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Abstract: Given the high prevalence of aging-associated cerebral small vessel disease

in the general population, accurate detection of the related white matter hyperintensities

(WMH) in large-scale magnetic resonance imaging (MRI) studies is of critical importance.

The performance of currently available semi-automated and automated methods for WMH

classification is hampered by their inherent dependence on MRI contrast parameters and

long computational processing time. We sought to improve the accuracy and computational

cost of automated WMH detection by creating a whole-brain deep learning-based framework:

WHITE-Net. We use a 3D ResUNet architecture trained on manually segmented WMHs

from fluid-attenuated inversion recovery MRI (n=141) and test its accuracy in a large-scale

dataset (n=192). We demonstrate a good generalizability across WMH lesion loads, different

MRI scanner vendors, field strengths, imaging protocols, and MR contrasts. The comparison
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2 1 INTRODUCTION

to existing WMH segmentation tools shows a similar to superior accuracy performance at

significantly lower computational cost. WHITE-Net tool performance makes it well-suited for

application to large-scale MRI datasets, enabling the study of the aging brain while offering

the advantage of detecting early or subtle WMH changes often missed by other methods.

1 Introduction

White Matter Hyperintensities (WMH) are areas of abnormal signal intensity on diagnostic magnetic

resonance imaging (MRI) protocols, such as fluid attenuated inversion recovery (FLAIR) (Figure 1). Their

etiology varies depending on the context: WMHs of presumed vascular origin are strongly associated with

cardiovascular risk factors (Aljondi et al., 2018; de Bresser et al., 2018; Fuhrmann et al., 2019; Ghaznawi

et al., 2018; Kuller et al., 2004; Trofimova et al., 2023), while in migraine (Kruit et al., 2009; Seneviratne

et al., 2013), and multiple sclerosis (Fazekas et al., 1999; Filippi et al., 2019; Rovira & León, 2008) the

underlying processes are inflammatory or unknown. Vascular WMHs are strongly associated with aging

and represent a common incidental finding in the general population above the age of 60 years. They

represent one of the hallmarks of small vessel disease (SVD), which is established as a major factor for

vascular cognitive impairment (Coenen et al., 2022; Jiménez-Balado et al., 2022), and vascular dementia

(Lee et al., 2016; Mortamais et al., 2013).

Figure 1: Example of white matter hyperintensities (WMH) on magnetic resonance imaging (MRI). From
left to right : fluid attenuated inversion recovery (FLAIR), T1-weighted MRI and WMH mask overlaid in
blue on FLAIR MRI.

The importance of an automatic and accurate detection of WMHs complementary to the neuroradiologist’

diagnostic expertise, is recognized in both the clinical and research setting. The vast amount of data in

large-scale computational anatomy studies using MRI that preclude a manual delineation, make the case

of automated WMH detection indispensable. Despite its shortcomings in terms of time-intensive labor and
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individual rater dependency (Commowick et al., 2018; Grimaud et al., 1996), the manual delineation of

WMHs is still considered the gold standard in neuroimaging. The currently existing WMH segmentation

algorithms span from intensity-based methods (Gaser et al., 2022; Schmidt et al., 2012), to machine

learning (Griffanti et al., 2016) and deep learning algorithms (Li et al., 2018; Park et al., 2021).

The intensity-based methods rely on predefined or automatically determined thresholds that identify

WMHs based on voxel intensity and morphology. While straightforward, these approaches are often

limited by their inherent sensitivity to noise. Machine learning approaches overcome this by using trained

classifiers on features such as intensity and spatial location, to better adapt to lesion variability, but they

may lack generalizability across datasets. Deep learning models, particularly convolutional neural networks

(CNNs), automatically learn complex features from the data, improving segmentation of WMH lesions,

but require large datasets and higher computational power for efficient training.

The existing methods offer clear advantages in terms of accuracy and time efficiency compared to standard

manual detection. However, most of these algorithms are trained on data comprising well-defined clinical

disorders, such as multiple sclerosis (Schmidt, 2017; Schmidt et al., 2012), stroke or neurodegeneration

(Griffanti et al., 2016; Li et al., 2018; Park et al., 2021), reducing their generalizability to epidemiological

MRI datasets. The emergence of large-scale studies in the community-dwelling population that include

brain MRI acquisition like the UK Biobank (Sudlow et al., 2015) aiming at 100 ’000 MRIs demonstrate

the need for accurate and automatic WMH segmentation tools. Robust and accurate WMH segmentation

in a cohort characterized by a wide age range, image quality variability and prone to aging-associated

pathologies is necessary to ensure the validity of any computational anatomy study using MRI data.

In this context, we present WHITE-Net (White matter HyperIntensities Tissue Extraction using deep

learning Network), a user-friendly, fast, and generalizable deep learning algorithm for WMH segmentation

based on a 3D ResUNet architecture. We train the model on epidemiological MRI data, encompassing

individuals with a wide range of lesion topographies and extents. Additionally, to assess the external

validity and generalizability of the model, we test WHITE-Net on open-access MRI data including protocols

with varying spatial resolution acquired using different MRI scanners. The performance of WHITE-Net is

evaluated by comparing the results with manual delineation and established automated lesion segmentation

tools.

Overall, the results suggest that WHITE-Net is a reliable method to rapidly and accurately detect WMHs

on different datasets. The assessed performance of WHITE-Net demonstrates its efficient application to

data stemming from different scanners, including images with anisotropic voxel size, as well as to a large

spectrum of participants ranging from healthy individuals to those with neurodegenerative and vascular

pathologies.
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4 2 METHODS

2 Methods

2.1 Datasets

For this study, we use two MRI datasets with distinct imaging protocols and participants’ characteristics.

The BrainLaus dataset comprises community-dwelling participants from a large-scale epidemiological

cohort, while the second, the WMH challenge dataset, includes individuals with cardiovascular and

neurodegenerative pathologies. These datasets are acquired using different MRI imaging protocols and

scanners.

2.1.1 BrainLaus dataset

The first set of MRI data used in this study comes from the BrainLaus study, a nested project within

the CoLaus|PsycoLaus cohort, which investigates the link between cardiovascular risk factors and mental

health in the general population (Firmann et al., 2008; Preisig et al., 2009). The study was approved

by the Ethics Commission of Canton de Vaud and individuals were included after signing an informed

consent.

2.1.2 WMH challenge dataset

The second source of MRI data comes from the WMH Segmentation Challenge (H. Kuijf et al., 2022),

a recent initiative created to compare WMH segmentation algorithms. This dataset explicitly includes

subjects with neurodegenerative and cardiovascular pathologies and different acquisition protocols.

2.2 MRI acquisition

2.2.1 BrainLaus dataset

MRI data are acquired on a 3T whole-body system (Magnetom Prisma - Siemens, Erlangen Germany),

with a 64-channel radiofrequency receive head coil and a body coil for transmission. Details of the imaging

protocol for both T1-weighted and FLAIR sequences are provided in Table 1.
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2.3 MRI preprocessing 5

2.2.2 WMH challenge dataset

The MRI data are acquired from five different MR scanners. The characteristics of each scanner is

presented in Table 1 (Boomsma et al., 2017; van Veluw et al., 2015).

Table 1: MRI Sequence Parameters.

Institution Scanner Sequence Slices Voxel Size (mm3) TR/TE/TI (ms)

BrainLaus Lausanne 3T Siemens 3D T1-weighted 176 1.00 × 1.00 × 1.00 2000/2.39/920
Magnetom Prisma 3D FLAIR 176 transversal 1.00 × 1.00 × 1.00 5000/389/1800

UMC Utrecht 3T Philips Achieva 3D T1-weighted 192 1.00 × 1.00 × 1.00 7.9/4.5/-
2D FLAIR 48 transversal 0.96 × 0.95 × 3.00 11000/125/2800

NUHS Singapore 3T Siemens TrioTim 3D T1-weighted - 1.00 × 1.00 × 1.00 2300/1.9/900
2D FLAIR transversal 1.0 × 1.0 × 3.00 9000/82/2500

VU Amsterdam

3T GE Signa HDxt 3D T1-weighted 176 0.94 × 0.94 × 1.00 7.8/3.0/-
3D FLAIR 132 sagittal 0.98 × 0.98 × 1.20 8000/126/2340

3T Philips Ingenuity 3D T1-weighted 180 0.87 × 0.87 × 1.00 9.9/4.6/-
3D FLAIR 321 sagittal 1.04 × 1.04 × 0.56 4800/279/1650

1.5T GE Signa HDxt 3D T1-weighted 172 0.98 × 0.98 × 1.50 12.3/5.2/-
3D FLAIR 128 sagittal 1.21 × 1.21 × 1.30 6500/117/1987

2.3 MRI preprocessing

2.3.1 BrainLaus dataset

For preprocessing of T1w and FLAIR images, we use the SPM12-based CAT12 toolbox (Gaser et al.,

2022) using MATLAB_R2021 (MathWorks, Sherborn, MA USA). After denoising using a spatial adaptive

non-local means denoising filter (Manjón et al., 2009), we apply a bias field correction followed by a rigid

transformation to align FLAIR and T1w images in the same space. Data quality assessment includes

visual quality control for motion artifacts (Wood & Henkelman, 1985). Motion is assessed with a scale

from 1 to 4, corresponding to minimal, mild, moderate, and severe degree of motion, with 0.5 increments

to provide more granularity. Only the images with a quality score below 2.5 are selected in the analyses.

Additionally, we assess the FLAIR images for WMH load and severity using the Fazekas scale (Fazekas

et al., 1987). This scale categorizes WMH into periventricular (PVWM) and deep white matter (DWM)

regions, assigning grades from 0 to 3 based on lesion size and confluence (0 indicating no lesion and 3

indicating extended lesions). In our study, scores from both regions are summed to create an overall

lesion severity score ranging from 0 to 6.
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6 2 METHODS

2.3.2 WMH challenge dataset

The preprocessing steps follow the defaults described in the WMH segmentation challenge publication

(H. J. Kuijf et al., 2019). FLAIR and T1w images are bias-field corrected using SPM12 (Ashburner &

Friston, 2005), followed by image registration of the T1w and the resampled FLAIR using the Elastix

toolbox (Klein et al., 2010).

2.3.3 Masks and inputs preparation

Many WMH algorithms require a WM mask to effectively constrain the search volume for lesions. However,

creating a WM mask can be challenging since WMH voxels have hypointense intensities in T1w images,

making them similar to gray matter voxel intensities (Karim et al., 2016; Levy-Cooperman et al., 2008).

To create the WM mask, we use FreeSurfer’s segmentation tool Synthseg (Billot et al., 2023), which

empirically demonstrated the highest robustness against this potential bias.

After subject-specific SPM12’s segmentation-based skullstripping, we apply min-max normalization to

all images followed by removal of the background and matrix size standardization to 192× 176× 160

voxels with zero-padding. If the size before padding does not match, the image is resampled and then

padded. In such cases, WM and WMH mask outputs are recovered to their original dimensions, and all

subsequent analyses are performed using these original dimensions. For further analysis, the WM mask

obtained with FreeSurfer is divided in 3 regions: deep white matter (DWM), periventricular white matter

(PVWM) and superficial white matter (SWM). The SWM mask is obtained by creating a 2mm thick

outer contour of the WM mask. The PVWM mask is created by dilating the cerebro-spinal fluid (CSF)

mask obtained with FreeSurfer (Billot et al., 2023) by 8 mm. The DWM is defined by subtracting the

PVWM and SWM masks from the total WM mask.

2.4 Manual segmentation

2.4.1 BrainLaus dataset

For the WMHs manual labeling in 163 individuals FLAIR MRIs, we use multiple raters with one rater

assigned per image. The labeling process is carried out using the Display MincTool for visualization.

Participants are pseudo-randomly selected from the BrainLaus dataset using selection criteria for a

balanced distribution across Fazekas categories (0: 23%, 1: 13%, 2: 13%, 3: 13%, 4: 13%, 5: 12%, and

6: 11%).
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2.5 Dataset description 7

2.4.2 WMH challenge dataset

WMHs delineation is performed by four raters per scan (H. J. Kuijf et al., 2019). Contours are converted

to binary masks such that all voxels that have 50 % of the volume within the manual delineation are

considered as WMH.

2.5 Dataset description

2.5.1 BrainLaus dataset

The dataset comprises 163 participants from the community-dwelling population, pseudo-randomly selected

based on image quality and Fazekas score (mean age: 59.65 years (min: 19.78, max: 92.83); 56.6 %

females, 44.4 % males).

50 % of the individuals (n=81) are randomly selected for the training phase of the deep learning model

and the other 50 % (n=82) remain unseen for testing.

2.5.2 WMH challenge dataset

The training data comprises 60 scans, acquired with 3 different MRI scanners: 3T Philips Achieva, 3T

SiemensTrioTim, and 3T GE Signa HDx. For testing, we use the WMH challenge test set, which includes

110 individuals scanned on five different machines: 3T Philips Achieva, 3T Siemens TrioTim, 3T GE

Signa HDx, 3 T Philips Ingenuity and 1.5 T GE Signa HDxt. This allows for testing the model on different

imaging protocols stemming from different MRI scanners.

2.6 Network architecture

The proposed architecture is a variant of the UNet (Ronneberger et al., 2015), called ResUNet (Diakogiannis

et al., 2020), which integrates residual learning with the traditional U-Net structure to enhance image

segmentation performance. The model takes FLAIR images as inputs and is trained to output both WMH

and WM masks.

The architecture of the model features an encoder and a decoder path (Figure 2). The encoder reduces

the spatial information while feature information is increased. It is composed of a series of convolutions

layers, followed by the application of Rectified Linear Unit (ReLU) and max-pooling. A skip connection
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8 2 METHODS

bypasses these layers and directly adds the input of the block to its output, which helps to mitigate the

“vanishing gradient” problem and improves the network’s ability to learn complex features.

The decoder re-combines the feature and spatial information through deconvolutions and concatenations

with high-resolution features from the encoding path. Dropout layers are added to prevent overfitting.

The initial layers in the encoder start with 16 kernels and increase by a factor of 2 at each downsampling

step. The decoder follows a similar pattern in reverse, decreasing the number of kernels as the spatial

resolution is restored.

Figure 2: ResUNet architecture.

2.7 Implementation information

The network is implemented in Python3 using the PyTorch framework (Paszke et al., 2019). The model

is trained on one NVIDIA GeForce RTX 2080 Ti GPU with 11GB RAM. The optimization process is

performed with an Adam optimizer, batch size = 2, learning rate = 1e−4 for 300 epochs. 20 % of the

training set, randomly selected, is used as the validation set. The model weights are saved each time the

validation metric increases. Early stopping is used if the validation loss did not decrease for 20 epochs.

The model is optimized using a variant of the Dice loss (Milletari et al., 2016) as follows :

LP−DSC(ytrue, ypred) = 1− 2ytrue · ypred + ϵ

yγtrue + yγpred + ϵ
(1)
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2.8 Performance evaluation 9

with γ = 2.The power γ increases the sensitivity to difference in prediction. It amplifies the differences,

therefore the loss largely penalizes misclassification.

2.8 Performance evaluation

The model performance is evaluated using the following metrics.

• The Dice Similarity coefficient (DSC) is used to evaluate the spatial overlap between the manually

labeled WMH and the WMH mask generated using the algorithm.

DSC =
2TP

2TP + FP + FN
(2)

where TP, FP, FN correspond respectively to the number of true positives, false positives and false

negatives.

• The Recall evaluates the sensitivity of the model, the probability that an actual positive (the voxel

belongs to WMH category) will be predicted as positive.

Recall =
TP

TP + FN
(3)

• The absolute volume difference (AVD) between manual WMH segmentation and algorithm output.

AVD =
| Vtrue − Vpred |

Vtrue

(4)

If the manual segmentation contains no lesions, the AVD is set to 0 if the predicted mask is empty

and 1 if the reverse is true.

• The Hausdorff distance (95th percentile) computes the maximum distance between manually

segmented lesion voxels and the nearest voxel for predicted lesions.

H(Strue, Spred) = max(h(Strue, Spred), h(Spred, Strue))

h(Strue, Spred) = 95th
s1∈Strue

min
s2∈Spred

∥s1 − s2∥
(5)

where Strue is the set of "1" voxels in the manual segmentation mask and Spred the set of "1"

voxels in the predicted mask. Hausdorff distance is defined only if the manual segmentation and

the predicted mask contain lesions.
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10 3 RESULTS

2.9 Performance comparison with other WMH segmentation tools

The performance of WHITE-Net is compared with other automatic segmentation tools widely used in the

community. The selected tools for this comparison are the following :

• LPA: Lesion Prediction Algorithm (Schmidt, 2017) from the lesion segmentation toolbox (LST) on

SPM12, based on logistic regression.

• LGA: Lesion Growth Algorithm (Schmidt et al., 2012) from the lesion segmentation toolbox (LST)

on SPM12. This tool is based on probabilistic modeling and region growing.

• CAT12 (Gaser et al., 2022): The Computational Anatomy Toolbox on SPM12. It is based on tissue

probability maps and intensity. Isolated GM clusters within WM and voxels around ventricles with a

GM intensity but a high WM probability are selected as WMH.

• BIANCA (Griffanti et al., 2016): The Brain Intensity AbNormality Classification Algorithm in FSL,

performing k-NN.

• PGS (Park et al., 2021): Deep Learning tool from the WMH challenge (H. J. Kuijf et al., 2019). It

is the winner of this challenge. It uses ensemble U-Net with multi-scale highlighting foregrounds.

• SYSU_MEDIA2 (Li et al., 2018): Deep Learning tool from the WMH challenge (H. J. Kuijf et al.,

2019), based on a two-channels U-Net.

Each of the aforementioned algorithms is applied to the BrainLaus test set. BIANCA is evaluated using

two different input configurations: first, using only FLAIR images and second, using both FLAIR and

T1w images. The training phase of BIANCA uses the same BrainLaus training set as WHITE-Net.

BIANCA faces challenges in determining a suitable threshold that can accurately segment both small

and large lesions. After testing various thresholds, a value of 0.1 is selected as the optimal threshold for

segmentation.

3 Results

3.1 Performance of WHITE-Net on BrainLaus test set

Across all participants in the test set, the overall Dice score for the WMH segmentation is DSC =

0.55± 0.32. The Dice score for the WM segmentation is 0.90± 0.02. When considering only participants
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3.1 Performance of WHITE-Net on BrainLaus test set 11

with high WMH severity (Fazekas 4-6), the WMH Dice increases to 0.76± 0.11. Examples of predicted

WMH and WM masks are presented in Figure 3.

Figure 3: Examples of WHITE-Net outputs on four different participants with different lesion extent.
FLAIR contrasts, manual labeling and WHITE-Net outputs can be seen from left to right. In the confusion
matrix, false negatives are on the top right and false positives on the bottom left. Red color represents
the WMHs, while the yellow color shows the rest of the WM voxels.

We also trained a multi-contrast model that includes both FLAIR and T1w MRIs, resulting in a WMH

DSC of 0.54± 0.32. Given the similar performance of single and multiple MR contrast models, we use

the single MR contrast model in the subsequent analyses.
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12 3 RESULTS

3.1.1 Performance across lesion severity

We assess the algorithm’s performance in relation to lesion severity using the test set from the Brainlaus

dataset. For these participants, the lesion extent is described by the Fazekas rating (Figure 4). WHITE-Net

performs better as the severity and spatial extent of the lesion load increases.

3.1.2 Performance across white matter compartments

The performance of WHITE-Net is analyzed also in the three WM compartments - DWM, PVWM and

SWM (Figure 5). DSC scores are higher in the DWM while PVWM’s lesion Dice demonstrated larger

interquartile range.

Figure 4: Dice Score (DSC) per Fazekas category,
ranging from 0 (no WMH) to 6 (extensive PVWM
and DWM lesions).

Figure 5: Dice score for different white matter
compartments. DWM corresponds to Deep White
Matter, PVWM to Periventricular WhiteMatter,
and SWM to Superficial White Matter.

3.2 Comparison with other algorithms

3.2.1 Performance across entire dataset

The Dice index of the performances of each WMH detection algorithm on the BrainLaus test set is

calculated based on the manual WMH labels and the algorithms’ WMH detection results (Table 2). The

LGA algorithm achieves the lowest absolute volume difference, while our model outperforms all other

models across the other metrics. Despite multiple attempts, the deep learning algorithm SYSU_MEDIA

fails to perform in the BrainLaus dataset.

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 9, 2025. ; https://doi.org/10.1101/2025.01.09.25320242doi: medRxiv preprint 

https://doi.org/10.1101/2025.01.09.25320242
http://creativecommons.org/licenses/by/4.0/


3.2 Comparison with other algorithms 13

The execution time is computed for 1 subject with Intel(R) Core(TM) i9-10920X CPU @ 3.50GHz.WHITE-

Net and is significantly faster compared to all other methods, with execution times ranging from 5 to

over 200 times.

Table 2: Performance of each algorithm on the BrainLaus test set. Mean ± STD of the DSC are reported.
Bold results outline the best performing algorithms.

Algorithm Input DSC Recall AVD H95
Execution

Time

WHITE-Net FLAIR 0.55± 0.32 0.57 ± 0.32 0.74± 1.41 19 ± 25 11.434 s
LST LPA FLAIR 0.33± 0.28 0.26± 0.25 0.78± 1.39 27± 18 2.25 min
LST LGA FLAIR+T1w 0.48± 0.33 0.41± 0.32 0.71 ± 2.12 27± 19 5.05 min
CAT12 T1w 0.30± 0.24 0.29± 0.21 2.52± 8.46 27± 26 35.2 min

BIANCA FLAIR 0.17± 0.18 0.15± 0.19 4.21± 13.14 47± 29 >40 min
BIANCA FLAIR+T1w 0.25± 0.23 0.25± 0.23 2.73± 9.83 39± 27 >40 min

PGS FLAIR+T1w 0.43± 0.29 0.44± 0.27 1.17± 2.25 23± 25 55.951 s
SYSU_MEDIA FLAIR+T1w 0.17± 0.38 0.17± 0.38 0.83± 0.38 139± 26 2.78 min

3.2.2 Performance on severe lesions

The same performance metrics are assessed but only considering the more severe cases of WMH (Table

3), keeping only scans with a Fazekas score between 4 and 6. In these cases, WHITE-Net outperforms all

other methods across all metrics.

Table 3: Performance of each algorithm on BrainLaus test set for severe cases only (Fazekas 4-6).

Algorithm Input DSC Recall AVD H95

WHITE-Net FLAIR 0.76± 0.11 0.75 ± 0.12 0.23 ± 0.21 5.96 ± 5.34
LST LPA FLAIR 0.47± 0.19 0.36± 0.19 0.57± 0.20 16.83± 5.93
LST LGA FLAIR+T1w 0.54± 0.17 0.42± 0.17 0.46± 0.19 17.42± 5.49
CAT12 T1w 0.53± 0.15 0.44± 0.13 0.36± 0.18 11.31± 7.57

BIANCA FLAIR 0.28± 0.19 0.21± 0.17 0.68± 0.23 32.97± 21.22
BIANCA FLAIR+T1w 0.43± 0.20 0.36± 0.22 0.60± 0.23 25.02± 16.98

PGS FLAIR+T1w 0.68± 0.11 0.59± 0.12 0.31± 0.14 7.38± 6.93
SYSU_MEDIA FLAIR+T1w 0± 0 0± 0 1± 0 145.89± 22.69

The statistical analysis using a t-test comparing the Dice coefficients of each tool against the Dice

coefficients of WHITE-Net confirms the significance of performance differences (Table 4). The tests are

performed on the entire BrainLaus test set and also on the subset of MRIs with the most severe SVD

(Fazekas score of 4-6).

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 9, 2025. ; https://doi.org/10.1101/2025.01.09.25320242doi: medRxiv preprint 

https://doi.org/10.1101/2025.01.09.25320242
http://creativecommons.org/licenses/by/4.0/


14 3 RESULTS

Table 4: Statistical comparison of WHITE-Net and other tools dice scores using t-tests.

Algorithm Fazekas 0-6 Fazekas 4-6

t_stat p_val t_stat p_val

LST LPA -9.76 0.0 -11.21 0.0
LST LGA -1.89 0.06 -11.13 0.0
CAT12 -9.24 0.0 -11.21 0.0
BIANCA FLAIR -11.37 0.0 -11.80 0.0
BIANCA FLAIR+T1w -9.18 0.0 -8.21 0.0
PGS -4.20 0.0 -4.26 0.0
SYSU_MEDIA -5.93 0.0 -40.13 0.0

3.2.3 Performance in absence of lesions

The number of false positives on scans classified as Fazekas 0 (without lesions) is studied. Compared

to other WMH segmentation algorithms, WHITE-Net shows optimal performance on Fazekas 0 scans

(Figure 6). SYSU_MEDIA has the lowest number of false positives due to its failure to detect WMHs

in the BrainLaus dataset. Excluding SYSU_MEDIA, LGA and LPA have the best performance in the

absence of lesions. WHITE-Net also has a much lower number of false positive predictions than BIANCA,

CAT12 and PGS.

Figure 6: Number of False Positive voxels for Fazekas 0 scans using each segmentation tool. For BIANCA,
F stands for FLAIR and F+T for FLAIR+T1w.
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3.2.4 Performance according lesion size

The performance of each algorithm according to the lesion size shows significant differences in DSC

scores (Figure 7). The PGS algorithm outperforms the other algorithms for reduced WMH lesion extent,

followed by WHITE-Net. However, WHITE-Net becomes the most accurate with WHM lesion sizes of

approximately 50 voxels or larger.

Figure 7: Dice score and 95 % confidence interval per lesion size for each segmentation tool. The size is
equal to the number of voxels in a lesion.

3.3 Performance in the WMH challenge test set

We test the WHITE-Net model using the WMH challenge test set data. The WMH Dice is 0.72± 0.13,

while the overall WM Dice is 0.83± 0.01. Figure 8 presents the Dice scores for each scanner type. The

performance of WHITE-Net on WMH segmentation, are in the same range for all scanners.

3.4 Manual segmentation analysis

Finally, we ensure the test-retest accuracy of the manual labeling in 7 MRIs segmented twice by the same

rater, one per Fazekas category (Table 5).
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Figure 8: WMH and WM Dice scores for each scanner in the WMH challenge test set.

Table 5: Dice score between first and second manual labeling by the same rater.

Fazekas 0 1 2 3 4 5 6

DSC 0 0.57 0.41 0.76 0.76 0.79 0.83
Mean 0.59

4 Discussion

We introduce WHITE-Net, a novel deep learning-based tool for WMH segmentation trained on MRI

datasets representative of aging-associated disorders. These datasets are acquired from MRI machines

of different vendors and operating at different field strengths. The results obtained with WHITE-Net

demonstrate high accuracy and fast execution times. This open-source tool is user friendly, requiring

no parameter adjustment. According to its accuracy and computational efficiency, WHITE-Net ranks

among the top existing algorithms for automated WMH lesion detection in the non-clinical setting of

computational anatomy studies.

4.1 Performance for WMH detection

WHITE-Net’s segmentation accuracy is notably influenced by lesion size: larger lesions are segmented

with higher precision, while small lesions (under 10 voxels) remain more challenging (Figure 7). This

limitation is particularly noticeable in cases with low Fazekas scores, where small lesions are prevalent and

harder to detect accurately (Figure 4, Table 3). Specifically, scans classified as Fazekas 0 (no lesions) are
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problematic, as even a single small lesion detection error can drive the Dice coefficient to zero, leading

to high sensitivity to false positives in these cases (Figure 6). Despite these challenges, WHITE-Net

maintains a low false positive rate across all Fazekas levels, which makes it a reliable tool even for scans

without visible WMHs.

WHITE-Net’s performance also varies by white matter compartment, as indicated in Figure 5. In particular,

the PVWM is challenging, with a wide interquartile range of Dice scores. This difficulty likely stems

from bright areas around the ventricles (due to the orientation of the ventricles in the slice) that may be

misinterpreted as lesions, especially when lesion load is low. This challenge also potentially contributes to

the lower performance observed in less severe scans (Figure 4), where the low lesion load around ventricles

can lead to segmentation difficulties. However, WHITE-Net can be a good approach for addressing this

issue due to its high level of objectivity and consistency, unlike manual segmentation that can be highly

subjective. Conversely, lesions in the DWM are segmented with higher accuracy, as they typically have

a well-defined and bright appearance on FLAIR images. Superficial white matter (SWM) also presents

some challenges due to its proximity to gray matter, where similar intensity can complicate segmentation.

In comparison to other segmentation tools, WHITE-Net generally outperforms them on most metrics.

The exception is the absolute volume difference (AVD) metric, where LGA achieves better results in

non-severe cases due to a lower false positive rate, which significantly affects AVD in scans without

lesions. Table 4 illustrates that WHITE-Net’s Dice coefficient differences with other tools are statistically

significant (p < 0.05) in favor of WHITE-Net, except when compared to LGA, where the significance is

observed only in severe cases. Other tools also struggle with accurately segmenting small lesions and with

scans having low Fazekas scores. This limitation is common across WMH segmentation models due to

the lower contrast in these cases and the bigger impact of a wrong prediction.

To provide context for the Dice score results, we also evaluate the performance of human raters in

manual WMH segmentation. This is done by computing the intra-rater Dice score between two manual

segmentations done by the same rater on the same scans (Table 5). The resulting Dice score of 0.59

falls within the same range as the Dice score achieved by WHITE-Net (0.55), indicating comparable

performance between the model and gold standard manual segmentation reliability.

4.2 Performance across vendors and field strengths

WHITE-Net also demonstrates robust performance across various MR scanner types, including two new

scanners, as highlighted in Figure 8, even with anisotropic voxel scans. Anisotropic voxel dimensions

typically lead to spatial resolution differences between planes and could cause algorithms to segment
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accurately the lesions in one plane but not in the other directions. However, WHITE-Net effectively

handles these differences, as demonstrated in UMC Utrecht and NUHS Singapore data, where it accurately

segments WMHs despite anisotropic voxel dimensions. WHITE-Net demonstrates also its applicability to

different magnetic field strength. Indeed, lower field strength results in a reduced signal-to-noise ratio and

contrast-to-noise ratio (Biswas et al., 2005), yet WHITE-Net demonstrates strong performance on 1.5T

GE data. This versatility makes it suitable for studies using diverse datasets, supporting its reliability in

heterogeneous clinical data.

4.3 Computational efficiency and accessibility

WHITE-Net demonstrates high computational efficiency, with an execution time of only 11.434 seconds

(Table 2). This fast processing speed is especially valuable for large cohort studies and clinical environments,

where fast data processing is essential. Additionally, WHITE-Net requires no coding skills or parameter

adjustments, making it highly accessible to users without technical expertise.

Compared to other algorithms, WHITE-Net’s computational efficiency and simplicity make it a user-friendly

tool. The execution time for BIANCA in this study was defined by a lower bound because this tool

required model training. Therefore, the time depends on the size of the training set. Moreover, several

steps are needed before running BIANCA and were not taken into account in the execution time (CSF

pve map, non-linear transformation warp file from standard space to structural image, transformation

matrix from subject space to standard space).

4.4 Improvements and conclusion

While WHITE-Net demonstrates excellent performance, it faces challenges in accurately detecting very

small false positive lesions, as shown in Figure 7. Improvements could be made by adopting strategies like

ensemble models or multi-scale approaches. An ensemble model, such as PGS, could leverage majority

voting across multiple trained models, while a multi-scale model could process data at different resolutions

to better detect features of varying sizes. Future work could also explore generalizing WHITE-Net to

other imaging contrasts. For example, in the BrainLaus dataset, participants are not scanned with T1w

and FLAIR sequences at each follow-up visit. Expanding WHITE-Net to work with alternative contrasts

like Multi-Parametric Mapping (Weiskopf et al., 2013) would allow for longitudinal WMH studies even

when standard imaging is unavailable.

To conclude, WHITE-Net is an efficient and user-friendly segmentation algorithm designed for fast
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processing and ease of use. It processes a single image in a few seconds and the tool does not

require any coding expertise. The instructions are clearly detailed on its GitHub repository (https:

//github.com/cathalacamille/WHITE-Net). Furthermore, WHITE-Net offers flexibility with two types of

input options: FLAIR or FLAIR+T1w MRI, making it adaptable for a wide range of research and clinical

applications.

WHITE-Net also holds significant potential for advancing lesion research, particularly in the context

of aging and neurodegenerative diseases. Accurate lesion detection in healthy individuals is crucial for

tracking lesion evolution and understanding the onset and progression of lesions. WHITE-Net can reliably

segment small lesions and scans with low lesion load, making it a valuable tool for longitudinal studies

aimed at early lesion detection. This capability is essential for advancing our understanding of lesion

development and progression and developing personalized treatments tailored to individual patients.

5 Data and Code Availability

Code for the segmentation tool described in this article, WHITE-Net, is available on GitHub (https:

//github.com/cathalacamille/WHITE-Net).

Data of CoLaus|PsyCoLaus study used in this article cannot be fully shared as they contain potentially

sensitive personal information on participants. According to the Ethics Committee for Research of

the Canton of Vaud, sharing these data would be a violation of the Swiss legislation with respect

to privacy protection. However, coded individual-level data that do not allow researchers to identify

participants are available upon request to researchers who meet the criteria for data sharing of the

CoLaus|PsyCoLaus Datacenter (CHUV, Lausanne, Switzerland). Any researcher affiliated to a public or

private research institution who complies with the CoLaus|PsyCoLaus standards can submit a research

application to research.colaus@chuv.ch or research.psycolaus@chuv.ch. Proposals will be evaluated by the

Scientific Committee (SC) of the CoLaus|PsyCoLaus studies. Detailed instructions for gaining access to

the CoLaus|PsyCoLaus data used in this study are available at www.colaus-psycolaus.ch/professionals/

how-to-collaborate/.

Data from WMH challenge are freely available at https://doi.org/10.34894/aecrsd (H. Kuijf et al., 2022).
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