Brainfound achieved the same level of accuracy as human doctors (Fig. 5a). In the time 428 

statistics for completing BrainMCQ, both Brainfound and GPT-4V finished the test 429 

within half an hour, while the three doctors took around one hour or longer (Fig. 5b). 430 

Some MCQ cases are shown in detail (Fig. 5h-i, Supplementary Fig. 36-37).  431 

Besides testing on BrainMCQ, we explored the potential of using Brainfound as 432 

a specialized brain imaging AI copilot in free conversations. Brainfound is capable of 433 

accurately diagnosing disease conditions by integrating brain CT images, answering 434 

complex medical concepts, and even offering further examination suggestions for 435 

diseases currently not fully determined (Fig. 5j). During the conversation about cerebral 436 

infarction CT scans, Brainfound explained the causes of cerebral infarction and noted a 437 

hemorrhage in another area (Supplementary video 1). In the conversation about cerebral 438 

hemorrhage CT scans, Brainfound analyzed the effects of the hemorrhage on the lateral 439 

ventricles and the subarachnoid space, aiding patients in understanding their condition 440 

more comprehensively (Supplementary video 1). 441 

 442 
Discussion  443 

In this study, we established a comprehensive specialized multimodal model for 444 

brain medical imaging called Brainfound (Supplementary Fig. 38). We collected two 445 
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foundational datasets aligned with scans and reports, BrainCT-3M and BrainMRI-7M, 446 

covering common brain medical imaging modalities and disease types. Based on this, we 447 

generated the instruction dataset related to brain medical imaging, BrainInstru-1M, which 448 

includes 1,003,732 cases of brain medical imaging and corresponding instruction texts. 449 

Using the DDPM strategy, we pre-trained image encoders and decoders with text 450 

embedding enhancement via the cross-attention module as the visual module of 451 

Brainfound. Based on the RSNA dataset, we verified that Brainfound achieved the highest 452 

AUC in the intracranial hemorrhage classification task across different training data 453 

volumes. In the tasks of hemorrhage segmentation and midline shift segmentation, the 454 

pre-trained Brainfound also achieved the highest Dice coefficient across various training 455 

data volumes. For the task of automatic report generation, we created a robust human-456 

machine evaluation system and recruited five experienced doctors from different 457 

hospitals to assess the report generation results. In comparison with current common 458 

medical report generation methods, Brainfound outperformed the second-best method by 459 

51.75% in evaluation scores. Additionally, we found that when the text encoder and 460 

image encoder are aligned, zero-shot brain medical imaging classification is possible 461 

using the input text. Brainfound achieved superior AUCs on both internal and external 462 

test datasets compared to RadImageNet. We evaluated the multimodal understanding 463 

capabilities of Brainfound through tasks requiring flexibility and a deep understanding of 464 

medical images and knowledge, like multiple-choice questions and free conversation. In 465 

the multiple-choice question task, the accuracy of Brainfound exceeded GPT-4V by 466 

47.68%, rivaling experienced human doctors. In the free conversation around brain 467 

medical imaging, Brainfound is able to correctly answer medical knowledge, diagnose 468 

diseases in images, and proactively provide subsequent diagnostic opinions or treatment 469 

plans. 470 

Clinical medical AI models are inherently multimodal big data regression tasks. 471 

In the future, we plan to integrate additional modalities into Brainfound (such as EEG 472 
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and electronic medical records), positioning patient records as a central component of 473 

prompts to enhance the precision and complexity of disease diagnosis. By incorporating 474 

medication information, we aim to train Brainfound to automatically offer medication 475 

recommendations. We expect that with further training using extensive multimodal 476 

datasets (including medical guidelines and research papers), Brainfound will develop 477 

emergent insights related to brain medical imaging. In the high-dimensional space, brain 478 

imaging information is often fragmented and isolated; Brainfound will act as an 479 

exceptional interpolator to bridge these gaps. Brain diseases often progress over time for 480 

patients. Therefore, Brainfound needs to prioritize developing its temporal causal 481 

reasoning abilities, allowing it to deduce the disease course by integrating transformations 482 

in medical images at several time points, offering more precise prognoses and treatment 483 

strategies. On the other hand, medical AI models are responsible for doing everything 484 

possible to enhance human health in global clinical applications. By employing 485 

techniques like model distillation, quantization, pruning, and leveraging powerful cloud 486 

computing platforms, we will deploy Brainfound in the cloud. This will allow Brainfound 487 

to function as an AI copilot for clinicians working with brain medical imaging. 488 

 489 

Methods 490 

Pretrain strategy of Brainfound.  491 

To establish BrainFound as an outstanding multimodal AI assistant for brain imaging 492 

analysis, our model is designed with three main components: an image encoder, an image 493 

decoder, and a large language model. We further propose a three-stage training strategy 494 

to enhance its performance. In the first stage, we adopt a diffusion model-based training 495 

approach as the pretraining strategy for the image encoder and decoder. This stage enables 496 

the model to effectively capture low-level features from medical images, which is 497 

essential for tasks such as segmentation, denoising, and modality conversion. In the 498 

second stage, we implement contrastive learning based on the pre-trained image encoder 499 
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and the BERT model. This stage equips the model with the capabilities of report 500 

generation and zero-shot classification. In the third stage, we fine-tune the image encoder 501 

from the second stage and the large language model InternLM66 using multimodal 502 

dialogue datasets and multiple-choice question datasets. This enables the model to serve 503 

as an AI assistant capable of answering questions effectively. 504 

Self-supervised training for feature representation：  To accommodate a broader 505 

range of low-level downstream tasks, we adopted the training methodology of diffusion 506 

models as our first-stage pretraining strategy. Diffusion models are widely recognized for 507 

their ability to generate realistic images from Gaussian noise. Recent research has shown 508 

that these models can effectively capture stable prior knowledge, leading to improved 509 

performance across a variety of downstream tasks. Therefore, we leverage diffusion 510 

models as a self-supervised pretraining approach. Before training, the images were 511 

preprocessed by converting them into different window widths and window levels. The 512 

training process of diffusion models consists of two key phases: the forward diffusion 513 

process and the reverse diffusion process. During the forward diffusion phase, noise is 514 

gradually added to the data. The objective of DDPM is to train a model capable of 515 

reconstructing the original data from these noisy observations. For our training, we 516 

adhered to the standard settings67. To enhance control over the model’s generated content 517 

and expand its range of applications, we adopt a cross-attention-based DDPM model. The 518 

window width, window level, and modality information of the image are used as 519 

conditional inputs to guide the learning process during generation. To improve robustness, 520 

the conditional information may be randomly dropped out during training. 521 

Contrastive Learning: Contrastive Learning is a self-supervised learning technique that 522 

trains models on unlabeled data by learning meaningful representations through the 523 

similarities between data samples. This approach is particularly effective in scenarios 524 

with limited labeled data. By utilizing contrastive learning, the image encoder extracts 525 

features that align with semantically meaningful text in the feature space. This alignment 526 
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facilitates applications such as image-text retrieval and medical image captioning. In this 527 

stage, we use the encoder from the pre-trained model in the first stage to extract image 528 

features from an image sequence. These features are concatenated and then passed 529 

through an aggregation module and a projection module to generate a feature vector. This 530 

feature vector is compared with the features extracted by a text encoder to calculate 531 

similarity, and the loss is computed accordingly. For the text encoder, we employ a BERT 532 

structure fine-tuned on Chinese-language corpora. Using a rule-based report analysis 533 

method, we extract CT image categories, including normal, hemorrhage, cerebral 534 

infarction, fracture, and tumor. Since MRI scans encompass multiple distinct modality 535 

sequences, the report content is characterized by its comprehensive and summarized 536 

nature, and we leverage ChatGPT to extract key disease-related terms from the reports to 537 

ensure an accurate and comprehensive representation of disease information. When 538 

constructing the text for contrastive learning, we concatenate the extracted disease 539 

categories with the original reports. 540 

Multimodal Fine-Tuning Phase: To enable the multimodal assistant to fully understand 541 

both images and text, we fine-tune the model using the image encoder from the 542 

contrastive learning stage and a large language model (LLM) based on the open-source 543 

LLaMA architecture. When constructing the multimodal training dataset, we utilized 544 

ChatGPT to clean and organize the report data. By designing prompts, we transformed 545 

the reports into conversational text of various styles and created multiple-choice questions. 546 

Detailed prompts are provided in the supplementary materials. Using this approach, we 547 

generated a total of N rounds of dialogue text and N sets of multiple-choice question text. 548 

Given the significant number of parameters in large models, fully fine-tuning all 549 

parameters for downstream tasks requires substantial computational resources and is 550 

prone to overfitting. Moreover, full fine-tuning can lead to severe forgetting issues, 551 

causing the model to lose many of its original capabilities. To address these challenges, 552 

we adopted the PEFT (Parameter-Efficient Fine-Tuning) method based on LoRA (Low-553 
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Rank Adaptation) to fine-tune both the LLaMA language model and the image encoder 554 

model. 555 

Network architecture  556 

Our BrainFound framework consists of an image encoder, an image decoder, and a 557 

foundational large language model. BrainFound leverages diffusion models for 558 

pretraining to obtain robust and meaningful feature representations. During the self-559 

supervised diffusion phase, the image encoder and image decoder are connected in a 560 

UNet-like architecture. To better capture feature representations across multiple levels, 561 

we chose a pixel-to-pixel space diffusion model instead of the Latent Diffusion Model 562 

(LDM)68. Specifically, the image encoder in BrainFound consists of five downsampling 563 

modules and one deep feature extraction module, while the image decoder comprises five 564 

upsampling modules. Each of these modules incorporates residual structures to ensure 565 

effective gradient optimization during training. Moreover, certain downsampling and 566 

upsampling blocks are enhanced with a cross-attention Transformer module. This 567 

mechanism enables the encoded textual information to directly influence the image 568 

generation process. Such textual information includes, but is not limited to, parameters 569 

like the image’s window width and window level, as well as disease category information 570 

extracted from reports.  571 

In the contrastive learning phase, we additionally designed an aggregation module 572 

to fuse the features of multiple images within an image sequence. The aggregation module 573 

adopts a transformer architecture consisting of two layers of transformer encoders with 574 

layer normalization. Positional encoding parameters are also included to enhance the 575 

model’s ability to process sequential information.  576 

During the fine-tuning phase of the multimodal assistant, we selected LLaMA as 577 

the foundation for the large language model. LLaMA is a highly optimized large-scale 578 
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language model based on the Transformer architecture, designed for performance and 579 

efficiency. Its core structure incorporates multi-head self-attention (MHSA) to capture 580 

long-range dependencies efficiently, enabling parallel processing of contextual 581 

relationships and maintaining semantic and syntactic consistency during generation. To 582 

enhance contextual understanding, LLaMA employs rotary position embedding (RoPE), 583 

which provides strong generalization capabilities for modeling long sequences. In this 584 

work, we utilized the 7B-parameter version of the model as a balance between 585 

performance requirements and computational resources. The pre-trained weights were 586 

sourced from InternLM. Subsequently, we adopted an instruction learning approach to 587 

fine-tune the image encoder and the LLaMA model using multimodal dialogue data and 588 

multimodal multiple-choice question datasets. Specifically, for a given dialogue, we 589 

concatenate the image-encoded features with the text-extracted tokens and input them 590 

into the LLaMA model to generate outputs. A detailed process flowchart can be found in 591 

the supplementary materials. (Supplementary Fig. 1).   592 

Fine-tuning Brainfound to downstream tasks.  593 

To fully unlock the potential of Brainfound across diverse tasks, we incorporated multiple 594 

state-of-the-art deep learning techniques and designed experiments tailored to various 595 

downstream applications.  596 

RSNA intracranial hemorrhage classification task: Intracranial hemorrhage 597 

classification is essential for identifying the underlying cause of bleeding, guiding 598 

treatment decisions, and optimizing management strategies. It provides a foundation for 599 

prognosis evaluation, personalized treatment planning, and advancing medical research. 600 

In this task, we utilize an image encoder to extract image features and perform 601 

classification through an additional linear layer. Specifically, the image at t = 0  is input 602 

into the image encoder to extract features, which are then passed through a dropout layer 603 

and an activation function before being fed into the linear layer for prediction. As this is 604 

a multi-label classification problem, binary cross-entropy (BCE) is employed to calculate 605 
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the loss. We evaluated three experimental setups on this dataset: Full-parameter fine-606 

tuning: Both the image encoder and the linear layer parameters are updated during 607 

training. Linear-layer fine-tuning: The image encoder is frozen, and only the linear layer 608 

weights are fine-tuned. Ensemble integration: Our image encoder was incorporated into 609 

the winning ensemble strategy of the RSNA competition for further evaluation. 610 

Intracerebral hemorrhage and midline structure segmentation task: Brainfound 611 

contains rich prior knowledge of brain medical images. To fully exploit this prior 612 

knowledge for segmentation, which is a dense prediction task, we adopted the approach69 613 

that utilized MLP to classify each pixel’s label. In summary, we used the image encoder 614 

and image decoder of Brainfound to extract image features and trained an MLP classifier 615 

to classify the features extracted from each spatial location. For each image, we obtained 616 

four features at different scales from Brainfound, which were then upsampled to match 617 

the input resolution and concatenated. The feature vector corresponding to each spatial 618 

location was then fed into the MLP classifier to predict the class of that pixel, and the loss 619 

was computed with the segmentation labels to update the network. During training, we 620 

used single-center data and split it into training, validation, and testing sets. The best 621 

model was selected based on the validation set, and results were reported on the test set. 622 

The AdamW optimizer was used with a weight decay of 1e-3 and an initial learning rate 623 

of 1e-3. The training lasted for 20 epochs. 624 

MRI imaging modality translation task: For the task of MRI modality conversion, we 625 

conducted four experiments, converting T1WI into T2WI, FLAIR, and DWI, with the 626 

latter further divided into two classes: b<500 and b>500. For this task, we employed a 627 

straightforward conditional diffusion model to perform the modality conversion. 628 

Specifically, the input to the diffusion model consisted of both the noise channel and an 629 

additional T1WI as the condition. We acknowledge that more advanced diffusion-based 630 

mechanisms might achieve better results in this task. For our experiments, we curated a 631 

dataset of 200 cases containing these modalities. Among them, 100 cases were used for 632 
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training, and the remaining 100 for validation. The model was trained for 200 epochs, 633 

and the final model was evaluated on the validation set. 634 

Low-quality medical image enhancement task: The visual module of Brainfound 635 

employs the DDPM strategy for pretraining, which provides strong representation 636 

learning capabilities for pixel-level semantic information. This capability is leveraged to 637 

develop a zero-shot denoising framework. For the detailed algorithmic process, see 638 

Supplementary Fig. 13. 639 

Zeroshot classification task: To validate the effectiveness of contrastive learning, we 640 

collected two classification datasets. The first dataset, consisting of 588 cases, was 641 

sourced from an internal center and is entirely separate from the training data used for 642 

contrastive learning. The second dataset, obtained from an external center, contains 363 643 

cases. Both datasets include five categories: normal, hemorrhage, ischemia, fracture, and 644 

tumor. For zero-shot classification, we constructed textual features for the five categories 645 

using short descriptive phrases. The cosine similarity between the textual features and the 646 

image features was then computed. After normalizing the similarity scores, softmax 647 

probabilities were calculated to predict the final category. 648 

Medical image report generation task: During the training of contrastive learning, we 649 

additionally designed a text decoder module. This module is based on a pre-trained 650 

Chinese BERT architecture with six hidden layers and a vocabulary size of 21,128. The 651 

module takes image features as input and predicts the probability distribution of the 652 

corresponding text. The predicted results are further refined using a beam search 653 

algorithm to generate the final version of the medical image report. In this task, we 654 

compared our approach with several baseline models (RadFM, MiniGPT-Med, and GPT-655 

4V), all of which can generate reports based on images. For RadFM and MiniGPT-Med, 656 

we utilized the prompts provided in the authors’ examples to generate report outputs from 657 
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medical images. For GPT-4V, we designed custom prompts as input. Detailed prompts 658 

can be found in the supplementary materials. For evaluation, we adopted standard 659 

quantitative metrics such as BLEU, ROUGE-L, and METEOR. Additionally, we invited 660 

five physicians to rank the reports generated by the four methods. The evaluation criteria 661 

were designed based on physicians’ suggestions and included 10 subcategories. The rank 662 

method is similar to GPA calculation, where the best items are assigned 4 points, the 663 

worst are given 1 point, and certain unacceptable cases are assigned 0 points. 664 

AI assistant assessment task: To validate the functionality of the multimodal assistant, 665 

we designed two experiments: multiple-choice question evaluation and free-form 666 

question-answering. For the multiple-choice questions, we compared our model, 667 

BrainFound, with GPT-4o. Two physicians were invited to complete the questions as well. 668 

Both BrainFound and GPT-4o were generally able to provide consistent and well-669 

formatted answers. However, GPT-4o occasionally failed to answer certain questions. 670 

For these cases, we repeatedly queried the API until stable responses were obtained. We 671 

compared the performance of BrainFound, GPT-4o, and the two physicians in terms of 672 

answer accuracy and response time. The detailed results are presented in Figure 5. 673 

Evaluation metrics for pixel-level tasks.  674 

Several metrics are commonly used to evaluate the performance of image enhancement 675 

task. Among them, the Peak Signal-to-Noise Ratio (PSNR) is widely recognized as a 676 

standard for assessing image quality. A higher PSNR value indicates better image fidelity. 677 

If the ground truth image is , and the raw image is , then the definition of PSNR is as 678 

follows: 679 

 680 
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Here  is the maximum pixel value. For normalized images .  and  are 682 

the two dimensions of the image.  683 

We also compute the Signal-to-Noise Ratio (SNR) to evaluate the performance of various 684 

methods. Let 𝐼(",$)	represent the raw image pixel values and 𝐾(",$) denote the model output, 685 

and the formula is as follows: 686 

𝑆𝑁𝑅 = 10 ∙ 	 𝑙𝑜𝑔&'(
∑ ∑ 𝐼(",$)()

$*&
+
"*&

∑ ∑ (𝐼(",$) − 𝐾(",$))()
$*&

+
"*&

) 687 

Here, 𝑀 and 𝑁 represent the width and height of the image, respectively. 688 

Root Mean Square Error (RMSE) directly quantifies the variance between two images. 689 

An RMSE value approaching 0 indicates better preservation of visual information 690 

between the reconstructed image and the ground truth. RMSE is defined as follows: 691 

 692 

Structural Similarity Index (SSIM) is a widely used metric for quantifying the similarity 693 

between two images. SSIM evaluates similarity by independently comparing three key 694 

components: luminance, contrast, and structural information. These components are then 695 

weighted and combined into a single score to represent the overall similarity. The 696 

calculation of SSIM is performed using a sliding window applied across the image. In 697 

this process, a window with dimensions  is selected from the image for each 698 

calculation, and the SSIM is computed for that specific window. The overall SSIM for 699 

the image is then obtained by averaging the SSIM values from all such windows after the 700 

entire image has been scanned. A higher SSIM score indicates superior image quality. 701 

SSIM is defined as follows: 702 
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Here,  and  represent the mean values of  and ;  and  represent the 707 

variances of  and ,  represents the covariance between  and . , ,  are 708 

three constants. 709 

 710 

Evaluation metrics for report generation. 711 

BLEU is a widely used metric for evaluating the quality of machine-generated text, 712 

particularly in tasks such as machine translation and text summarization. The BLEU score 713 

is calculated based on n-gram precision, which measures the overlap between n-grams in 714 

the generated text and those in the reference text. BLEU-1 to BLEU-4 represent the scores 715 

computed using unigrams, bigrams, trigrams, and 4-grams, respectively, capturing 716 

different levels of linguistic context. The following is the formula: 717 

𝐵𝐿𝐸𝑈 = 𝐵𝑃 × exp<=𝜔, ∙ 𝑙𝑜𝑔𝑃,

)

,*&

? 718 

𝐵𝑃  is the brevity penalty addresses the issue of overly short translations. 𝑃,  is The 719 

precision for 𝑛 grams. 𝑛 ranges from 1 to 4 for BLEU-1 to BLEU-4. 𝜔, is the weight 720 

assigned to each 𝑛 gram precision. 721 

ROUGE-L (Recall-Oriented Understudy for Gisting Evaluation - Longest Common 722 

Subsequence) is a widely used metric for evaluating the quality of machine-generated 723 

text, particularly in summarization tasks. Unlike n-gram-based metrics, ROUGE-L 724 

measures the overlap between the candidate text and reference text based on their longest 725 

common subsequence (LCS). This approach takes into account both the order and 726 

presence of words, making it well-suited for capturing fluency and relevance in text 727 

generation. The following is the formula: 728 

𝐹- =
(1 + 𝛽() ∙ 𝑃- ∙ 𝑅-
𝛽( ∙ 𝑃- + 𝑅-

 729 

where 𝑃- =
-./(0,1)
-2,34(0)

 is precision and 	𝑅- =
-./(0,1)
-2,34(1)

 is recall. 𝐿𝐶𝑆(𝑋, 𝑌) represents the 730 

length of the longest common subsequence between the candidate text 𝑋  and the 731 

reference text 𝑌 . And 𝛽  is a weighting parameter (usually set to 1) to balance the 732 

importance of precision and recall. 733 

xµ yµ x y xs ys

x y xys x y 1c 2c 3c
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METEOR (Metric for Evaluation of Translation with Explicit ORdering) is a popular 734 

evaluation metric for machine-generated text, particularly in machine translation and text 735 

generation tasks. Unlike n-gram-based metrics such as BLEU, METEOR focuses on 736 

aligning words in the candidate and reference texts using advanced matching techniques, 737 

making it more robust and sensitive to variations in word order and synonymy. In 738 

METEOR, the precision and recall are combined into an F-score, with recall typically 739 

weighted more heavily: 740 

𝐹+ =	
10	 ∙ 𝑃- ∙ 𝑅-
9 ∙ 𝑃- + 𝑅-

 741 

Then, a penalty is applied to account for disjoint word matches, penalizing cases where 742 

matched words are far apart or unordered. The penalty is calculated as follows: 743 

𝑃𝑒𝑛𝑎𝑙𝑡𝑦 = 	𝛾 ∙ N
𝑐ℎ
𝑚R

5

 744 

where 𝑐ℎ is the number of chunks (continuous sequences of matched words), 𝑚 is the 745 

total number of matches, and 𝛾 and 𝛼 are hyperparameters. The final formula is: 746 

𝑀𝐸𝑇𝐸𝑂𝑅 = 𝐹+ ∙ (1 − 𝑃𝑒𝑛𝑎𝑙𝑡𝑦) 747 

 748 

Visualization of saliency maps.  749 

The Grad-CAM72 technique is harnessed to craft the Saliency Map for the input image 750 

model. Initially, the activation feature maps of the convolutional layers are derived via 751 

forward propagation, and subsequently, the gradients of these feature maps concerning 752 

the target class are computed through backpropagation. Following this, global average 753 

pooling is applied to these gradients to acquire the channel weights. These weights are 754 

then utilized to modulate the activation feature maps of the convolutional layers, 755 

culminating in a two-dimensional heat map of weighted summation, elucidating the 756 

significance of distinct regions within the input image for the target category. Following 757 

this, the heat map undergoes upscaling to match the input image's dimensions using 758 

bilinear interpolation. Lastly, the heat map is rendered visually through color mapping to 759 
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exhibit the areas of interest identified by the model. The contour map delineates lines of 760 

uniform value within a saliency map. 761 
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 Fig. 1 | Overview of Brainfound. a, Brainfound aims to develop an AI medical copilot 963 

capable of processing brain CT or MRI scan sequences and user instructions as inputs 964 

and delivering either processed images or textual outputs. CT or MRI image sequences 965 

and the basic information of the images are encoded by the image encoder to obtain latent 966 

space features, which are aligned with the features produced by the text encoder in the 967 

alignment model. Then, the alignment model is connected to two decoders to obtain the 968 

output of Brainfound. b, Downstream task evaluation for Brainfound. As an AI medical 969 

copilot, Brainfound excels in several downstream tasks, including brain disease diagnosis, 970 

brain lesion segmentation, MRI image enhancement, MRI cross-modality translation, 971 

automatic generation of reports from images, zero-shot brain disease classification, and 972 

free human-AI conversation. These tasks include all tasks related to brain medical 973 
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imaging, from single-modality pixel-level tasks to multi-modality diagnostic-related 974 

conversations. c, Stepwise and modular pre-training strategy for Brainfound. The image 975 

encoder and decoder of Brainfound undergo pre-training through the DDPM strategy on 976 

the BrainCT-3M and BrainMRI-7M, with fundamental information like image modality 977 

randomly masked and then input into the image encoder and decoder. The text encoder 978 

is pre-trained using the CLIP strategy, aligning paired diagnostic reports and image 979 

sequences in the latent feature space. 980 
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 Fig. 2 | Performance of Brainfound in diagnosing and localizing brain diseases a, 982 

The AUC results for four methods in full parameter fine-tuning for brain hemorrhage 983 

classification. "1" denotes fine-tuning using the complete training set (110,000 training 984 
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images), "1/2" signifies using half of the dataset, and so forth. The four methods include 985 

Brainfound, ResNet, MAE-pretrained, and MAE. b, The AUC results for the four 986 

methods using 1/32 of the training set for full parameter fine-tuning in brain hemorrhage 987 

classification. c, The AUC results for four methods when only the final MLP is fine-tuned 988 

for brain hemorrhage classification. The four networks serve as feature extractors, with 989 

parameters frozen during fine-tuning. d, The AUC results for four methods using 1/32 of 990 

the training set with only the final MLP fine-tuned for brain hemorrhage classification. e, 991 

Comparing the accuracy of four methods with full parameter fine-tuning on brain 992 

hemorrhage segmentation using different training set sizes. "100%" indicates using the 993 

entire training set (220 brain CT scans) to fine-tune the four methods. The four methods 994 

are Brainfound, MedSAM, MAE, and InternImage. f, Two cases of brain hemorrhage 995 

segmentation. From left to right are the original CT image, ground truth, and 996 

segmentation results from Brainfound, MedSAM, MAE, and InternImage. g, The 997 

accuracy comparison of four approaches with full parameter fine-tuning for midline brain 998 

segmentation across varying training set sizes. "100%" denotes using the complete 999 

training set (439 images) for fine-tuning. The methods compared include Brainfound, 1000 

MedSAM, MAE, and InternImage. h, Two cases of midline brain segmentation. From 1001 

left to right are the original CT image, ground truth, and segmentation results by 1002 

Brainfound, MedSAM, MAE, and InternImage. 1003 
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Fig. 3 | Estimation of Brainfound in MRI image enhancement and cross-modality 1005 

translation. a-d, The zero-shot learning denoising performance of four methods was 1006 

quantitatively assessed on the simulated dataset. PSNR, RMSE, SNR, and SSIM were 1007 

calculated on the test dataset(n=1380). Simulated datasets with six different noise levels 1008 

were employed to evaluate the image enhancement capabilities of the four methods. 1009 

Different colored curves indicate the results of different methods. Brainfound consistently 1010 

achieved superior denoising effects across all noise conditions. e-f, High SNR, and low 1011 

SNR images were collected from the low-field MRI (0.3 T) and the ultra-high-field MRI 1012 
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(5 T) to validate the zero-shot learning denoising performance of four methods. The test 1013 

set comprises 0.3 T FLAIR scans(n=450), 0.3 T T1WI scans(n=450), 0.3 T T2WI scans 1014 

(n=450), 5 T T1WI scans(n=19), 5 T T2WI scans (n=10), and 5 T external test set (n=25). 1015 

PSNR, RMSE, SNR, and SSIM were calculated on six real-world test datasets. Each radar 1016 

chart represents the results of one metric. Different colored curves illustrate the denoising 1017 

results of each method. Brainfound achieved the best scores on almost all metrics. i-l, 1018 

Assessment of the cross-modality translation capability of five methods on clinically 1019 

common sequences. The original sequence modality is T1WI, while the conversion target 1020 

sequences include T2WI, FLAIR, low-b-value DWI, and standard-b-value DWI. The 1021 

training set comprises 94 head 3T MRI scans (2205 images), and the test set includes 88 1022 

head 3T MRI scans (1936 images). Each radar chart represents the results of one metric. 1023 

Different colored curves indicate the modality translation results of each method. 1024 

Brainfound achieved the best scores on all metrics. m, two cases of T1WI to T2WI 1025 

modality translation. In case 1, the lesion indicated by the red arrow is translated more 1026 

accurately in the result of Brainfound. In case 2, the structures within the foramen 1027 

magnum (indicated by the red arrow) are demonstrated in the result of Brainfound, with 1028 

cerebrospinal fluid exhibiting high signal intensity, presenting distinct contrast against 1029 

the skull, medulla oblongata, and vertebral arteries. 1030 
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 Fig. 4 | Assessment of Brainfound in automatic report generation. a, The image 1032 

encoder extracts features from CT or MRI image sequences, producing latent space 1033 

features. Diagnostic reports are processed through the text encoder to acquire latent space 1034 

features. The features of both the image sequences and their corresponding diagnostic 1035 

reports are aligned in the latent space of Brainfound. b, The alignment model of 1036 

Brainfound serves directly as a zero-shot classification model. Brainfound can be 1037 

instructed in natural language to perform brain medical imaging classification. c-h, 1038 

Quantitative comparison of the report generation outcomes for Brainfound, GPT-4V, 1039 

RadFM, and MiniGPT-Med (n=990). The metrics used for comparison include BLUE-1, 1040 
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BLUE-2, BLUE-3, ROUGE-L, METEOR, and Bert similarity. The higher the scores, the 1041 

closer the generated reports are to the ground truth reports and the greater the accuracy. 1042 

i-l, Under clinical standards, the reports generated by four models were evaluated by five 1043 

experienced doctors (n=33). The scoring criteria include overall assessment, number of 1044 

lesions, location of lesions, and description of lesion shapes. More scoring results can be 1045 

found in Supplementary Fig. 30. m-q, The zero-shot classification results of Brainfound, 1046 

with RadImageNet as the comparison method. The AUC curves, arranged from left to 1047 

right, correspond to normal, hemorrhage, ischemia, fracture, and tumor categories. r, 1048 

Classification output probabilities for ischemia type. s, Classification output probabilities 1049 

for hemorrhage type. 1050 
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 Fig. 5 | Evaluation of Brainfound on multiple-choice questions and free 1052 

conversations. a, Leveraging the advanced capabilities of GPT-4, a multimodal brain 1053 

imaging dataset comprising 1,003,732 instructions and corresponding responses has been 1054 

constructed. Every scan sequence and its paired report from BrainCT-3M and BrainMRI-1055 

7M are utilized to generate MCQs and multi-turn conversations on various aspects. b, 1056 

The response accuracy of Brainfound, GPT-4V, and two proficient doctors on BrainMCQ. 1057 
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Both Brainfound and GPT4-V underwent evaluation three times. Error bars represent the 1058 

95% confidence interval. c, The time taken by Brainfound, GPT-4V, and two skilled 1059 

doctors to complete BrainMCQ. The average time for three evaluations by Brainfound 1060 

and GPT-4V is displayed. d, The percentage of questions related to normal, cerebral 1061 

hemorrhage, cerebral ischemia, brain tumor, and fracture types in BrainMCQ. e, The 1062 

proportion of three-option, four-option, and five-option multiple-choice questions in 1063 

BrainMCQ. f, The proportion of each option in the correct answers of BrainMCQ. g, The 1064 

proportion of each option in the answers of Brainfound and GPT-4V. h-i, Two cases of 1065 

Brainfound and GPT-4V answering MCQs. Brain CT sequences and questions are fed 1066 

into the models, which subsequently provide the chosen answers. j, A case of Brainfound 1067 

in the free conversation. Brain CT image sequences serve as input for Brainfound, 1068 

allowing humans to engage in multiple rounds of conversation based on the image 1069 

information. 1070 

 1071 

 1072 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted January 10, 2025. ; https://doi.org/10.1101/2025.01.09.25320293doi: medRxiv preprint 

https://doi.org/10.1101/2025.01.09.25320293
http://creativecommons.org/licenses/by-nc/4.0/

