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Abstract 

Achieving adequate enteral nutrition among mechanically ventilated patients is challenging, yet 

critical. We developed NutriSighT, a transformer model using learnable positional coding to 

predict which patients would achieve hypocaloric nutrition between days 3-7 of mechanical 

ventilation. Using retrospective data from two large ICU databases (3,284 patients from 

AmsterdamUMCdb – development set, and 6,456 from MIMIC-IV – external validation set), we 

included adult patients intubated for at least 72 hours. NutriSighT achieved AUROC of 0.81 

(95% CI: 0.81 – 0.82) and an AUPRC of 0.70 (95% CI: 0.70 – 0.72) on internal test set. External 

validation with MIMIC-IV data yielded a AUROC of 0.76 (95% CI: 0.75 – 0.76) and an AUPRC of 

0.70 (95% CI: 0.69 – 0.70). At a threshold of 0.5, the model achieved a 75.16% sensitivity, 

60.57% specificity, 58.30% positive predictive value, and 76.88% negative predictive value. This 

approach may help clinicians personalize nutritional therapy among critically ill patients, 

improving patient outcomes.  
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INTRODUCTION 

Optimal enteral nutrition (EN) is vital for critically ill patients requiring mechanical 

ventilation to meet their metabolic needs while mitigating complications [1,2]. Critical care 

guidelines recommend initiating early enteral nutrition in critically ill patients, but there is 

heterogeneity in the recommended caloric targets for the first week of intensive care unit (ICU) 

stay. For example, the European Society of Parenteral and Enteral Nutrition (ESPEN) 

advocates for hypocaloric nutrition (receipt of less than 70% daily caloric requirements) during 

the first week of ICU stay, but the American Society of Parenteral and Enteral Nutrition (ASPEN) 

recommends a broader caloric intake range of 12 to 25 kcal/kg, encompassing both hypocaloric 

and isocaloric nutrition strategies [3,4]. This variation reflects the dynamic nature of critical 

illness and the challenges in determining optimal nutrition within this highly heterogenous 

patient population [5-8]. Delivering adequate nutrition in this population is further complicated by 

challenges such as gastrointestinal dysfunction, hemodynamic instability, and frequent 

interruptions for procedures [9-11].  

The first week of critical illness is divided into two distinct phases: the early acute period 

and the late acute period [1,12]. The early acute period spans the 48 hours of critical illness and 

is marked by hemodynamic instability and acute illness response. The late acute period, 

spanning days 3-7, is characterized by muscle wasting and evolving nutritional needs. Common 

clinical practice is to start a form of restrictive dose EN, such as trophic dose feeding, during the 

first 48 hours and progressively increase nutritional support during the late acute period to meet 

the evolving metabolic demands of critically ill patients. 

However, these strategies are not personalized, and highly individualized nature of 

critical illness highlights a pressing need for tools that can dynamically identify patients likely to 

receive specific nutrition regimens. Addressing these challenges requires innovative methods 

integrating diverse clinical and temporal data to adapt nutritional interventions effectively.  
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Recent advancements in artificial intelligence (AI) can address these challenges [13,14]. 

Transformer models, known for their ability to model sequential data are powerful tools for 

analyzing clinical time series data [14,15]. The incorporation of learnable positional encoding 

[14,15], enhances the model's ability to understand temporal relationships. Unlike fixed 

positional encodings, learnable encodings enable the model to optimally represent temporal 

dynamics and address complex clinical scenarios such as the predicting which patients are at 

risk of receiving hypocaloric nutrition [14,15]. 

In this study, we developed and externally validated an interpretable, transformer model, 

NutriSighT, to dynamically identify critically ill patients requiring mechanical ventilation who are 

at risk of receiving hypocaloric enteral nutrition during the late acute period of their critical 

illness. By focusing on this aspect, NutriSighT aims to address key gaps in nutritional 

management by offering actionable insights into patient-specific needs. 
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RESULTS 

Patient Characteristics 

A total of 3,284 patients from the AmsterdamUMCdb and 6,456 patients from the MIMIC-

IV databases met the inclusion/exclusion criteria [16-18]. As shown in Table 1, 

AmsterdamUMCdb cohort had a higher proportion of younger patients (11.15% vs 9.15% in 18-

39 year; p<0.001), males (64.58% vs 58.78%; p<0.001) and a lower BMI (median 24.8 kg/m² vs 

28.1 kg/m²; p<0.001). Additional characteristics are provided in Supplementary Table 1. 

Table 1. Patient Characteristics 

 AmsterdamUMCdb MIMIC-IV p-value 
(n=3,284) (n=6,456)  

Nutrition     
 Enteral Nutrition and 

Propofol (calories), 
median (IQR) 

1727.66 (1192.90, 
2059.41) 

1307.24 (705.00, 
1802.50) 

<0.001 

Demographics     
 Body Mass Index in 

kg/m2, median (IQR) 
24.84 (23.88, 27.76) 28.1 (23.98, 33.66) <0.001 

Sex    <0.001 
 Male, n (%) 2121 (64.58) 3795 (58.78)  
Age in years    <0.001 
 18-39 366 (11.15) 591 (9.15)  
 40-49 317 (9.65) 577 (8.94)  
 50-59 583 (17.75) 1161 (17.98)  
 60-69 801 (24.39) 1574 (24.38)  
 70-79 848 (25.82) 1448 (22.43)  
 80+ 369 (11.24) 1105 (17.12)  
Height in cm    <0.001 
 0-159 149 (4.54) 1198 (18.56)  
 160-169 815 (24.82) 1908 (29.55)  
 170-179 1220 (37.15) 2213 (34.28)  
 180-189 925 (28.17) 1029 (15.94)  
 190+ 175 (5.33) 108 (1.67)  
Weight in kg    <0.001 
 0-59 280 (8.53) 856 (13.26)  
 60-69 563 (17.14) 1030 (15.95)  
 70-79 888 (27.04) 1156 (17.91)  
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 80-89 856 (26.07) 1030 (15.95)  
 90-99 416 (12.67) 834 (12.92)  
 100-109 138 (4.20) 617 (9.56)  
 110+ 143 (4.35) 933 (14.45)  

 

Enteral Nutrition 

Overall daily enteral nutrition support differed significantly between the 

AmsterdamUMCdb and MIMIC-IV cohorts. Patients in the AmsterdamUMCdb dataset received 

a median daily EN intake of 1440.0 mL (IQR: 1000.40–1723.80), compared to 756.48 mL (IQR: 

228.72–1199.97) in MIMIC-IV (p<0.001). This difference was also evident in the daily caloric 

intake derived from EN, which was notably higher in AmsterdamUMCdb (median: 1702.99 kcal, 

IQR: 1155.26–2039.66) relative to MIMIC-IV (median: 989.20 kcal, IQR: 291.74–1478.06; 

p<0.001). When combining calories from EN and propofol, AmsterdamUMCdb patients still 

received more daily total calories, with a median of 1727.66 kcal (IQR: 1192.90–2059.41) 

compared to 1307.24 kcal (IQR: 705.00–1802.50) in MIMIC-IV (p<0.001). 

In contrast, MIMIC-IV patients received more daily propofol, reflected by both a higher 

volume (median 31.25 mL [IQR: 0.00–564.98] vs. 0.000 mL [IQR: 0.00–19.20]; p<0.001) and 

more propofol-derived calories (34.38 kcal [IQR: 0.00–621.48] vs. 0.00 kcal [IQR: 0.00–21.12]; 

p<0.001). These findings highlight differences in nutrition delivery and sedation practices driven 

by varying clinical practices between the AmsterdamUMCdb and MIMIC-IV institutions. 

The proportion of patients with hypocaloric feeding decreased over hospital course in 

both datasets (Table 2). On day 3, 40.8% of patients in AmsterdamUMCdb and 53.13% in 

MIMIC-IV achieved hypocaloric feeding. By day 7, these proportions declined to 25.39% and 

35.33%, respectively. 
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Table 2. Patients Attaining Hypocaloric Feeding Over Study Timeline 

Amsterdam Daily Outcomes   MIMICIV Daily Outcomes 

Day n 
Total 

Patients %   n 
Total 

Patients % 

3 1340 3284 40.80%   3430 6456 53.13% 

4 1154 3275 35.24%   2210 4812 45.93% 

5 847 2807 30.17%   1504 3699 40.66% 

6 681 2451 27.78%   1084 2898 37.41% 

7 550 2166 25.39%   808 2287 35.33% 
 

NutriSighT Performance 

The overall modeling approach of NutriSighT is shown in Figure 1.  We evaluated 

NutriSighT’s performance across six days post-intubation (Table 3, Figure 2). On the internal 

test set from AmsterdamUMCdb, the Receiver Operating Characteristic Area Under the Curve 

(AUROC) started at 0.84 (95% CI: 0.83 - 0.84) on day 1 and was 0.73 (95% CI: 0.70 - 0.77) by 

day 6. External validation with the MIMIC-IV dataset revealed a similar trend, with AUROC value 

of 0.77 (95% CI: 0.77 - 0.78) on day 1 and 0.70 (95% CI: 0.69 - 0.71) on day 6. The model 

demonstrated an overall AUROC of 0.81 (95% CI: 0.81 - 0.82) on the internal test set and 0.76 

(95% CI: 0.75 - 0.76) on the external validation dataset, reflecting strong discriminatory 

performance. The Area Under the Precision-Recall Curve (AUPRC) was 0.70 (95% CI: 0.70 - 

0.72) and 0.70 (95% CI: 0.69 - 0.70) for the internal test set and external validation datasets, 

respectively. Additionally, the Brier score on the external validation dataset was 0.21, indicating 

moderate accuracy in probability predictions.  

 

 

 

 

 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted January 6, 2025. ; https://doi.org/10.1101/2025.01.06.25320067doi: medRxiv preprint 

https://doi.org/10.1101/2025.01.06.25320067


Figure 1. Overview of Modeling Approach 

 

 

 

 

 

Figure 2. Model Performance on Internal Test and External Validation 
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Plots a and b correspond to the AUROC and AUPRC on the training data that the model was developed, 
while plots c and d correspond to the internal test set, and plots e and f correspond to the external 
validation set. 

 

Table 3. Model Performance Summarized by Day 

 Internal Train Internal Test External Validation 

AUROC (95% CI) 

Day 1 (Timesteps 1-6) 0.87 (0.86, 0.87) 0.84 (0.83, 0.84) 0.77 (0.77, 0.78) 

Day 2 (Timesteps 7-12) 0.86 (0.86, 0.87) 0.84 (0.82, 0.84) 0.77 (0.77, 0.78) 

Day 3 (Timesteps 13-18) 0.88 (0.87, 0.88) 0.82 (0.81, 0.83) 0.76 (0.77, 0.78) 

Day 4 (Timesteps 19-24) 0.86 (0.86, 0.87) 0.80 (0.78, 0.81) 0.76 (0.76, 0.76) 
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Day 5 (Timesteps 25-30) 0.84 (0.83, 0.84) 0.75 (0.73, 0.77) 0.74 (0.73, 0.74) 

Day 6 (Timesteps 30-36) 0.80 (0.78, 0.81) 0.73 (0.70, 0.77) 0.70 (0.69, 0.71) 

AUPRC (95% CI) 

Day 1 (Timesteps 1-6) 0.78 (0.77, 0.78) 0.74 (0.72, 0.76) 0.73 (0.73, 0.73) 

Day 2 (Timesteps 7-12) 0.78 (0.78, 0.79) 0.73 (0.71, 0.75) 0.73 (0.73, 0.73) 

Day 3 (Timesteps 13-18) 0.77 (0.77, 0.78) 0.71 (0.69, 0.73) 0.71 (0.70, 0.71) 

Day 4 (Timesteps 19-24) 0.74 (0.73, 0.75) 0.63 (0.60, 0.65) 0.65 (0.65, 0.66) 

Day 5 (Timesteps 25-30) 0.69 (0.68, 0.70) 0.57 (0.54, 0.61) 0.62 (0.61, 0.63) 

Day 6 (Timesteps 30-36) 0.58 (0.56, 0.60) 0.53 (0.48, 0.57) 0.55 (0.54, 0.57) 

To assess the calibration of the model’s predicted probabilities more thoroughly, we 

generated a calibration plot (Figure 3), which compare the predicted probabilities with the 

observed outcomes across different probability bins. The X-axis represents the mean predicted 

probability of hypocaloric feeding, and the Y-axis shows the fraction of patients who actually 

received hypocaloric feeding within each probability bin. Figure 3 illustrates the calibration of the 

model on the external validation dataset. The plot shows that for probability bins below 0.5, the 

model’s predictions align closely with the observed outcomes, indicating good calibration in this 

range. However, for probability bins above 0.5, the model tends to overestimate the risk of 

hypocaloric feeding. 
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Figure 3. NutriSighT Calibration Curve 

 

To determine optimal cutoff points for clinical decision-making, we further evaluated the 

model's performance across various probability thresholds on the external validation data (Table

4). Sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) 

were calculated at thresholds ranging from 0.1 to 0.9. At a threshold of 0.5, the model achieved 

a sensitivity of 75%, specificity of 61%, PPV of 58%, and NPV of 77%. As the threshold 

increased, sensitivity decreased while specificity increased, illustrating the trade-off between 

identifying true positives and minimizing false positives. For instance, at a threshold of 0.7, 

sensitivity decreased to 50%, but specificity increased to 83%, and PPV improved to 69%. 

Table 4. Model Threshold Testing 

Threshold Sensitivity Specificity PPV NPV 

0.1 0.97 0.18 0.46 0.88 

0.2 0.89 0.37 0.51 0.83 

0.3 0.85 0.48 0.55 0.81 

0.4 0.81 0.54 0.56 0.80 

0.5 0.75 0.61 0.58 0.77 

0.6 0.65 0.71 0.62 0.73 

0.7 0.50 0.83 0.69 0.69 

0.8 0.35 0.93 0.78 0.66 

0.9 0.13 0.98 0.85 0.61 
 

le 
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Feature Importance 

We conducted permutation importance analysis by shuffling each feature in the 

validation dataset and measuring the resulting change in binary cross-entropy loss (Figure 4). 

The PAO₂/FIO₂ ratio (0.08) and indirect bilirubin (0.07) were identified as the most influential 

positive predictors for hypocaloric feeding, indicating that higher values of these features 

increase the model’s likelihood of predicting hypocaloric feeding. Conversely, anion gap (−0.06), 

LDH (−0.06), and pH (−0.05) were significant negative predictors, meaning that higher values of 

these features decrease the model’s likelihood of predicting hypocaloric feeding.  

 

Figure 4. Feature Importances for NutriSighT 

 

Positive values (green) indicate that the feature increases the likelihood of hypocaloric feeding, while 
negative values (red) indicate that the feature decreases the likelihood. 

   

), 

of 
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DISCUSSION 

We have developed and externally validated NutriSighT, an interpretable AI model using 

a novel transformer architecture to identify critically ill patients at risk of receiving hypocaloric 

enteral nutrition in the late acute phase of their illness. The model was trained on 

AmsterdamUMCdb, a European dataset, and validated on MIMIC-IV, a US dataset, 

demonstrating its ability to generalize across diverse patient populations [15-18]. NutriSighT 

exhibited strong discriminatory performance, with robust AUROC scores across both internal 

and external datasets, indicating its ability to differentiate between patients at higher and lower 

risk accurately. Calibration analysis revealed good alignment between predicted probabilities 

and observed outcomes. 

The time-series nature of the data makes transformer architecture well-suited for 

capturing temporal dependencies and complex patterns [14]. This approach is ideal for 

predicting dynamic outcomes, such as hypocaloric enteral nutrition in critically ill patients. By 

modeling these temporal dynamics, NutriSighT can deliver timely and accurate predictions that 

adapt to changes in patient status. NutriSighT generates predictions every 4 hours, providing 

clinicians with actionable time windows to adjust treatment plans as necessary. The model 

exhibited strong discriminative ability, as demonstrated by its AUC values, and its AUPRC and 

calibration further support its potential for clinical integration. These features enable NutriSighT 

to reliably identify patients at risk for hypocaloric feeding and guide timely interventions.  

Feature importance analysis revealed key predictors influencing the model’s decisions, 

offering insights into factors associated with hypocaloric enteral nutrition. In this case, the 

PAO2/FIO2 ratio and indirect bilirubin levels were identified as strong predictors for risk for 

hypocaloric nutrition.  These findings reflect the model’s focus on clinically relevant factors, 

providing a glimpse into its decision-making process. It also highlights the model's potential to 
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capture meaningful patterns in the data, which could support personalized nutrition strategies in 

the ICU. 

Despite the critical role of enteral nutrition in mechanically ventilated patients, optimizing 

feeding strategies remains a challenge [13]. Prior studies have yielded inconsistent results on 

the impact of different feeding strategies in these patients, highlighting the complexity of 

optimizing nutritional interventions. For example, an observational study of over 2,700 

mechanically ventilated patients in 167 ICUs where most patients received hypocaloric nutrition, 

found that an increase of 1000 kcal/day was associated with lower 60-day mortality and 

increased number of ventilator free days [19]. Lower mortality [8] [20] [21] and shorter duration 

of mechanical ventilation [6] with isocaloric nutrition has also been shown in other studies. 

Conversely, other studies have found either no differences in ventilator-free days, mortality, or 

infectious complications between the two nutritional strategies [22], or found longer time to 

readiness for ICU discharge among patients receiving isocaloric nutrition [23]. These conflicting 

results likely reflect the heterogeneity of critically ill patients, highlighting the challenges of 

applying a one-size-fits-all approach to nutrition.   

These discrepancies underscore the need for personalized nutrition approaches, 

particularly in the late acute phase of critical illness, when patient conditions and metabolic 

needs evolve rapidly. NutriSighT addresses this need by dynamically identifying patients who 

are likely to receive hypocaloric nutrition in the late acute phase. By providing a precise 

identification of these patients, NutriSighT can guide more personalized interventions and enrich 

clinical trials that explore the efficacy of tailored nutritional regimens. Furthermore, NutriSighT 

lays the groundwork for further research into barriers to implementation and strategies to 

personalize nutrition in this vulnerable patient population. 
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This study has some limitations. First, as a retrospective analysis, it is subject to inherent 

biases, including selection bias and potential confounding factors, which may affect the 

interpretation of results. However, it showed good generalizability as supported by its strong 

performance across both internal and external validation datasets. Notably, the Brier score on 

the external validation set was 0.21 suggesting that its predicted likelihoods are reasonably well-

calibrated to the actual outcomes. Second, like many studies in this field, caloric requirements 

are estimated using guideline recommendations rather than indirect calorimetry, as latter were 

unavailable. While this could introduce inaccuracies, it reflects real-world clinical practice where 

indirect calorimetry is rarely used, thereby enhancing the generalizability of our findings. Future 

prospective studies incorporating direct calorimetry data may provide deeper insights and 

further validate the model's utility. Third, although this study focuses on dynamically identifying 

patients likely to receive hypocaloric nutrition, addressing the broader spectrum of nutritional 

risk including underfeeding, overfeeding, or interruptions in feeding requires further exploration. 

This work represents an important step forward by paving the way for more nuanced 

approaches to personalized nutritional strategies in critically ill patients. Finally, the observed 

decline in model performance from day 1 to day 6 may be partly due to the decreasing sample 

size, as fewer patients remain on mechanical ventilation over time. With a smaller number of 

patients later in the ventilation period, the model has fewer data points to make predictions, 

which can lead to a slight decrease in performance. Despite this, the model still demonstrates 

strong performance overall, highlighting its ability to identify at-risk patients early and throughout 

the ventilation period. These results highlight the model's robustness and potential for 

deployment across diverse patient populations and healthcare settings.  

In conclusion, we developed NutriSighT, an interpretable transformer model designed to 

identify mechanically ventilated, critically ill patients likely to only receive hypocaloric enteral 

nutrition. NutriSighT has the potential to facilitate timely nutritional interventions in critically ill 
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patients. Future studies should focus on integrating this model into trial designs to identify high-

risk patients and optimize their nutritional strategies.  
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METHODS 

Data Sources 

In this retrospective study we utilized data from two independent ICU datasets- the 

Amsterdam University Medical Centers Database (AmsterdamUMCdb) and the Medical 

Information Mart for Intensive Care IV (MIMIC-IV v2.2) (Figure 4). 

AmsterdamUMCdb is a highly granular ICU dataset from the European Union, 

containing deidentified electronic health records of ICU patients from the Amsterdam University 

Medical Centers in the Netherlands [16]. It includes admission data spanning 2003 to 2016 and 

encompasses approximately 1 billion data points including demographics, vital signs, laboratory 

tests and medications from over 20,000 ICU admissions. In contrast, MIMIC-IV is a United 

States based, single-center, de-identified database comprising electronic health records data 

from over 70,000 ICU admissions at the Beth Israel Deaconess Medical Center, with ICU 

admission data ranging from 2008 to 2019 [17,18]. 

 

Study Population 

We included patients 18 years or older who were mechanically ventilated in the ICU for 

at least 72 hours. Patients receiving total parenteral nutrition or peripheral parenteral nutrition 

during the ventilation event were excluded. We also excluded patients with missing height or 

weight data, or ambiguous data regarding tube feeds that did not allow us to calculate the 

amount of tube feeds administered (Supplementary Figure 1). 
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Outcomes 

The primary outcome of this study was to identify patients likely to receive hypocaloric 

enteral nutrition on a given day between days 3-7 of mechanical ventilation among ICU patients. 

Predictions were censored to the day prior if a patient was extubated, died, or transferred out of 

the ICU. 

 

Consistent with the recommendations of the American Society for Parenteral and Enteral 

Nutrition (ASPEN) guidelines [11], we estimated caloric requirements using weight-based 

equations adjusted according to the patient's Body Mass Index (BMI) as below:  

 

� For patients with BMI < 30 kg/m²: 25 kcal per kilogram of actual body weight per day. 

� For patients with 30 ≤ BMI ≤ 50 kg/m²: 11 kcal per kilogram of actual body weight per 

day. 

� For patients with BMI > 50 kg/m²: 22 kcal per kilogram of adjusted body weight per 

day. 

 

For BMI > 50 kg/m², adjusted body weight (kilogram) was calculated as [24,25]: 

� Females: 45.36 + 2.27 × (Height (cm) - 152.4) 

� Males: 48.08 + 2.72 × (Height (cm) - 152.4) 

 

Hypocaloric enteral nutrition was defined as receipt of less than 70% of the calculated caloric 

requirements on a given day [13,26], with caloric intake determined by a combination of enteral 

nutrition and propofol.  
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Feature Extraction 

We extracted a comprehensive set of features from the AmsterdamUMCdb and MIMIC-

IV databases to capture the clinical characteristics of ICU patients. The data was collected 

starting from the time of ICU admission or the time of intubation, if the latter occurred after ICU 

admission. It continued for up to 7 days after the start of mechanical ventilation, with earlier 

censoring in the case of extubation, death, or transfer out of the ICU. The features included 

demographics, vital signs, laboratory results, medications administered, enteral nutrition, fluid 

intake, fluid output and enteral nutrition. Demographics included age, sex, height, weight, and 

body mass index (BMI). Vital signs included heart rate, systolic and diastolic blood pressures, 

mean arterial pressure, respiratory rate, and temperature. Laboratory results included oxygen 

saturation and PaO₂/FiO₂ ratio, pH, base excess, lactate, sodium, potassium, chloride, anion 

gap, hemoglobin, hematocrit, mean corpuscular volume, mean corpuscular hemoglobin 

concentration, red blood cell count, white blood cell count, platelet count, red cell distribution 

width, international normalized ratio, partial thromboplastin time, alanine aminotransferase, 

aspartate aminotransferase, alkaline phosphatase, indirect bilirubin, lactate dehydrogenase, 

amylase, creatine kinase, CK-MB, blood urea nitrogen and creatinine. We also included data 

regarding medications administered such as vasopressors (in norepinephrine equivalent doses), 

sedatives and analgesics (lorazepam, morphine, propofol), and prokinetics (erythromycin and 

metoclopramide) [27]. We further extracted the amount of enteral nutrition administered and 

calories delivered by enteral nutrition and propofol.  

Data Pre-processing 

To capture the temporal changes during each patient's ICU stay, we structured the data 

into 4-hour time intervals, starting from the time of ICU admission or the time of intubation, if the 

latter was after ICU admission and ending at the earlier of extubation or 7 days after intubation. 
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Clinical variables were summed or averaged within each time interval as appropriate. We 

excluded features with more than 40% missingness to ensure data quality and reliability, 

following standard practices in data analysis [28]. Outliers were identified and excluded based 

on clinical expertise, removing data points that were physiologically implausible or indicative of 

measurement errors.  

Consistent with standard methods for handling missing data in these datasets, we used 

forward fill imputation for all features (except for medications administered, fluid intake, and 

enteral nutrition which were treated as zero when missing) and applied k-nearest neighbor (k-

NN) imputation (k=5) to fill in any remaining missing values [29-31]. 

As AmsterdamUMCdb provides age, height, and weight in pre-defined subgroups (Table 

1), we applied a similar approach in MIMIC-IV and encoded them using one-hot encoding to 

transform them into a binary format suitable for the model. Continuous variables were 

standardized using z-score normalization to ensure that all features contributed equally to the 

model training and to facilitate the convergence of the optimization algorithm. This step 

transformed the variables to have a mean of zero and a standard deviation of one, reducing the 

risk of features with larger numerical ranges dominating the learning process.  

Model Development 

At the core of NutriSighT’s functionality is its capability of making predictions at every 4-

hour interval. At each timestep, the model updates its assessment based on the most recent 

patient data and predicts the hypocaloric feeding status separately for Days 3, 4, 5, 6, and 7. 

These predictions are censored up to the day before the earliest occurrence of extubation, 

death, or discharge from the ICU, ensuring that the predictions remain relevant to the patient’s 

current clinical trajectory. 
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The model input comprises sequential data structured into 4-hour intervals, spanning up 

to seven days of mechanical ventilation. Each input sequence has a shape 36 x 62 (the number 

of 4-hour time bins over 6 prediction days by the number of clinical features). Traditional 

transformer models use fixed sinusoidal positional encodings to incorporate the order of input 

sequences [14]. However, we implemented a learnable positional encoder, which allows the 

model to learn optimal positional representations during training [32]. This approach adds 

trainable positional embeddings to the input sequences, enabling the model to better capture 

temporal dynamics and improve performance on sequential tasks.  

NutriSighT is comprised of four stacked Transformer Encoder Blocks, each featuring 

multi-head self-attention mechanisms with four heads and a head size of 512. This architecture 

handles sequential data by capturing long-range dependencies through self-attention, 

enhancing the model’s ability to discern complex temporal patterns inherent in clinical data 

[14,15]. Following the self-attention layers, dropout layer normalization are applied. Following 

the transformer encoder layers, the model integrates a series of Multi-Layer Perceptron (MLP) 

Layers with 312, 64, and 48 units, respectively. Each dense layer is accompanied by dropout 

(35%) and L2 regularization (10-5). The final output layer employs a sigmoid activation function, 

generating probabilistic predictions for each outcome day. 

These strategies were employed to prevent overfitting and optimize convergence, 

ensuring that NutriSighT effectively generalizes to unseen data. The combination of transformer 

architecture, learnable positional encodings, and robust regularization techniques enables 

NutriSighT to deliver accurate and timely predictions, thereby facilitating personalized nutritional 

interventions in the ICU setting. 
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Rolling Prediction Framework 

The prediction schedule followed a dynamic, rolling approach as below (Figure 5): 

Figure 5. Model Rolling Prediction Schema 

 

• Days 1 and 2: Predicted hypocaloric feeding status for each day from Day 3 to Day 7, 

with prediction updated every 4 hours. 

• Day 3: Predicted for each day from Day 4 to Day 7, updated every 4 hours. 

• Day 4: Predicted for each day from Day 5 to Day 7, updated every 4 hours. 

• Day 5: Predicted for Days 6 and 7, updated every 4 hours. 

• Day 6: Predicted for Day 7, updated every 4 hours. 

This approach ensured continuous updates, allowing clinicians to adapt nutritional strategies 

proactively. By predicting multiple days ahead at each timestep, the model supports better 

planning and timely interventions. 

 

Training and Validation 

es 
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We split the AmsterdamUMCdb dataset into a training set (80%), an internal validation 

set (10%), and an internal test set (10%). The internal validation set was used during training to 

prevent overfitting and tune hyperparameters. To address class imbalance, we employed class 

weighting, a technique that adjusts the contribution of each class to the loss function during 

training [33]. Specifically, we calculated class weights inversely proportional to the frequency of 

positive and negative outcomes, assigning higher weights to the minority class and lower 

weights to the majority class. By modifying the loss function in this way, the model was 

encouraged to pay greater attention to underrepresented outcomes. This approach reduced the 

risk of the model disproportionately favoring the majority class and thus helped the model learn 

patterns associated with both outcomes more effectively.  

We trained the model using the Adam optimizer with a learning rate of 5×10⁻� and 

applied early stopping and learning rate reduction callbacks to prevent overfitting and optimize 

training time. To ensure that the performance was clinically meaningful, we evaluated the model 

on the internal test set and external validation set using metrics sensitive to class imbalance, 

such as precision and recall. These metrics reflect the model’s ability to not only classify 

patients accurately but also to reliably identify those at highest risk, thereby enhancing the real-

world utility of our predictive framework. 

 

 

Statistical Analysis: 

We assessed model performance using several statistical metrics to evaluate its 

predictive accuracy and generalizability. The Receiver Operating Characteristic Area Under the 

Curve (AUROC) was used to evaluate the model's ability to discriminate between patients who 

would and would not receive hypocaloric enteral nutrition. The Area Under the Precision-Recall 
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Curve (AUPRC) was calculated to assess the trade-off between precision and recall. We also 

analyzed feature importance using a permutation-based method, which allowed us to evaluate 

the contribution of each feature to NutriSighT’s predictive performance.  

To evaluate the calibration of the model's predicted probabilities, we computed the Brier 

score and generated calibration plots, which visually assess how closely predicted probabilities 

align with actual outcomes across probability bins. Comparative statistical analyses were 

conducted using the Mann-Whitney U test for continuous variables and the chi-squared test for 

categorical variables. The trained model was externally validated on the MIMIC-IV dataset to 

assess its generalizability across different patient populations and clinical settings. This external 

validation ensured that the model's performance is robust and applicable to diverse ICU 

environments. 

 

 

 

 

 

 

Data Availability 

Publicly available datasets were analyzed in this study. The dataset used in this study, MIMIC-

IV, is available at https://mimic.physionet.org/, and the AmsterdamUMCdb dataset is available 

at https://amsterdammedicaldatascience.nl/amsterdamumcdb/. 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted January 6, 2025. ; https://doi.org/10.1101/2025.01.06.25320067doi: medRxiv preprint 

https://doi.org/10.1101/2025.01.06.25320067


 

 

 

 

  

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted January 6, 2025. ; https://doi.org/10.1101/2025.01.06.25320067doi: medRxiv preprint 

https://doi.org/10.1101/2025.01.06.25320067


References 

1. Singer, P. et al. Espen guideline on Clinical Nutrition in the intensive care unit. Clinical 

Nutrition 38, 48–79 (2019).  

2. Weijs, P. J. et al. Optimal protein and energy nutrition decreases mortality in 

mechanically ventilated, critically ill patients. Journal of Parenteral and Enteral 

Nutrition 36, 60–68 (2011).  

3. Singer, P. et al. Espen practical and partially revised guideline: Clinical nutrition in the 

intensive care unit. Clinical Nutrition 42, 1671–1689 (2023).  

4. Compher, C. et al. Guidelines for the provision of nutrition support therapy in the adult 

critically ill patient: The American Society for Parenteral and Enteral Nutrition. Journal of 

Parenteral and Enteral Nutrition 46, 12–41 (2022).  

5. Alberda, C. et al. The relationship between nutritional intake and clinical outcomes in 

critically ill patients: Results of an international multicenter observational study. Intensive 

Care Medicine 35, 1728–1737 (2009).  

6. Lee, J., Kim, M., Choi, D., Kwon, J. & Park, Y. K. Isocaloric nutritional support reduces 

ventilator duration time in major trauma patients. Nutr Diet 80, 435–444 (2023).  

7. Reignier, J. et al. Low versus standard calorie and protein feeding in ventilated adults 

with shock: A randomised, controlled, multicentre, open-label, parallel-group trial 

(NUTRIREA-3). The Lancet Respiratory Medicine 11, 602–612 (2023).  

8. Lv, C. et al. Association between caloric adequacy and short-term clinical outcomes in 

critically ill patients using a weight-based equation: Secondary analysis of a cluster-

randomized controlled trial. Frontiers in Nutrition 9, (2022).  

9. O’Leary-Kelley, C. M., Puntillo, K. A., Barr, J., Stotts, N. & Douglas, M. K. Nutritional 

adequacy in patients receiving mechanical ventilation who are fed enterally. American 

Journal of Critical Care 14, 222–231 (2005).  

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted January 6, 2025. ; https://doi.org/10.1101/2025.01.06.25320067doi: medRxiv preprint 

https://doi.org/10.1101/2025.01.06.25320067


10. Elke, G., Wang, M., Weiler, N., Day, A. G. & Heyland, D. K. Close to recommended 

caloric and protein intake by enteral nutrition is associated with better clinical outcome of 

critically ill septic patients: Secondary analysis of a large International Nutrition 

Database. Critical Care 18, (2014).  

11. McClave, S. A. et al. Guidelines for the provision and assessment of Nutrition Support 

Therapy in the adult critically ill patient. Journal of Parenteral and Enteral 

Nutrition 40, 159–211 (2016).  

12. Ridley, E., Gantner, D. & Pellegrino, V. Nutrition therapy in critically ill patients- a review 

of current evidence for clinicians. Clinical Nutrition 34, 565–571 (2015).  

13. Shillan, D., Sterne, J. A., Champneys, A. & Gibbison, B. Use of machine learning to 

analyse routinely collected intensive care unit data: A systematic review. Critical 

Care 23, (2019).  

14. Vaswani, A. et al. Attention is all you need. Adv. Neural Inf. Process. Syst. 30, 5998–

6008 (2017).  

15. Xu, Y., Xu, S., Ramprassad, M., Tumanov, A. & Zhang, C. TransEHR: Self-Supervised 

Transformer for Clinical Time Series Data. Proceedings of Machine Learning 

Research 225, 623–635 (2023).  

16. Thoral, P. J. et al. Sharing ICU patient data responsibly under the Society of Critical 

Care Medicine/European Society of Intensive Care Medicine Joint Data Science 

Collaboration: The Amsterdam University Medical Centers Database (amsterdamumcdb) 

example*. Critical Care Medicine 49, (2021).  

17. Johnson, A. E. et al. Mimic-IV, a freely accessible electronic health record 

dataset. Scientific Data 10, (2023).  

18. Johnson, A. et al. MIMIC-IV. PhysioNet. https://doi.org/10.13026/6MM1-EK67 (2023) 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted January 6, 2025. ; https://doi.org/10.1101/2025.01.06.25320067doi: medRxiv preprint 

https://doi.org/10.1101/2025.01.06.25320067


19. Alberda, C. et al. The relationship between nutritional intake and clinical outcomes in 

critically ill patients: Results of an international multicenter observational study. Intensive 

Care Medicine 35, 1728–1737 (2009).  

20. Coruja, M. K., Antunes, L. da, Leotti, V. B. & Steemburgo, T. Nutrition adequacy in the 

late period of the acute phase is associated with a lower risk of 30‐day mortality in 

critically ill patients: A prospective cohort study. Nutrition in Clinical Practice 39, 945–956 

(2024).  

21. Heyland, D. K., Cahill, N. & Day, A. G. Optimal amount of calories for critically ill 

patients: Depends on how you slice the cake!*. Critical Care Medicine 39, 2619–2626 

(2011).  

22. Rice, T. W. et al. Initial trophic vs full enteral feeding in patients with acute lung injury: 

The Eden Randomized Trial. JAMA: The Journal of the American Medical 

Association 307, 795–803 (2012).  

23. Reignier, J. et al. Low versus standard calorie and protein feeding in ventilated adults 

with shock: A randomised, controlled, multicentre, open-label, parallel-group trial 

(NUTRIREA-3). The Lancet Respiratory Medicine 11, 602–612 (2023).  

24. Pai, M. P. & Paloucek, F. P. The origin of the “ideal” body weight equations. Annals of 

Pharmacotherapy 34, 1066–1069 (2000).  

25. Esteva, A. et al. A guide to deep learning in Healthcare. Nature Medicine 25, 24–29 

(2019).  

26. Wischmeyer, P. E. et al. Personalized nutrition therapy in critical care: 10 expert 

recommendations. Critical Care 27,(2023).  

27. Goradia, S., Sardaneh, A. A., Narayan, S. W., Penm, J. & Patanwala, A. E. Vasopressor 

dose equivalence: A scoping review and suggested formula. Journal of Critical 

Care 61, 233–240 (2021).  

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted January 6, 2025. ; https://doi.org/10.1101/2025.01.06.25320067doi: medRxiv preprint 

https://doi.org/10.1101/2025.01.06.25320067


28. Takkavatakarn, K. et al. Machine learning derived serum creatinine trajectories in acute 

kidney injury in critically ill patients with sepsis. Critical Care 28, (2024).  

29. Komorowski, M., Celi, L. A., Badawi, O., Gordon, A. C. & Faisal, A. A. The Artificial 

Intelligence Clinician learns optimal treatment strategies for sepsis in intensive 

care. Nature Medicine 24, 1716–1720 (2018).  

30. Raghu, A., Komorowski, M., Celi, L. A., Szolovits, P. & Ghassemi, M. Continuous state-

space models for optimal sepsis treatment: a deep reinforcement learning 

approach. Proceedings of the 2nd Machine Learning for Healthcare 

Conference 68, 147–163 (2017).  

31. Gupta, M. et al. An Extensive Data Processing Pipeline for MIMIC-IV. Proc Mach Learn 

Res 193, 311–325 (2022).  

32. Li, Y. et al. Behrt: Transformer for Electronic Health Records. Scientific 

Reports 10, (2020).  

33. Haibo He & Garcia, E. A. Learning from Imbalanced Data. IEEE Transactions on 

Knowledge and Data Engineering21, 1263–1284 (2009).  

 

 

  

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted January 6, 2025. ; https://doi.org/10.1101/2025.01.06.25320067doi: medRxiv preprint 

https://doi.org/10.1101/2025.01.06.25320067


Acknowledgement: 

None 

 

Funding:  

This study was supported by the National Institutes of Health (NIH) grant K08DK131286 

awarded to Ankit Sakhuja.  The funder had no role in study design, data collection and analysis, 

decision to publish, or preparation of the manuscript. 

Competing Interests 

GNN is a founder of Renalytix, Pensieve, Verici and provides consultancy services to 

AstraZeneca, Reata, Renalytix, Siemens Healthineer and Variant Bio, serves a scientific 

advisory board member for Renalytix and Pensieve. He also has equity in Renalytix, Pensieve 

and Verici. LC is a consultant for Vifor Pharma INC and has received honorarium from 

Fresenius Medical Care. All remaining authors have declared no conflicts of interest. 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted January 6, 2025. ; https://doi.org/10.1101/2025.01.06.25320067doi: medRxiv preprint 

https://doi.org/10.1101/2025.01.06.25320067

