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Abstract 
Background: Incorporation of gene expression when estimating polygenic risk scores (PRS) in 
atopic dermatitis (AD) may provide additional insights in disease pathogenesis and enhance 
predictive accuracy. 
Objective: In this study, we developed polygenic transcriptome risk scores (PTRSs) derived 
from AD-enriched tissues and evaluated their performance against traditional PRS models and a 
baseline risk model incorporating eosinophil and lymphocyte counts in the prediction of AD. 
Methods: We conducted transcriptome-wide association studies (TWAS) using the PrediXcan 
framework to construct tissue-specific PTRSs. Risk score performance was assessed in 256888 
Europeans (10,816 cases) and validated in an independent cohort of 64152 Europeans (2669 
cases) from the UK Biobank. 
Results: We observed a modest correlation between PRS and PTRS, exerting independent effects 
on AD risk. While PRS demonstrated superior predictive performance compared to single-tissue 
PTRSs, combining both models significantly enhanced prediction accuracy, yielding a c-statistic 
of 0.646 (95% confidence intervals: 0.634–0.656). Notably, tissue-specific PTRSs revealed 
stronger associations with baseline risk factors, where Eppstein-Bar virus (EBV)-transformed 
lymphocytes and unexposed skin PTRSs tissues reported positive associations with lymphocyte 
counts. 
Conclusion: Our findings highlight the value of integrating transcriptome-based risk models to 
incorporating additional omics layer to refine risk prediction and enhance our understanding of 
genetic architecture of complex traits. 
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Introduction 
Atopic dermatitis (AD) is a widely prevalent skin disease that affects both infants and adults1. 
AD is characterized by recurrent eczematous lesions, intense itching, and a compromised skin 
barrier, which often leads to secondary infections. It is considered one of the earliest 
manifestations of the atopic march, a sequence of allergic diseases that typically begins with AD 
in childhood and may progress to asthma, allergic rhinitis, and other atopic disorders1. The 
genetic architecture of AD has been well-documented, with heritability estimates reaching as 
high as 80% in twin studies, indicating a substantial genetic contribution to the pathogenesis of 
the disease2. Over the past decade, genome-wide association studies (GWASs) have uncovered 
more than 100 genetic loci associated with AD, further highlighting its polygenic nature3. 
Despite significant advancements in identifying risk loci for AD, much less attention has been 
given to identifying individuals at high risk. Polygenic risk scores (PRS) offer a promising 
approach for directly translating these findings into clinical practice4. PRS aggregates the effects 
of numerous genetic variants across the genome, each weighted by its effect size derived from 
large-scale GWASs, to estimate an individual's genetic predisposition to a particular trait. PRSs 
have been widely applied for stratifying individuals based on their genomic profile, thus aiding 
the clinical practice for preventive measures4. Studies evaluating the performance of PRS in AD 
have shown, thus far, that PRS alone can adequately stratify individuals yielding high predictive 
values5,6. 
Nonetheless, little effort has been made to incorporate additional layers of genetic information in 
constructing risk scores. A growing body of evidence suggests that many of the genetic variants 
associated with complex traits, such as AD, reside in non-coding regions of the genome, 
modulating gene regulatory processes that can influence disease susceptibility. An example of 
such regulatory interactions refers to cis-quantitative trait loci (cis-eQTLs), affecting gene 
expression variation7. Recent approaches have integrated genetically regulated gene expression 
(GReX) to risk score development through polygenic transcriptome risk scores (PTRS)8. PTRS 
leverage the cumulative effect of genes (here, at the expression level) to construct risk predictors. 
PTRS are based on the premise that gene expression changes driven by genetic variation are 
relatively stable across different populations and may therefore be more generalizable across 
diverse ancestry groups. Compared to traditional PRS, PTRS have been shown to offer improved 
portability across different traits and diseases8,9, providing a more robust and interpretable model 
of genetic risk. Moreover, gene-based scores not only capture the genetic variation associated 
with disease but also offer insight in the underlying molecular mechanisms of traits by 
incorporating gene expression. Hence, PTRS can reveal important aspects of the genetic 
architecture of complex traits like AD. 
In this work, we developed PTRSs to examine the association between GReX and AD in UK 
Biobank (UKB) European participants. We compared the predictive performance of PTRSs to 
traditional PRS frameworks and a baseline risk score consisting of eosinophil and lymphocyte 
counts. We further constructed a combined risk score model that integrates both PRS and PTRS, 
assessing the predictive accuracy compared to single-risk scores. Finally, we explored the 
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independent association between PTRS and clinical risk factors for AD, aiming to establish 
whether PTRS can further refine the prediction of AD risk beyond genetic risk alone. An 
overview of the study design is presented in Fig. 1. 
 
Materials and Methods 
Data sources 
All analyses were conducted on the GRCh38/hg38 human genome version. External GWAS data 
for AD were derived from 527948 European participants (50158 cases, 477430 controls) 
excluding UKB participants3. The meta-analysis was performed using GWAMA for 12142641 
variants in a fixed effect model10. Analyses were subsequently restricted to common (minor 
allele frequency (MAF)>0.01), biallelic variants. Tissue-based expression models based on 
GTEx V8 data were retrieved from the PrediXcan database11. Linkage disequilibrium (LD) 
computations relied on an external reference panel of 633 European unrelated samples from the 
1000 Genomes project (1KGP) reference panel12. 
Study participants 
We used data from the UKB, a large-scale biomedical database containing genetic, lifestyle and 
health data from approximately half a million UK participants13. Genotyping of the participants 
was performed using the UKB Axiom Affymetrix array13. Genotypic data were lifted over from 
GRCh37 to GRCh38 using GATK Picard Liftover tool14 and consequently imputed from the 
Genomics England (GEL) 100,000 Genomes project with high-coverage sequence data15. The 
resulting GEL reference panel consisted of more than 300 million autosomal variants. Details 
regarding imputations and quality metrics are described elsewhere15. 
Only European participants were included, with one random participant selected from each pair 
of at least third-degree relatives (kinship coefficient > 0.0884). AD cases were defined as 
individuals who self-reported “eczema/dermatitis” in a verbal interview during their initial visit 
at the assessment center (Data field ID: 20002). The rest of eligible participants were used as 
controls. Individuals listed as controls were excluded if they had previously self-reported that 
had hay fever, allergic rhinitis or eczema (Data field ID: 6152). We randomly split the eligible 
participants into a 80% training set to evaluate the performance of PRS and PTRS, and 20% 
testing set to apply the optimal risk score maintaining the same ratio for age, sex and case/control 
status. 
Tissue enrichment of AD GWAS 
To select eligible tissues for PTRS computations, we performed a gene property analysis in the 
functional mapping and annotation of GWASs (FUMA) platform v1.5.216 using MAGMA 
v1.1017. Briefly, MAGMA conducts a gene-based association test producing a one-sided P-value. 
At next, gene-based P-values are transformed to Z-scores and are associated with expression 
values from different tissues. We selected 49 pre-computed GTEx v8 tissue expression 
estimations with available cis-eQTLs7 and conducted a one-sided test to prioritize AD-relevant 
tissues based on gene-level results. A Bonferroni-corrected P-value threshold of 0.05/49 was 
adopted to declare significant results. 
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Derivation of polygenic transcriptome risk score 
We selected significantly enriched tissues from the tissue enrichment analysis of AD GWAS 
present in the PrediXcan database. Summary-based TWASs were conducted using the S-
PrediXcan approach to estimate the effect size of each gene18. We used multivariate adaptive 
shrinkage models based on fine-mapped variables from deterministic approximation of posteriors 
(MASHR-M)19 for enriched GTEx tissues as per authors’ recommendations20. The above models 
are mapped to the GRCh38/hg38 human genome version and are restricted to a small number of 
available cis-eQTLs, resulting in decreased intersections between variants available in the 
prediction model and GWAS and thus reduced performance. Therefore, we (i) harmonized the 
base GWAS variants through liftOver to the GRCh38/hg38 human genome version, and (ii) 
imputed the base GWAS variants in a region-wide approach to increase the available number of 
intersected SNPs. Both steps were run according to the S-PrediXcan pipeline21.  
Next, we calculated tissue-specific PTRS through the PrediXcan framework11. In the original 
implementation of PTRS, the estimated effect of a gene was calculated using the GReX as 
feature through elastic net models9. Here, we constructed PTRSs using a summary statistics-
based method, where per-gene effects were derived from S-PrediXcan. In particular, for an ith 
individual, we compute the PTRS as: 
����� � ∑ ��� � ��	

�
��� , 

where ��� is the GReX of a gene 
 in the ith individual estimated through the PrediXcan 

framework, and ��	 is the estimated effect of a gene 
 estimated from the S-PrediXcan 

framework. PTRSs were calculated for sequential P-value thresholds including a different 
number of genes in each case, referring to P-value=1, P-value≤0.1, 5×10-2, 5×10-3, 5×10-4, 5×10-

5, 5×10-6, 5×10-7 and 1×10-7. Each PTRS was standardized prior to evaluation in both training 
and test datasets and adjusted for age, sex, and the first 10 genetic principal components. 
Polygenic risk scores for AD 
To compare the proposed PTRS compared to a traditional PRS approach, we calculated PRS 
using clumping and thresholding (C+T) in the UKB. The C+T approach involves a clumping 
algorithm to yield an independent number of SNPs selecting those mostly associated with the 
phenotype. Variants were clumped using an external 1KGP European LD reference panel12. 
Next, we constructed PRSs using the PRSice-2 v2.3.5 software22. All derived PRSs were 
adjusted for age, sex, 10 first genetic principal components and standardized prior to evaluation 
in training and test datasets. 
Statistical analyses 
We first formed a baseline risk model for AD based on eosinophil count (Data-field ID: 30150), 
lymphocyte count (Data-field ID: 30120), age and sex. Blood cell count phenotypes were rank-
based inverse normal transformed23. Missing values were imputed using multivariate imputation 
by chained equations with random forest (MICE)24. We calculated the odds ratio (OR) and 95% 
confidence intervals for eosinophil and lymphocyte counts using logistic regression.  
Evaluation of standardized PRS and PTRSs was performed using the maximal AUC approach. 
Predictive ability of each method was assessed with the receiver operator characteristics (ROC) 
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curve by computing Harrel’s c-statistic and 95% confidence intervals (95% CIs) using Delong’s 
method via 10000 stratified bootstraps. The c-statistic estimates the likelihood that a randomly 
selected case has a higher risk score than a randomly selected control. C-statistic values range 
from 0.5 (random classification) to 1 (perfect classification). Pairwise comparisons between 
ROC curves were conducted using Delong’s method25. C-statistics and Δc-statistics with 
corresponding 95% confidence intervals (95% CIs) were performed using the pROC R 
package26. Risk scores were adjusted for age, sex, and the first 10 genetic principal components. 
We chose the best performing PRS and PTRS model in the training dataset and applied it to the 
test dataset. 
A combined risk score for standardized PRS and PTRS was calculated with a weighted sum. 
Pearson correlation coefficients between the best-performing standardized PRS and PTRSs as 
well as their interactions were estimated through logistic regressions in the train dataset. 
Interaction estimates were adjusted for age, sex and 10 first genetic principal components. We 
prioritized standardized PTRSs that showed non-significant interactions with standardized PRS 
in the train dataset and evaluated the predictive accuracy in the test dataset. We evaluated the 
overall performance of risk scores using (i) a baseline risk model consisting of age, sex and 
blood cell counts, (ii) a risk score approach for each standardized PRS and PTRS alone, (iii) a 
combination of the baseline risk model and standardized PRS/PTRS, and (iv) a combination of 
baseline risk model, standardized PRS and PTRS in a tissue-specific manner. 
We finally assessed the interaction of standardized PRS and PTRSs in association with blood cell 
counts using linear regression in the test dataset. Rank-based inverse normal transformed blood 
cell counts, including eosinophil and lymphocyte counts were included as outcome variables. 
Interactions between lymphocyte counts and standardized PTRSs in AD risk were assessed by 
adding an interaction term in the regression analysis. All estimates were adjusted for age, sex, 
and first 10 genetic principal components to account for population structure. Derived P-values 
for interaction analyses were adjusted for Bonferroni correction. 
Results 
Participant characteristics 
Our study included 321040 unrelated participants of European ancestry from the UKB. Based on 
self-reporting data and matched case/control, age and sex splitting, training data comprised 
10816 AD cases and 246072 controls, while test data included 2669 AD cases and 61483 
controls. Demographic and clinical characteristics are presented in Table 1. 
Transcriptome-wide analyses for AD 
Enrichment analysis across 49 GTEx tissues with available cis-eQTL data revealed significant 
associations in 7 tissues, namely whole blood (P-value=2.37×10-10), spleen (P-value=9.78×10-9), 
Epstein-Barr virus (EBV) transformed lymphocytes (P=value=7.58×10-8), small intestine (P-
value=8.14×10-6), not sun (P-value=2.32×10-4) and sun (P-value=4.51×10-4) exposed skin and 
lung (P-value=4.54×10-4) tissues (Fig. 2a). These findings align with prior tissue enrichment 
analyses in AD GWASs3, highlighting the multi-tissue etiological mechanisms underlying AD 
pathogenesis and possible links to the atopic march. By applying the S-PrediXcan framework in 
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each of the 7 tissues, we identified 175 genes in total (72 unique) associated with AD risk at a 
Bonferroni corrected P-value threshold of 5.79×10-7 (Fig. 2b). The total number of S-PrediXcan 
results is provided at Tables S1-S7. 
Selection of the best performing risk score and assessment of a baseline risk score 
The optimal PRS and PTRS models were selected using 256888 unrelated participants of 
European ancestry (10816 cases; Table 1). For standardized PRS, the best performing model was 
estimated through PRSice2 v2.3.5 at a P-value threshold of 5.005×10-5 including 390 SNPs in 
total (Fig. S1, Table S8). On the contrary, we chose the PTRS model in each GWAS-enriched 
GTEx tissue through the maximal AUC approach. No specific pattern of gene number arose in 
the training data, suggesting a tissue-specific effect of standardized PTRS in AD risk (Table S9). 
For example, the maximum number of genes was reported at whole blood at a P-value<0.005 
threshold (n=255), while small intestine incorporated the lowest number of genes at a P-
value<5×10-7 threshold (n=23; Table S9). Among the PTRS models, the highest discriminative 
ability was observed in not sun exposed skin (c-statistics, 95% CI: 0.599, 0.594-0.605) using 106 
genes. 
We next evaluated the magnitude of strength of association of clinical risk factors for AD. 
Eosinophil counts were positively associated with AD risk (log(OR), 95% CI: 0.268, 0.249-
0.288; P-value<2×10-16), while lymphocyte counts were negatively associated with AD risk 
(log(OR), 95% CI: -0.110, -0.129-0.090; P-value<2×10-16). These results are in line with 
previous reports confirming the established association of eosinophils in AD risk and severity27, 
while patients with AD have in general lower lymphocyte counts compared to healthy controls28. 
Their discriminative abilities were 0.601 (95% CI: 0.596–0.607) and 0.581 (95% CI: 0.575–
0.586), respectively, combining for a baseline risk model with a c-statistic of 0.611 (95% CI: 
0.606–0.617). 
Predictive accuracy of PRS and PTRS 
In the test dataset comprised of 2669 cases and 61483 controls, we examined the performance of 
standardized PRS and PTRS scores in predicting AD risk (Table 1). The baseline model 
comprised of age, sex, eosinophil and lymphocyte counts yielded a c-statistic of 0.616 (0.605-
0.628; Fig. 3). The PRS model alone demonstrated the highest overall accuracy (c-statistic, 95% 
CI: 0.619, 0.608-0.630; Fig. 3). Among standardized PTRS models, sun exposed skin showed the 
strongest predictive ability (c-statistic, 95% CI: 0.604, 0.593-0.615; Table S10). The standardized 
PRS significantly outperformed the best standardized PTRS model (Δc-statistic, 95% CI: 0.015, 
0.007-0.02; P-value=6.61×10-5), however showing comparable performance to the baseline risk 
score (Δc-statistic, 95% CI: 0.002, -0.008-0.014; P-value=0.645). 
A similar pattern of association derived when adding the baseline risk model in standardized 
PRS/PTRS risk scores. Despite significant improvements of the standardized PTRS models 
compared to standardized PTRSs alone (Fig. 3), the standardized PRS remained the most 
superior model when compared to the best performing PTRS model (Δc-statistic, 95% CI: 0.010, 
00.004-0.015; P-value=3.46×10-4). 
Combined PRS and PTRS 
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Both risk scores were further evaluated for their combined predictive utility. PRS and each 
tissue-specific PTRS model reported significant correlations (Figs. S2-S8), nevertheless 
reporting non-significant interactions (Table S11) excluding standardized PTRS for not sun 
exposed skin (P-value=1.08×10-4; Table S11). Hence, excluding not sun exposed skin, 
standardized PTRS provides an additional layer of genetic risk information that may be useful 
for stratification. We calculated weights for each PRS/PTRS comparison through logistic 
regression in the training dataset, excluding not sun exposed skin, and evaluated the predictive 
accuracy of the PRS and PTRS in the test dataset through weighted sum.  
As expected, the weighted sum of standardized PRS and PTRS outperformed standardized PRS 
and PTRS alone (Fig. 3). The best performing model in weighted sum was reported in spleen (c-
statistic, 95% CI: 0.622, 0.611-0.633) with significant differences compared to standardized PRS 
alone (Δc-statistic, 95% CI: 0.003, 0.001-0.005; P-value=0.001) and standardized PTRS in sun 
exposed skin (Δc-statistic, 95% CI: 0.018, 0.011-0.025; P-value=3.19×10-7). When incorporating 
baseline risk factors, the c-statistic reached a value of 0.646 (95% CI: 0.634-0.656), surpassing 
the best performing model in the single-risk analysis (Fig. 3). For instance, the difference in 
predictive accuracy between weighted sum and clinical risk factors was significant compared to 
standardized PRS and clinical risk factors (Δc-statistic, 95% CI: 0.002, 0.001-0.004; P-
value=5.59×10-4). A complete description of c-statistics and corresponding 95% CIs is provided 
at Table S11. 
Association with disease severity 
Given the lack of clinical metrics for AD in the UKB cohort, we hypothesized that previously 
associated clinical risk factors for AD could be used as proxies. Increased eosinophil counts have 
been long associated with AD onset and severity, while patients with AD report lymphopenia. 
Hence, we assessed the association of standardized PRS and each tissue-specific PTRS scores in 
rank-based inverse normal transformed eosinophil and lymphocyte counts. The interaction was 
computed by adding an interaction term in the same prediction model for evaluation. 
Both standardized PRS and PTRS scores showed significant associations with eosinophil counts, 
with independent contributions to the distribution of the latter except for sun exposed skin 
standardized PTRS (Fig. 4a; Table S12). However, the standardized PTRSs for EBV-transformed 
lymphocytes (log(OR), 95% CI: 0.031, 0.023-0.040), not sun exposed skin (log(OR), 95% CI: 
0.036, 0.027-0.045) and small intestine (log(OR), 95% CI: 0.043, 0.035-0.052) tissues reported 
an increased strength of association with eosinophil counts compared to standardized PRS (Fig. 
4a; Table S12). Contrastingly, a more distinct association pattern was observed in lymphocyte 
counts, where the standardized PTRS derived from EBV-transformed lymphocytes (log(OR), 
95% CI: 0.015, 0.007-0.023) and not sun exposed skin (log(OR), 95% CI: 0.017, 0.008-0.025) 
tissues were the only associations reaching significance threshold (Fig. 4b). The contradictory 
association patterns between lymphocyte counts and PTRSs (Fig. 4b) compared to their 
associations with AD risk prompted us to investigate their interactions in disease risk. Notably, 
standardized PTRSs in EBV-transformed lymphocytes and not sun exposed skin showed 
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independent associations with AD risk compared to lymphocytes (Table S13), highlighting 
distinct interactions between lymphocyte-related mechanisms and genetic risk. 
Discussion 
Here, we developed transcriptome-based polygenic risk scores to predict AD risk. By adding an 
additional layer of tissue-specific biological information to conventional genetic models, we 
aimed to disentangle gene- and tissue-specific contributions to genetic risk. We hypothesized that 
leveraging predicted gene expression variability in relevant tissues would enhance our 
understanding of AD pathogenesis and subsequently prediction risk. To assess this, we compared 
the predictive performance of PTRSs to traditional PRS frameworks and assessed the magnitude 
of strength of association with a baseline clinical risk score. 
To refine our framework, we performed tissue enrichment analyses on the base GWAS data, 
identifying 7 significant tissues (Fig. 2a). While AD associations were evident in tissues such as 
skin and immune-related backgrounds (e.g., whole blood, spleen, and EBV-transformed 
lymphocytes), the observed enrichment in lung and small intestine was particularly notable. The 
enrichment in the above tissue stem from the generalized atopic background of AD, given the 
shared inflammatory pathways driving the atopic march, and the critical role these tissues hold in 
AD pathogenesis. For instance, studies have shown that infants with AD show compromised 
lung functionality independently of disease severity and food sensitivity29. Moreover, 
transcutaneous sensitization has been implicated in modulating food allergy risk30, further 
linking these tissues to the broader atopic phenotype. 
In line with previous PRS applications in AD5,6, we observed that PRS alone outperformed 
baseline risk factors associated with AD in terms of maximal AUC, while inclusion of the latter 
enhanced the predictive ability. The underperformance of PTRS compared to both baseline risk 
models and PRS is likely due to the limited, fine-mapped cis-eQTL variants incorporated during 
PTRS weight construction20 compared to the reliance of PRS on genome-wide variants (Fig. 1). 
Comparisons between tissue-specific PTRSs must also be interpreted with caution given the 
distinct cis-eQTLs and biological contexts of each tissue. Previous reports have already shown 
that PTRSs outperform PRS in cross-ethnic portability, with improved association scores in 
chronic pulmonary obstructive disease9 and quantitative traits8. This advantage may arise from 
shared disease biology across ancestry groups, and the incorporation of cross-ancestry prediction 
models during PTRS construction7. Here, PTRSs demonstrated significant associations with 
larger, independent effect estimates compared to PRS in baseline risk factors (Fig. 4), unveiling a 
tissue-specific interaction of gene expression regulation and AD risk. We assume that PTRS 
weights for AD risk capture a broader inflammatory profile and immune activation in a tissue-
specific manner. For instance, the independent association of small intestine PTRS in eosinophil 
counts has been previously suggested by functional studies, where increased eosinophils in the 
small intestine after allergic sensitization resulted in AD skin inflammation32. Similarly, EBV-
transformed lymphocyte and not sun exposed skin PTRSs were independently, positively 
associated with lymphocyte counts (Fig. 4b). While this might appear contradictory, given that 
reduced lymphocyte counts were associated with AD, the results suggest that high PTRSs reflect 
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a primed immune state specific to the studied tissues. Furthermore, the independent effects of 
PTRSs on AD risk (Table S13) support the notion that these scores capture distinct biological 
pathways related to immune activation, with compensatory effects that do not directly exacerbate 
disease risk. Thus, PTRSs may reflect tissue-specific biological mechanisms in disease risk. 
Functional studies could explore whether gene sets included in each PTRS model directly 
contribute to AD risk, however this falls outside the scope of this manuscript. 
Our study has caveats. First, reliance on self-reported AD data in UKB introduces potential 
misclassification bias compared to clinical-grade diagnostic information. Secondly, we included 
only participants of European ancestry, thus limiting the generalizability of our results. Despite 
the established cross-ethnic portability of PTRSs, their association with clinical risk scores is yet 
to be uncovered. We suspect that this portability may not hold when assessing clinical risk scores 
in AD, due to ancestry-specific molecular mechanisms32. Third, stratification of risk scores per 
serum IgE levels, reflecting extrinsic (high, allergen-specific IgE levels) and intrinsic (normal 
IgE levels) AD endotypes was not feasible in this study. Fourth, our study included limited risk 
factors relevant for AD, focusing on well-established blood cell counts (Fig. 4). Using AD-
enriched cohorts, as in prior PRS studies5 and incorporation of additional risk factors for AD 
(e.g., parental atopic history)33,34 is indispensable to further assess the utility of PTRSs, a goal we 
aim to pursue in future research. Similarly, while our findings provide a framework for risk 
prediction, its clinical application would primarily target much younger individuals where AD 
onset often occurs. This age difference may introduce variability in the model’s predictive 
performance due to distinct risk factors and disease mechanisms in younger populations. Lastly, 
the presented framework can be expanded to integrate additional omics layers, especially for 
genes that exert their effects on AD risk via mechanisms beyond gene expression35,36. 
In conclusion, we constructed transcriptome-based polygenic risk scores for AD and evaluated 
their performance in UKB. Although standard PRS frameworks showed superior performance 
compared to all models, we revealed that tissue-specific PTRS scores provide unique biological 
insights by capturing tissue-relevant regulatory mechanisms underlying AD risk. Notably, PTRS 
models derived from AD-related tissues, such as EBV-transformed lymphocytes and not sun 
exposed skin, highlighted distinct interactions with lymphocyte counts, thus suggesting 
stratification based on tissue-specific contributions. These findings advance our understanding on 
the genetic architecture of AD and related systemic manifestations and provide the framework 
for integration of additional omics data. Future studies could expand on these insights to 
characterize the underlying molecular mechanisms governing each tissue and refine personalized 
risk prediction.  
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Tables 
Table 1. Descriptive statistics of study participants. 
 Training dataset Test dataset 
 Cases Controls Cases Controls 
Age (mean ± SD) 55.276 

(8.158) 
57.405 (7.915) 55.256 

(8.140) 
57.406 
(7.913) 

Sex (Male/Female) 4943/5873 116095/129977 1221/1448 29009/32474 
Eosinophil counts (mean ± 
SD) 

0.204 
(0.181) 

0.167 (0.129) 0.203 
(1.629) 

0.166 
(0.128) 

Lymphocyte counts (mean ± 
SD) 

1.894 
(1.546) 

1.961 (1.781) 1.891 
(0.759) 

1.958 
(1.259) 

Units of measurement for blood cell counts are 109 cells/Litre. Abbreviations: SD, standard 
deviation. 
 
 
Figure legends 
Fig. 1. Study design. We selected the optimal parameters for each risk score in the training 
dataset (A) and evaluated the predictive accuracy in the training dataset (B). GWAS, genome-
wide association study; UKB, UK Biobank; EUR, European; 1KGP, 1000 Genomes Project; 
PRS, Polygenic risk score; C+T, clumping and thresholding; PTRS, polygenic transcriptome risk 
score. 
 
Fig. 2. Tissue enrichment analysis on atopic dermatitis and significant genes in each tissue. (a) 
Significantly enriched tissues in the atopic dermatitis GWAS. (b) Transciptome-wide association 
analysis results for each of the 7 statistically significant tissues (Tables S1-S7). 
 
Fig. 3. Predictive accuracy of polygenic risk scores and polygenic transcriptome risk scores in 
the test dataset (Table S10). The y-axis represents the estimated c-statistic with accompanying 
95% confidence intervals. Color indicates each separate method used to calculate the c-statistic. 
CI, confidence intervals; PRS, polygenic risk score; PTRS, polygenic transcriptome risk score. 
 
Fig. 4. Interaction analysis of polygenic risk score and polygenic transcriptome risk score with 
baseline predictors. Each shape represents an estimate. Nodes with black fill represent P-values 
passing the Bonferroni-corrected significance threshold (P-value≤0.05/21). (a) Interaction 
analysis of polygenic risk score and polygenic transcriptome risk score with eosinophil counts 
(Table S11). (b) Interaction analysis of polygenic risk score and polygenic transcriptome risk 
score with lymphocyte counts (Table S12). 
  
Supplementary Tables 
Table S1. S-PrediXcan results in EBV-transformed lymphocytes. 
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Table S2. S-PrediXcan results in Lung. 
Table S3. S-PrediXcan results in Not Sun Exposed Skin. 
Table S4. S-PrediXcan results in Sun Exposed Skin. 
Table S5. S-PrediXcan results in Small Intestine. 
Table S6. S-PrediXcan results in Spleen. 
Table S7. S-PrediXcan results in Whole Blood. 
Table S8. Phenotypic variance explained for all P-value thresholds in the training dataset. 
Table S9. C-statistics (95% CI) and number of genes for each PTRS in the training dataset. Each 
analysis was adjusted for age, sex and first 10 genetic principal components. 
Table S10. C-statistic (95% CI) for each risk score in the test dataset. Each analysis was adjusted 
for age, sex and first 10 genetic principal components. 
Table S11. Interactions between standardized PRS and PTRS values in the training dataset. Each 
analysis was adjusted for age, sex and first 10 genetic principal components. 
Table S12. Interaction analysis for PRS and PTRS in eosinophils. Each analysis was adjusted for 
age, sex and first 10 genetic principal components. 
Table S13. Interaction analysis for PRS and PTRS in lymphocytes. Each analysis was adjusted 
for age, sex and first 10 genetic principal components. 
Table S14. Interaction analysis for PTRS and lymphocytes in disease risk. Each analysis was 
adjusted for age, sex and first 10 genetic principal components. 
 
Supplementary Figures 
Fig. S1. High-resolution PRSicev2 plot reporting the predictive accuracy of PRS across various 
P-value thresholds in the training dataset. 

Fig. S2. Pearson correlation estimates between standardized PRS and standardized PTRS in EBV 
transformed lymphocytes. 

Fig. S3. Pearson correlation estimates between standardized PRS and standardized PTRS in lung. 

Fig. S4. Pearson correlation estimates between standardized PRS and standardized PTRS in not 
sun exposed skin. 

Fig. S5. Pearson correlation estimates between standardized PRS and standardized PTRS in sun 
exposed skin. 

Fig. S6. Pearson correlation estimates between standardized PRS and standardized PTRS in 
small intestine. 

Fig. S7. Pearson correlation estimates between standardized PRS and standardized PTRS in 
spleen. 

Fig. S8. Pearson correlation estimates between standardized PRS and standardized PTRS in 
whole blood. 
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