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Abstract: 26 

SARS-CoV-2 infection rates displayed striking temporal and spatial variation during the 27 

emergence of new variants globally and within the United States. While spatiotemporal "waves" 28 

of infection have been observed, quantitative assessments of their spread remain limited. Here, 29 

we estimate and compare the speed and spatial extent of the first two major infection waves in 30 

the United States, illustrating these dynamics through detailed visualizations. Our findings reveal 31 

that the origins of these waves coincide with large gatherings and the relaxation of masking 32 

mandates. Notably, the second wave spread more rapidly than the first, driven by multiple, non-33 

contiguous origins of infection. This highlights the role of regional heterogeneity in epidemic 34 

dynamics and underscores the importance of localized public health measures in mitigating 35 

ongoing outbreaks.  36 

 37 

Author Summary: 38 

Over the pandemic of SARS-CoV-2, efforts to identify and visualize the disease progression 39 

were made. However, quantitative visualization of the infections spreading are limited until 40 

today. Here we developed tools to visualize the spatial and temporal spreading of SARS-CoV-2 41 

first two waves of infections over the Contiguous United States. We generated novels figures and 42 

movies that captures the dynamics of spreading and developed a new mapping of incidence of 43 

SARS-CoV-2 that goes below county-level. These outputs can help public health understanding 44 

and control efforts of the disease.   45 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 21, 2025. ; https://doi.org/10.1101/2025.01.08.24319433doi: medRxiv preprint 

https://doi.org/10.1101/2025.01.08.24319433
http://creativecommons.org/licenses/by-nc/4.0/


Introduction 46 

Person-to-person transmission of SARS-CoV-2 was confirmed in the United States (US) in late 47 

January 2020 and a national public health emergency was declared six weeks later (1,2). Spatial 48 

visualizations of observed and estimated COVID-19 cases and deaths displayed wave-like spread 49 

as new variants were introduced in the country (3,4). Previous investigations have examined the 50 

correlation between the spatiotemporal patterns of COVID-19 spread and human mobility (5–7). 51 

Other studies have estimated the effectiveness of public health measures such as lockdowns and 52 

travel restrictions in interrupting or modifying these patterns (7–9). However, efforts to quantify 53 

the speed and spatial extent of viral spread over distinct epidemic waves have been limited. Here, 54 

we apply a version of the Besag, York, and Mollié (BYM) spatial model (10,11) to temporally- 55 

and spatially-resolved estimates of SARS-CoV-2 infections derived from a previously described 56 

model (3). Based on this analysis we quantify the speed at which SARS-CoV-2 outbreaks spread 57 

during the two large waves of SARS-CoV-2 infections in the United States during March 2020 to 58 

December 2021.  59 

 60 

Materials and Methods 61 

 62 

Data sources 63 

We used previously published daily estimates of SARS-CoV-2 infections at the county-level in 64 

the United States from a Bayesian nowcasting model that synthesized reported COVID-19 cases 65 

and deaths, accounting for both under ascertainment and time lags (3). Our dataset encompasses 66 

the period from March 2020 to December 2021. To estimate population denominators for per 67 
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capita analyses, we used 2019 population estimates from the US Census Bureau, which provided 68 

population size estimates for all Census Block Groups (CBGs) in the United States (12).  69 

 70 

Regularization of geographical units  71 

The smallest consistently available unit of reporting for US COVID-19 cases, hospitalizations, 72 

and deaths was at the county-level, which dictated the geographic resolution of the SARS-CoV-2 73 

infection estimates. However, as the geographic size and population density of counties differs 74 

systematically across the US (larger and less dense in the West than in the East), a county-level 75 

analysis could lead to bias in estimates of the wave speed and expansion. 76 

 77 

To improve our ability to detect spatial patterns in the data, we first created a spatially 78 

regularized grid of infections per capita across the contiguous US. The grid is comprised of 7,665 79 

unique hexagons, each enclosing 64.75 square kilometers (25 square miles). We employed an 80 

area-weighted approach to distribute population estimates from CBGs to hexagons (Figure 1A-81 

C), assuming a constant population throughout the analysis period. We then distributed estimated 82 

infections from counties to hexagons (12) based on the fraction of each county’s population 83 

contained in each hexagon and assuming that per capita infection rates were distributed equally 84 

within a county. We combined these to produce daily estimates of SARS-CoV-2 infections per 85 

capita for each hexagon (Figure 1D-E). 86 

 87 

Assessment of infections per capita surfaces 88 

We fit a modified version of the BYM model as implemented in R-INLA (10), called BYM2, to 89 

estimate spatially smoothed rates of SARS-CoV-2 infections per capita across the hexagonal 90 
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grid. The BYM2 is a reparametrized version of the original Besag (11) model, which improves 91 

the assignment of prior distributions for the corresponding model parameters and the subsequent 92 

interpretation of parameters (10). Specifically, our model is given as 93 

𝑍(𝐴!) = µ + θ(𝐴!) + ϵ(𝐴!),  (1) 94 

where 𝑍(𝐴!) is the infections per capita in hexagon 𝐴!, µ is the global intercept, θ(𝐴!) are 95 

random effects that are assigned the BYM2 prior distribution, and ϵ(𝐴!) are residual error terms 96 

assumed to be statistically independent. For more details on the model and on the priors used see 97 

the Supplementary Material. We fit this model separately for each day over March 2020 to 98 

December 2021. The collection of all the µ + 	θ(𝐴!) (i.e., the global intercept plus the denoised 99 

and spatially smoothed random effects) are the modeled infections per capita, or surfaces. We 100 

then produced a daily sequence of these surfaces, which we used to calculate the speed of wave 101 

expansion and to visualize changes over time. We opted for a separate model fit on each day to 102 

avoid temporal oversmoothing effects, as the infection estimates were derived from a nowcasting 103 

model that already applied temporal smoothing. 104 

 105 

Definitions of wave and speed of expansion  106 

We defined waves as one or more sets of contiguous hexagons with relatively high infections-107 

per-capita levels. To allow for multiple infection centers with the same wave, we did not limit 108 

our definition to a single contiguous set. Using this framework, we categorized ‘Wave 1’ as the 109 

period from September 2020 to February 2021 and ‘Wave 2’ as the period from July 2021 to 110 

November 2021. To formally determine hexagons within a wave, we defined a level of per-capita 111 

SARS-CoV-2 infection, above which we coded hexagons as being part of the infection wave. For 112 

our main analysis we used a threshold of 165 daily infections per-capita to characterize a 113 
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hexagon as being within a wave. This value represents the 75th percentile of the infections-per-114 

capita value distribution during the study period (Figure S1). We conducted sensitivity analyses 115 

using 85 and 300 infections per capita as alternative threshold values (Supplementary Material 116 

Figure S2). We calculated the speed of wave expansion as the increase in area covered by the 117 

wave each day (number of hexes recruited into a wave each day).  118 

 119 

Statistical analysis  120 

All analyses were performed using R Statistical Software (v4.3.0) (13)). We also used the INLA, 121 

sf, sp, spdep, areal, rgeoda, and magick R packages (14–18).  122 

 123 

Results 124 

 125 

Spatiotemporal patterns of SARS-CoV-2 infections across the United States  126 

As described in the Material and Methods, we categorized infections as belonging to Wave 1 127 

(September 2020 to February 2021) or Wave 2 (July 2021 to December 2021) (Figure 2A). 128 

Figure 2B-I shows the smoothed estimates of SARS-CoV-2 infections per capita from the 129 

BYM2 model on eight dates, leading up to the peak of each of the two waves analyzed. Our 130 

model estimated that Wave 1 originated with a set of hexes spanning central South Dakota, 131 

eastern North Dakota, and northeastern Montana (Figure 2B) in mid-September of 2020. Then 132 

the wave extended south and to both coasts from this point of origin, achieving a peak of over 133 

1.5 million infections/day by mid-November 2020 (Figure 2C-E). Wave 2 originated in the 134 

Ozarks (southern Missouri and northern Arkansas) (Figure 2F) in early July 2021, and then 135 

expanded further south (Figure 2G-I). Secondary centers of infection appeared later in July in 136 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 21, 2025. ; https://doi.org/10.1101/2025.01.08.24319433doi: medRxiv preprint 

https://doi.org/10.1101/2025.01.08.24319433
http://creativecommons.org/licenses/by-nc/4.0/


the Pacific Northwest (Figure 2G), and the wave of infections subsequently spread throughout 137 

the western United States (Figure 2G-I). This wave had a peak of 300 per capita infection/day 138 

by early September 2021. Animations of the infection waves are provided in Movie 1, which 139 

presents maps of the spatially smoothed infections across the full study period at a weekly 140 

timestep.  141 

 142 

Wave expansion and speed of expansion 143 

Figure 3B-C shows contour plots of the speed of expansion for each wave. At its peak, each 144 

wave involved the total contiguous United States (8,595,756 km2), but the two waves differed in 145 

the time needed to spread across the nation. Wave 1 expanded from an area of 327,780 km2 to the 146 

total United States in 64 days (September 8th–November 11th, 2020) (Figure 3B). Wave 2 147 

expanded from an area of 246,047 km2 to the total United States in 51 days (July 7th – August 148 

27th, 2021) (Figure 3C).  149 

 150 

Wave 1 reached its maximal speed of expansion (~ 580,000 km2/day) 49 days after its formation 151 

and 14 days prior to its peak. Wave 2 reached its maximal speed of expansion (~ 650,000 152 

km2/day) more quickly, in only 38 days after its formation and 25 days prior to its peak (Figure 153 

3C). Sensitivity analyses using different thresholds for categorizing a hexagon as within a wave 154 

resulted in consistent estimates for speed of wave expansion and time to reach peak expansion 155 

speed (Figure S2). The shape and speed of wave patterns were also robust to the choice of 156 

threshold (Figure S3 and Figure S4). See Supplementary Material Figure S5 displaying the 157 

countour plot of the timing of each wave speed of expansion. 158 

 159 
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Discussion 160 

We sought to quantify the expansion of SARS-CoV-2 infections across the United States during 161 

the first two large waves of the epidemic (Figures 2, Movie1, and Movie2). The two waves had 162 

unique origin sites within the United States. We estimated that Wave 1 originated in parts of 163 

northeastern Montana, eastern North Dakota, and central South Dakota in September 2020 164 

(Figures 2B-E and Movie 2). This estimated origin coincided with a motorcycle rally that 165 

brought over 460,000 individuals to Sturgis, South Dakota in August 2020 and was later 166 

epidemiologically implicated in elevated local COVID-19 rates and interstate spread of infection 167 

(19,20). Wave 2 originated in the Ozarks (Figures 2F-I and Movie 2), during a time when there 168 

was local re-opening of indoor music venues and relaxation of local masking policies (21,22). 169 

Shortly following spread in the Ozarks, secondary centers of elevated SARS-CoV-2 infections 170 

per capita were found in the Pacific Northwest. Previous work has implicated both domestic and 171 

international travel in contributing to SARS-CoV-2 transmission across United States and likely 172 

explains the rapid appearance of multiple wave centers for the second examined wave of the 173 

epidemic  (23).  174 

 175 

While we found that Wave 2 had both a higher maximal speed of expansion and achieved this 176 

peak speed more quickly than Wave 1, the overall similarity in our estimates of the speeds of 177 

wave expansion for these first two waves is notable. This similarity in wave speed expansion is 178 

more remarkable in light of the very different viral variants in circulation (Wave 1 was initially 179 

due to wildtype SARS-CoV-2 and later the Alpha variant (24,25), while Wave 2 was due to the 180 

spread of the Delta variant (23)), regional and secular changes in nonpharmaceutical intervention 181 

policies, and the stark differences in the levels and types of infection- and vaccine-induced 182 
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population immunity at the time of these two waves (26). Such stability in the speed of wave 183 

expansion suggests that underlying patterns of human mobility may have had a stronger impact 184 

on the patterns of local epidemic expansion than viral variation, non-pharmaceutical 185 

interventions, and host-immunity (7,20).  186 

 187 

Our effort to provide quantitative estimates of speeds and locations of epidemic wave expansion 188 

required several simplifying assumptions. Importantly, we elected to use estimates of infections 189 

from a nowcasting model (rather than case notification data) as diagnosis and case reporting 190 

varied markedly in quality and completeness over the epidemic (27). To overcome potential bias 191 

associated with the irregular shapes and sizes of US counties (the smallest unit at which 192 

estimates were possible), we distributed estimated infections on a hexagonal grid before 193 

calculating the speed of wave expansion. This could have introduced bias if cases within counties 194 

were not randomly distributed, though this effect would be modest. Finally, we arbitrarily 195 

selected the threshold of infections per capita to define wave membership. However, our 196 

sensitivity analyses found that the wave speeds were similar at alternative thresholds.  197 

 198 

Factors that affect the magnitude and speed of epidemic waves is an area of substantial interest 199 

for other viral diseases like influenza (e.g. Viboud et al. 2006 (28), Eggo et al. 2011 (29), Gog et 200 

al. 2014 (30)). While our work on SARS-CoV-2 does not itself provide explanations for why 201 

each of these first two epidemic waves spread in the manner that they did once they were 202 

established, the development of methods to quantify the speed and extent of spread, such as 203 

those we employ here, are a necessary first step. Further research to explore the manner in which 204 

the pathogen, environment, and host characteristics affect the speeds and patterns of epidemic 205 
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expansion may help to predict wave expansion, and could provide valuable information for the 206 

planning of spatially defined interventions.  207 

 208 
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Figure 1: United States population and estimated cumulative SARS-CoV-2 infections per 234 

capita distributed across the hexagonal grid. Panel A, B, and C: United States’, New 235 

England’s and Connecticut’s 2019 population Census estimates on the hexagonal grid. Panel D, 236 

E, and F: United States’, New England’s, and Connecticut cumulative infections per 100,000 237 

persons on the hexagonal grid (March 2020–December 2021).  238 

 239 

Note: Numbers are given in a log 10 scale. Hexagons with no filling had no population reported 240 

or infections counts ever estimated.241 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 21, 2025. ; https://doi.org/10.1101/2025.01.08.24319433doi: medRxiv preprint 

https://doi.org/10.1101/2025.01.08.24319433
http://creativecommons.org/licenses/by-nc/4.0/


 242 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 21, 2025. ; https://doi.org/10.1101/2025.01.08.24319433doi: medRxiv preprint 

https://doi.org/10.1101/2025.01.08.24319433
http://creativecommons.org/licenses/by-nc/4.0/


Figure 2: Estimated infections per capita of SARS-CoV-2 in the United States, March 2020–December 2021. Panel A: Time 243 

series of SARS-CoV-2 infection estimates for the United States, the gray shaded areas show the first two large waves of infections. 244 

Panels B, C, D, and E: Sequence of the spatially smoothed estimates of SARS-CoV-2 infections per capita associated with Wave 1 at 4 245 

time points. Panels F, G, H, and I: Sequence of the spatially smoothed estimates of SARS-CoV-2 infections per capita associated with 246 

Wave 2 at 4 time points. 247 

 248 

 249 

 250 

 251 

 252 

 253 
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 255 

 256 

 257 
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Figure 3:  SARS-CoV-2 infections-per-capita surfaces progression and speed of invasion for each wave. Comparison of SARS-264 

CoV-2 infection Wave 1 and Wave 2 speed for 56- to 7- days prior to each wave’s infection peak.  See Supplementary Material 265 

Figure S5 for a countor plot of waves progression.266 
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Supporting Information 371 

Figure S1 – Histogram of values for the risk surfaces and empirical cumulative density 372 
function of the risk surface values. The histogram show that the distribution of values is 373 
concentrated around 0, which as expected due to for long periods we had low to no infections 374 
occurring to a great number of places. The ECDF shows that a threshold of 165 infections per 375 
capita will capture 75% of the mass of the values distribution. 376 
 377 
Figure S2 – Speed of invasion for different thresholds to the infection per capita surfaces 378 
progression calculation. Panel A is built with a threshold of 85 or more infections per capita, 379 
panel B is built with a threshold of 300 infections per capita. As in Figure 3C, we observe a 380 
maximal speed and a steep decrease after peak, and, as in Figure 3C, the second wave had a 381 
higher speed of invasion and encompassed a larger area at peak than the first wave. 382 
 383 
Figure S3 – Infection per capita surface on a continuous scale of values. As expected, the 384 
wave-like pattern holds independently of the scale to be displayed, and as being an output of 385 
spatial smooth model, the continuous scale gives a less defined border to the risk surface 386 
expansion. 387 
 388 
Figure S4 - Infection per capita with a threshold equal to the mean of the risk values 389 
distribution (85 infections per capita). With a lower threshold showing on the map, the spread 390 
process seems to happen faster. 391 
 392 
Figure S5 – Contour plot of the dates for the speed of expansion. The contour plots shows the 393 
contour surface at dates with 7 days spacing between each, up until the national curve peak.  394 
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