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Key Points 
 
Question: Can machine learning be used to reliably and accurately predict 18-month developmental 

outcomes from neonatal brain MRI following perinatal hypoxic-ischemic injury (HIE)? 

 

Findings: In this cohort study we show that across cognitive, language, and motor domains, a 

machine learning model can predict 18-month developmental outcome scores for neonates with HIE 

with excellent accuracy, and can produce atlases of the brain regions responsible for developmental 

impairments. 

 

Meaning: machine learning can be used for automated neuroprognostication in HIE, and may not 

only produce accurate predictions, but also provide neuroanatomical information that may prove 

useful in the search for novel interventions. 
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Abstract 

Importance: Perinatal hypoxic-ischemic encephalopathy (HIE) is one of the most common causes of 

neonatal death and neurodevelopmental impairment worldwide. Accurate prognostication of 

developmental outcomes following perinatal HIE is an important component of family-centered and 

evidence-based care.  

Objective: To utilize magnetic resonance imaging (MRI)-based radiomic measures together with 

machine learning to produce automated and objective predictions of developmental outcomes after 

perinatal HIE. 

Design: This was a retrospective cohort study of infants born between January 2018 and January 2022 

with HIE. 

Setting: The data for this study were acquired at the neonatal neurocritical care unit of a quaternary 

care center based on the center’s institutional criteria for diagnosis and for the use of therapeutic 

hypothermia. 

Participants: Neonates with a gestational age of ≥ 35 weeks and a diagnosis of neonatal 

encephalopathy. 

Exposure(s): Therapeutic hypothermia, with a whole-body cooling system, was begun within 6 hours 

after birth and was continued for 72 hours. 

Main Outcome(s) and Measure(s): Brain MRI data were acquired on postnatal day 4-5, after 

rewarming after completion of therapeutic hypothermia.  At 18-months of age, developmental 

outcome measures were assessed with the Bayley Scales of Infant and Toddler Development. We 

extracted radiomic measures from the deep-gray matter structures and from 2224 cubic tiles across the 

entire brain, in multiple modalities, and provided these measures to an elastic-net penalized linear 
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regression model to predict the 18-month developmental outcomes. 

Results: MRI-based radiomic measures from 160 neonates were used in a 10-fold cross-validation 

framework to predict the 18-month Bayley outcome scores.  Across cognitive, language, and motor 

domains, the mean correlation between the predicted outcomes and the observed outcomes was 0.947, 

and the mean coefficient of determination was 0.879. 

Conclusions and Relevance: A machine learning model using MRI-based radiomic measures from 

infants with HIE can reliably predict their 18-month developmental outcomes with excellent accuracy 

across the full range of motor, cognitive, and language domains. In addition, our approach allowed us 

to map the predictor weightings into neuroanatomical space, producing atlases of the brain regions 

responsible for the developmental impairments; these may prove useful in the search for novel 

interventions. 
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1 Introduction 
Hypoxic-ischemic encephalopathy (HIE) is caused by a disruption in blood flow or oxygenation 

during the perinatal period, and is a major cause of infant mortality and disability. Therapeutic 

hypothermia improves survival and neurodevelopmental outcome for neonates with HIE; but still, 

nearly half of these infants die or suffer neurodevelopmental impairments 1–10. Magnetic resonance 

imaging (MRI) is commonly used to assess the severity of brain injury in HIE and counsel families 

about the likelihood of neurodevelopmental sequelae 3,11–18. Injuries to deep gray-matter (DGM) 

structures, the posterior limbs of the internal capsule (PLIC), the cortex, and watershed zones have 

been associated with neurodevelopmental impairment after HIE 11,12,15,17–19. Current 

neuroprognostication relies on interpretation of MRI, which will vary with the quality of the imaging 

and the interpreter’s experience and visual acuity, and thus the accuracy of the clinical predictions of 

developmental outcome is limited. HIE may be associated with cerebral dysmaturation 20, but 

predicting this developmental sequelae is challenging. 

To address this, we recently developed an approach for automated neuroprognostication using 

radiomic features in the DGM structures 21. Radiomics capture complex patterns that may fail to be 

seen with the naked eye 22, including features of the image intensity histogram; the relationships 

between image voxels; neighborhood gray-tone difference derived textures; and features of complex 

patterns.  That work showed promise; however, it was not entirely satisfactory as it overlooked 

significant portions of the brain.  In the present study, we expand the approach to use measures from 

the whole brain. We use the population-specific multi-contrast template from our earlier work 21, with 

its labels for the DGM structures and the PLIC; but additionally cover the entire brain with cubic tiles, 

each with a unique label. We then take those labels to each subject, and extract the measures under 

each label, in each modality of the data.  Previously we used only  T1-, T2-weighted data; here we 
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additionally use diffusion-weighted data from which we obtain an apparent diffusion coefficient 

(ADC) map and a direction-averaged volume. This produced a very large number of measures — 

approximately 1.9 million, with the inclusion of the scanner model as an interaction term — so we use 

an elastic-net penalized linear regression model to relate those measures to the developmental 

outcomes 23. We supply the radiomic measures to this elastic-net penalized linear regression model 

and use it to predict the 18-month developmental outcomes. We hypothesized that this advanced 

machine-learning approach, using spatial radiomics of the entire brain, would yield high accuracy in 

predicting the developmental outcomes in infants with perinatal HIE. Moreover, our approach weights 

the contribution of each of the radiomic measures that contribute to the predictions, indicating the 

prognostic value of the brain regions from which they were extracted; thus we are able to produce 

atlases of the brain regions that contribute to each domain of developmental impairments. 

 

2 Methods 

2.1 Study Cohort, Clinical and Laboratory Parameters 

This retrospective cohort study was conducted at the neonatal neurocritical care unit of the Hospital 

for Sick Children in Toronto, Canada. The study protocols (REB:1000064940, 1000079302) were 

reviewed and approved by the Institutional Research Ethics Board, and informed consent was waived. 

The subjects are neonates born between January 2018 and January 2022, with a gestational age of ≥ 

35 weeks with HIE. Neonates underwent therapeutic hypothermia if they met institutional criteria for 

mild, moderate, or severe neonatal encephalopathy. 

Therapeutic hypothermia, with a whole-body cooling system, was begun within 6 hours after birth 

and was continued for 72 hours, unless discontinued early due to clinical contraindications. An MRI 

was acquired at approximately 4 days after birth, after completion of therapeutic hypothermia. The 

acquisition protocol produced (i) a 3D T1-weighted volume, (ii) T2-weighted volumes in multiple 
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orientations, and (iii) diffusion-weighted data. In instances where issues, e.g. motion, resulted in poor 

scan quality, the scan was repeated to obtain usable data. Basic demographic, clinical, and laboratory 

(biochemical and encephalopathy) measures were obtained from the hospital’s electronic medical 

records. The T1- and T2-weighted MRI-data from all infants, if acceptable, were used to construct a 

population-specific multi-contrast template. The demographic, clinical, and laboratory data for those 

infants are presented in 21, as well as the scan protocol for the T1- and T2-weighted data, the 

processing methods for those data, and the methods for construction of the template.  Here, we used 

the same methods to process the T1- and T2-weighted data, and that same template; but in addition to 

the labels on the DGM structures and the PLIC, we covered the brain with cubic tiles (7mm iso; 2224 

tiles), each with a unique label. The population-specific template with these labels is shown in 

Supplementary eFigure 1.  The diffusion-weighted data were processed into an apparent diffusion 

coefficient (ADC) map and a direction-averaged maximum b-value volume, each of which was 

considered a modality. 

For those infants for whom their neonate T1-, T2-, and diffusion-weighted data were acceptable, 

and for whom we also had their 18-month behavioral outcome data, this template was then overlaid 

on their MRI-data, and radiomic measures were extracted from each modality for each label.  There 

are 107 radiomic measures associated with each modality for each label; thus, with the scanner model 

as an interaction term, there are approximately 1.9 million MRI-based potential predictors. Our use of 

the elastic-net penalized linear regression machine learning model allowed this huge set of potential 

predictors to be reduced to the best set of predictors for each developmental outcome. Elastic-net 

penalized linear regression balances the approach to the regularization of the coefficients used in 

Ridge regression, that keeps the coefficients small, but keeps all variables in the model, with the 

approach used in Lasso regression, that allows some coefficients to go to zero 23. The elastic-net 
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model aims for a balance which allows for learning a sparse model where few of the weights are non-

zero, and the coefficients are generally kept from becoming large. We used a nested 10-fold cross-

validation framework to ensure that our results generalize. For each outer fold, the elastic-net model 

was fitted on the training data, and predictions made for the testing data; an inner 10-fold cross-

validation loop determined the hyper-parameters that yielded the best balance between the two 

approaches to regularization. The performance of the elastic-net penalized linear regression model 

was assessed via three evaluation metrics: the correlation coefficient (R) between the predicted and 

observed outcomes; the coefficient of determination (R2) — an estimate of the proportion of variance 

in the observed outcomes that can be explained by the predictors; and the mean absolute error (MAE) 

of the predictions.  

We assessed the predictions based on only these MRI-based measures, since our goal was to show 

that the MRI-based measures alone yield good predictions for each of the Bayley-III outcome 

measures.  Basic demographic and laboratory (including biochemical and clinical encephalopathy) 

measures were obtained from the electronic medical records. The prediction analyses utilize the subset 

of the infants for whom we had both good quality MRI and 18-month outcome assessments. Many of 

the infants had not yet completed their 18-month assessment; a number of infants could not complete 

their 18-month assessment due to COVID-19; a few families moved away before their infant turned 

18 months old; and a small number of infants did not survive.  One infant with severe CP and global 

developmental delay could not be assessed; a percentile score of 1 was assigned across all Bayley 

outcome domains for this infant. 

3 Results 

Supplementary eTables 1 through 5 provide the details of the demographic and laboratory data in the 

context of each of the prediction analyses. 
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3.1 Cognitive outcomes 

The demographic and laboratory data for the infants for whom we had both all MRI modalities and 

Bayley-III cognitive outcome scores (n=168) are presented in Supplementary eTable 1. Of these 

infants, 62.5% had normal brain MRIs, 19.6% had predominantly white-matter/watershed injuries, 

9.5% had predominantly DGM injuries, and 8.3% had near-total injury. For these infants, our 

predictions were strongly correlated with the cognitive outcomes (r:0.946, 95% CI[0.927, 0.960]) and 

explained much of the variance in the observed outcomes (r2:0.894). These predictions are plotted in 

Figure 1. Most of the predictors (89%) came from outside of the DGM structures; but also most of the 

DGM structures were predictors. The top predictors were in the left globus pallidus, the left superior 

temporal lobe, the right cerebellum, and the left and right superior frontal lobes. The maps of these 

predictors are presented in Figure 1. These maps show the sum of the coefficients for the predictors 

from all modalities, both summed across modalities, and for each modality separately. 

3.2 Expressive language outcomes 

The demographic and laboratory data for the infants for whom we had both all MRI modalities and 

Bayley-III expressive language outcome scores (n=153) are presented in Supplementary eTable 2. Of 

these infants, 64.9% had normal brain MRIs, 17.6% had predominantly white-matter/watershed 

injuries, 9.5% had predominantly DGM injuries, and 8.1% had near-total injury. For these infants, our 

predictions were strongly correlated with the expressive language outcomes (r:0.931, 95% CI [0.905, 

0.950]) and explained much of the variance in the observed outcomes (r2:0.851).  These predictions 

are plotted in Figure 2.   Most of the predictors came from outside of the DGM structures; 25% came 

from the DGM structures or PLIC, with almost all of those coming from the right hemisphere. The top 

predictors were in the right caudate, the right hippocampus, amygdala, and PLIC, and in cubic tiles in 
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the anterior left superior frontal lobe and the superior temporal lobe. The maps of these predictors are 

presented in Figure 2. These maps show the sum of the coefficients for the predictors from all 

modalities, both summed across modalities, and for each modality separately.  

 
3.3 Receptive language outcomes 

The demographic and laboratory data for the infants for whom we had both all MRI modalities and 

Bayley-III receptive language outcome scores (n=153) are presented in Supplementary eTable 3. Of 

these infants, 64.9% had normal brain MRIs, 17.6% had predominantly white-matter/watershed 

injuries, 9.5% had predominantly DGM injuries, and 8.1% had near-total injury. For these infants, our 

predictions were strongly correlated with the receptive language outcomes (r:0.959, 95% CI [0.943, 

0.970]) and explained much of the variance in the observed outcome data (r2:0.912). These 

predictions are plotted in Figure 3. Most of the predictors came from outside of the DGM structures; 

only 1% came from the DGM structures. The top predictors were in tiles near the left parieto-occipital 

junction, at the edge of the right thalamus, and spanning the left and right middle parietal lobes. The 

maps of these predictors are presented in Figure 3. These maps show the sum of the coefficients for 

the predictors from all modalities, both summed across modalities, and for each modality separately. 

 

3.4 Gross motor outcomes 

The demographic and laboratory data for the infants for whom we had both all MRI modalities and 

Bayley-III gross motor outcome scores (n=161) are presented in Supplementary eTable 4. Of these 

infants, 63.2% had normal brain MRIs, 20.0% had predominantly white-matter/watershed injuries, 

10.3% had predominantly DGM injuries, and 6.5% had near-total injury. For these infants, our 

predictions were strongly correlated with the gross motor outcomes (r:0.944, 95% CI [0.924, 0.959]) 

and explained much of the variance in the observed outcome data (r2:0.845). These predictions are 
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plotted in Figure 4. Most of the predictors came from outside of the DGM structures; less than 1% 

came from the DGM structures or PLIC. As might be expected, there were predictors in the 

cerebellum and in motor regions of the cortex, but predictors were also widely distributed throughout 

the white-matter and the cortex. The top predictors were in the orbito-frontal cortex, and at the outer 

edge of the central sulcus near the junction of the superior and middle gyrus. The maps of these 

predictors are presented in Figure 4. These maps show the sum of the coefficients for the predictors 

from all modalities, both summed across modalities, and for each modality separately. 

 

3.5 Fine motor outcomes 

The demographic and laboratory data for the infants for whom we had both all MRI modalities and 

Bayley-III fine motor outcome scores (n=165) are presented in Supplementary eTable 5. Of these 

infants, 62.3% had normal brain MRIs, 20.1% had predominantly white-matter/watershed injuries, 

10.1% had predominantly DGM injuries, and 7.5% had near-total injury. For these infants, our 

predictions were strongly correlated with the fine motor outcomes (r:0.955, 95% CI [0.938, 0.967]) 

and explained much of the variance in the observed outcome data (r2:0.893). These predictions are 

plotted in Figure 5. Most of the predictors came from outside of the DGM structures; less than 1% 

came from the DGM structures or PLIC. There were predictors in the cerebellum and in motor regions 

of the cortex, but predictors were also widely distributed throughout the white-matter and the cortex. 

The top predictors were in tiles that overlapped with the cerebellum, the brainstem, the corpus 

callosum, and the medial cortex at the parieto-occipital junction. The maps of these predictors are 

presented in Figure 5. These maps show the sum of the coefficients for the predictors from all 

modalities, both summed across modalities, and for each modality separately. 

4 Discussion 
Current approaches to neuroimaging-based prognostication rely on human expertise, and are thus 
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subjective and have limited accuracy 17,24–27. We have described a new automated approach that is 

highly accurate, with a mean correlation of 0.947 between the predicted and observed outcomes 

across domains, and a mean coefficient of determination of 0.879. Importantly, the model explained 

variance in the observed outcomes to approximately the same degree regardless of severity, indicating 

that neonatal MRI has predictive power for the full spectrum of outcomes in HIE. Moreover, our 

approach identified the neuroimaging features that drove those predictions, allowing us to create 

atlases of the predictors of each of the developmental outcomes. This may provide valuable insight 

into the patterns of injury responsible for developmental impairments. 

Importantly, the predictor atlases vary between each of the developmental outcome domains. The 

atlases for cognitive outcomes and for expressive language outcomes have predictors throughout the 

brain, but with prominent predictors in the DGM structures, perhaps in partial agreement with some 

previous research, e.g. 11,28, which associated damage to the basal-ganglia and thalamus with cognitive 

and language impairments. But notably, for cognitive outcomes, the predictors in the DGM structures 

are bilateral, whereas for the expressive language outcomes, the predictors in the DGM structures are 

concentrated in the right hemisphere. The concentration of predictors in the right-hemisphere DGM 

structures for the expressive language outcomes may reflect the innate asymmetry of brain structures 

involved in learning the prosodic structure of language versus its syntactic structure 29–31.  Aspects of 

language more related to prosody are right lateralized 29–32. The lack of predictors in the DGM 

structures for the receptive language outcomes seems consistent with the fact that these results are 

from MRI data from neonates who have had essentially no exposure to language outside the womb. 

The atlases for both the gross and fine motor outcomes have predictors, unsurprisingly, in the 

cerebellum, but somewhat surprisingly, in almost all other regions of the brain, as well. This lack of 

involvement of the DGM structures is in partial conflict with previous findings given that such 
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damage has been associated with motor impairments, including cerebral palsy 11, though cerebral 

palsy has also been associated with white-matter damage 33,34. The widely distributed predictors 

throughout the brain in the atlases for each of the outcomes is in more general agreement with 

previous research 28, though the atlases provided here add specificity to those claims, and differentiate 

the relatively sparse distribution of predictors for cognitive outcomes from the more dense distribution 

of predictors for motor outcomes.  

This study has several limitations that need to be taken into account when interpreting the results. 

First, the data were acquired at a single center, and were based on that center’s institutional criteria for 

diagnosis and for the use of therapeutic hypothermia. Notably however, our study population included 

a large number of neonates with mild encephalopathy, and whose brain MRIs appeared normal. We 

believe that inclusion of a broad spectrum of injury patterns demonstrates the ability of our approach 

to prognosticate across the full spectrum of severity. However, this may not generalize, and thus our 

findings require replication in samples acquired at centers with different clinical practices and patient 

populations. Our analyses may also have been impacted by the use of different MRI scanners with 

different field strengths, even though the scanner model was included as an interaction term. The 

analyses might also have been negatively impacted by the suboptimal slice thickness used for the T2- 

and diffusion-weighted data. However, it should be noted that despite this limitation, the radiomics 

features chosen as predictors by the elastic-net model were as likely to come from the T2- or 

diffusion-weighted data as from the T1-weighted data.  

In conclusion, we have demonstrated that machine learning, using radiomics, has the potential to 

accurately predict 18-month outcomes in infants with perinatal HIE across the full spectrum of 

outcomes, in all domains, i.e. cognitive, language, and motor. Additionally, our methods have yielded 

atlases of the predictors for each of the outcome measures for each modality, which may provide 
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insight into the nature of the brain injuries that drive the observed impairments, and guidance for 

future studies that strive to determine in more detail the nature of the injuries. Finally, we note that 

this study considered the MRI-data alone in order to investigate the prognostic value of that data; 

including the demographic, clinical, and laboratory data may yield still better results.
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Figure 1: The elastic-net regression results for the Bayley cognitive scores. The predictors are shown 

below on axial slices in radiological view; the sum of the coefficients for each label is shown on the 

yellow-red scale. The top row of predictors shows the sum of the coefficients for the predictors from all 

modalities. The remaining rows show the sum of the coefficients for the predictors from each of the 

T1, the T2, the ADC map, and the direction-averaged maximum b-value volume. Note that most of the 

deep gray-matter structures are predictors, with the left pallidus being particularly prominent. But 

note also that predictors are distributed throughout the brain.

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 10, 2025. ; https://doi.org/10.1101/2025.01.08.25320190doi: medRxiv preprint 

https://doi.org/10.1101/2025.01.08.25320190
http://creativecommons.org/licenses/by-nd/4.0/


 

Bayley Expressive Language 

 

T1, T2, ADC, B1000 
 

T1 
 

T2 
 

ADC 
 

B1000 

Figure 2: The elastic-net regression results for the Bayley expressive language scores. The predictors 

are shown below on axial slices in radiological view; the sum of the coefficients for each label is shown 

on the yellow-red scale. The top row of predictors shows the sum of the coefficients for the predictors 

from all modalities. The remaining rows show the sum of the coefficients for the predictors from each 

of the T1, the T2, the ADC map, and the direction-averaged maximum b-value volume. Note that the 

predictors are distributed throughout the brain, but are particularly prominent in the deep gray-

matter structures of the right hemisphere.
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Figure 3: The elastic-net regression results for the Bayley receptive language scores. The predictors 

are shown below on axial slices in radiological view; the sum of the coefficients for each label is shown 

on the yellow-red scale. The top row of predictors shows the sum of the coefficients for the predictors 

from all modalities. The remaining rows show the sum of the coefficients for the predictors from each 

of the T1, the T2, the ADC map, and the direction-averaged maximum b-value volume. Note that the 

predictors are distributed throughout the brain, but with little involvement of the deep gray-matter 

structures.
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Figure 4: The elastic-net regression results for the Bayley gross motor scores. The predictors are 

shown below on axial slices in radiological view; the sum of the coefficients for each label is shown on 

the yellow-red scale. The top row of predictors shows the sum of the coefficients for the predictors 

from all modalities. The remaining rows show the sum of the coefficients for the predictors from each 

of the T1, the T2, the ADC map, and the direction-averaged maximum b-value volume. Note that the 

predictors are distributed throughout the white matter, the deep gray-matter structures, the cortex, 

and the cerebellum.
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Figure 5: The elastic-net regression results for the Bayley fine motor scores. The predictors are 

shown below on axial slices in radiological view; the sum of the coefficients for each label is shown on 

the yellow-red scale. The top row of predictors shows the sum of the coefficients for the predictors 

from all modalities. The remaining rows show the sum of the coefficients for the predictors from each 

of the T1, the T2, the ADC map, and the direction-averaged maximum b-value volume. Note that the 

predictors are distributed throughout the white matter, the deep gray-matter structures, the cortex, 

and the cerebellum.
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Data availability. 

Our multi-contrast population-specific neonatal brain MRI template and the labels for the cubic tiling, 

the deep gray-matter structures, and the PLIC, can be found here: https://gin.g-

node.org/johndlewis/HIE3/Template/ ; the scripts used to process the data can be found here: 

https://gin.g-node.org/johndlewis/HIE3/Tools ; and the linear regression model can be found here: 

https://gin.g-node.org/johndlewis/ HIE3/Models/ . 
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