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Abstract 

Brain structure plays a pivotal role in shaping neural dynamics. Current models 
lack the anatomical and functional resolution needed to accurately capture both 
structural and dynamical features of the human brain. Here, we introduce the 
FEDE (high FidElity Digital brain modEl) pipeline, generating anatomically 
accurate brain digital twins from imaging data. Using advanced techniques of 
anatomical tissue segmentation and finite-element analysis, FEDE reconstructs 
brain structure with high spatial resolution, while also replicating whole-brain 
neural activity. We demonstrated its application by creating the first brain digital 
twin of a toddler with autism spectrum disorder (ASD). Through parameter 
optimization, FEDE replicated both time-frequency and spatial features of 
recorded neural activity. Notably, FEDE predicted patient-specific aberrant 
values of excitation to inhibition ratio, coherently with ASD pathophysiology. 
FEDE represents a significant leap forward in brain modeling, paving the way 
for more effective applications of digital twin in experimental and clinical 
settings. 

 

Introduction: 

Computational brain models are widely utilized to investigate the structural underpinning of brain 
activity. Bioinformatics platforms such as The Virtual Brain (TVB)1,2, have emerged, enabling high-
fidelity simulations of brain activity. Their use ranges from the identification of structural 
phenomena shaping brain dynamics in physiological conditions3–5, to clinical applications such as 
disease diagnosis6 and testing of therapeutic approaches7,8. However, the significant 
simplifications required to simulate and analyze virtual brain data efficiently have limited current 
models to replicating neural activity dynamics without achieving full anatomical accuracy. 

Over the past years, several advanced MRI preprocessing and postprocessing techniques have 
been developed, enabling accurate studies of brain structure and functions in patients9–14. These 
advancements include methods to quantify voxel-wise myelination levels11,15, which are crucial for 
determining conduction velocity between brain regions16. Moreover, recent techniques take into 
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account detailed anatomical properties, such as tissue anisotropy17,18, which significantly influence 
how brain activity is generated and propagated across brain tissues19.  

Despite these advancements, there is currently no pipeline that successfully combines imaging 
analytic tools and computational models into a unified framework. Each technique requires specific 
software and packages (see Methods), resulting in a fragmented approach that limits integration. 
As a result, no existing model can achieve both an anatomically accurate reconstruction of the 
human brain and a high-fidelity replication of neural activity. This limits the potential to produce 
effective digital twins, i.e. virtual models that replicate the physiological and anatomical 
characteristics of the brain structure, capturing brain dynamics with the fidelity needed for 
comprehensive studies20,21. 

To address these challenges, we present FEDE (high FidElity Digital brain modEl), a pipeline 
incorporating state-of-the-art imaging analysis tools and computational techniques to reconstruct 
brain anatomy and replicate individual whole-brain activity with high precision. FEDE incorporates 
advanced software to reconstruct detailed structural features of the human brain, including local 
cortical connections, voxel-wise myelination levels and tissue-specific anisotropy and conductance 
properties, shaping neural activity generation from cortical sources. 

We demonstrated FEDE’s application by creating the high-fidelity digital brain twin model of a 
toddler (between 1y and 3y old) with autism spectrum disorder (ASD). Developing a digital twin of 
a toddler presents unique challenges, such as the incomplete myelination of frontal lobes16 and 
skull development, requiring tailored pipelines for young brain MRI analysis. Additional difficulties 
arise from the unclear etiology of ASD and the need to capture its multi-scale anomalies, ranging 
from synaptic dysfunction to whole-brain connectivity, without relying on predefined assumptions. 
ASD is a complex neurodevelopmental condition characterized by significant variability in its 
presentation and severity22,23. Several abnormalities in brain structure and function have been 
reported in ASD, including synaptic imbalance24,25, global and local connectivity alterations26,27, and 
abnormal brain growth28,29. Particularly, ASD is well documented to impair local connectivity within 
the brain26,30, which is crucial for cognitive and sensory processes27. Traditional models of brain 
activity often overlook the importance of this local connectivity, focusing instead on global 
measures of connectivity31,32 or synaptic transmission27,33,34. Inter-subjective heterogeneity makes 
ASD an ideal candidate for the use of digital twins20, as both structural and dynamical alterations 
contribute to the condition’s pathophysiology.  

FEDE replicated whole-brain neural activity of the patient (measured via EEG recordings) with high 
precision, accurately reproducing both time-frequency domain features, such as power spectral 
density (PSD), and spatial features, such as functional connectivity. Moreover, it identified aberrant 
values of excitation to inhibition ratio as the structural culprit of the experimental neural activity 
dynamics, consistent with ASD pathophysiology. 
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Figure 1: The FEDE (high FidElity Digital brain modEl) pipeline: (A): MRI recordings, including
(from top to bottom) T1-w, DWI and T2-w, were used to generate a 3D replica of the patient brain.
(B): MRI processing steps: from left to right anatomical constrained tractography analysis, brain 
regions parcellation and segmentation according to the HCPMMP1 atlas. Right end: reconstructed 
3D model of the patient’s head, including a high-density mesh of the cortical surface and a scalp
model with EEG electrode positions. (C): Bottom: the parcellation of brain areas allowed to 
compute connective weights, distances and conduction velocity maps for the whole brain structure, 
which were integrated in a virtual brain model (top, see Methods). Top right: Neural mass models 
were used to compute neural activity on the high-density cortical surface. Middle right: The activity 
was then projected to the scalp of the patient with an anatomically-accurate lead-field matrix, 
leveraging a FEM model of the patient’s head and including tissue anisotropy of brain tissues.
Bottom right: This allowed for the computation of EEG signals from simulated brain activity. (D):
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EEG recordings were acquired during resting-state and EEG features such as power spectral 
distribution and functional connectivity are extracted. (E): Optimal fit between experimental and 
simulated EEG led to the identification of structural parameters underlying patient’s condition. 
Parameter inversion, based on a grid search on candidate parameters, allowed to infer 
personalized parameters that replicated at best the experimental EEG recordings of the patient. 
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Results  

In this study, we present FEDE: a high-precision pipeline for the creation of personalized digital 
twin model leveraging comprehensive MRI data (Figure 1A), including T1-weighted (T1-w), T2-
weighted (T2-w), and Diffusion-Weighted Imaging (DWI). Briefly, the model extracts MRI features 
(Figure 1B and Methods) to reconstruct brain properties (Figure 1C left and Methods), which are 
then used to simulate EEG signals (Figure 1C right and Methods). These simulated EEG signals 
can capture spatiotemporal organization of recorded EEG signals of the reconstructed brain 
(Figure 1E) and from this infer properties of the underlying structure and function (Figure 1E). The 
pipeline was tested on a toddler (aged between 1y and 3y) with autism spectrum disorder (ASD), 
to reconstruct an anatomically accurate digital twin replica of the patient’s brain and to replicate 
with high fidelity the experimental EEG recordings.  

 

Personalized conduction velocity map is needed for accurate reconstruction of neural 
connections.  

The FEDE pipeline comprises the individual reconstruction of neural connections from MRI data. 
Brain regions were parcellated according to the HCPMMP1 atlas35, encompassing 379 cortical and 
subcortical regions. Connections between regions were computed from DWI data (Supplementary 
Figure S1) and tract lengths (the average length of white matter fiber. bundles connecting two 
regions) were determined from tractography DWI analysis. Crucially, alongside standard 
tractography, FEDE incorporates the computation of conduction velocities from brain areas, which 
considers voxel-wise levels of myelination and their role in determining velocity of signal 
transmission across brain areas. 

In FEDE, voxel-wise levels of myelinization are first computed from T1-w and T2-w imaging 
combined with apparent fiber density (obtained from DWI36, see Methods) using Equation 1. 
Conduction velocity map is then computed from Equation 2, enabling a detailed analysis of signal 
transmission properties across the brain (Fig 2A). The conduction velocity map offers an improved 
method for understanding how signals propagate through different brain regions by considering the 
anatomical and microstructural properties of brain tissues, primarily myelination of white fibers. 
Notably, a lower conduction velocity can be observed in the frontal lobe (Fig 2A panel iv) due to the 
young age of the subject and the myelination process not completed. This introduces topographic 
differences in conduction velocities that would be overlooked using standard methodologies. 

The model was then used to combine the voxel-wise map with the selected gray matter 
parcellation. This led to the computation of the patient-specific conduction velocity matrix ���,�. 
Each entry of the matrix encodes the conduction velocity between region � and region � in the 
adopted parcellation (Fig 2B). This matrix allows for the calculation of delays, dividing the tract 
lengths matrix by the conduction velocity matrix (��/��). 

We compared the delays computed using FEDE with those derived from the standard 
methodology, in which delays are simply proportional to the tract lengths matrix.  Significant 
discrepancies were found between the two methods (Fig 2C). Delays calculated with FEDE were 
significantly lower with respect to those computed with standard methodology (ratio of 0.79±0.05, 
Mann-Whitney test, U=1.3e+11, p<0.00001), suggesting that delays computed using standard 
methods tend to overestimate the actual values.  

The overestimation of delay times by standard methodology was further analyzed by examining 
inter-hemispheric and intra-hemispheric connections separately (Fig 2E). For inter-hemispheric 
connections, delays were significantly larger when using the standard methodology (delays 
computed with FEDE were 0.72±0.04 of those computed with standard methodology, U=5e+9, 
p<0.00001). Intra-hemispheric connections also showed statistically significant differences, though 
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less pronounced compared to inter-hemispheric connections (ratio was 0.87±0.05, U=8e+9, 
p<0.00001). 

The overestimation of delay times with standard methodology was confirmed by a pairwise 
comparison between delay times computed with FEDE and with standard methodology (i.e., from 
the length of connective tracts between regions). Delay times computed with FEDE strongly 
correlated with tract lengths (r=0.989, p<0.00001, Fig 2F), with relevant differences from the exact 
proportionality postulated by standard methodology, (orange line in Fig 2F). Delay times computed 
with FEDE were found to be smaller than values expected from the standard methodology (dots 
below the orange line in Fig 2F) in 96% of the cases. The significance of the pairwise differences in 
delay times was confirmed by a �� test (test=7.8e+5, p<0.00001). A distribution analysis between 
FEDE and standard methodology also confirmed statistically significant differences (Kolmogorov-
Smirnov test=0.086, p<0.00001). This consistent overestimation introduces a significant bias in 
models built on standard delay values, potentially affecting the accuracy of any subsequent 
analysis on functional connections and brain activity. 
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Figure 2: Delays in neural activity propagation are significantly overestimated by standard 
methodologies. (A): Conduction velocity map is computed from the ratio between T1-w and T2-w 
(i), combined with apparent fiber density (ii) obtained from DWI (see Methods). It allows for the 
computation of axonal myelin levels, defined as the g-ratio (iii), which leads to a map representing 
voxel-wise levels of conduction velocity of brain signals (iv). Orange indicates high values, while 
low values of conduction velocities are indicated in blue. (B): Conduction velocity matrix ���,�, 
whose entries encode the conduction velocity from region � to region �. (C): Difference between 
delays computed dividing the tract lengths matrix by the �� matrix (��/��) and delays computed 
with standard methodology (i.e. from the tract lengths matrix and a mean conduction velocity 
value). Red (blue) square represents inter-hemispheric (intra-hemispheric) connections, while 
black box represents subcortical regions. (D): Violin plot of delay values computed with the FEDE 
g-ratio method (red) and standard method (cyan). Delay values computed from a mean conduction 
velocity value tend to overestimate with high significance actual delay values computed from MRI 
analysis. (E): Violin plot of delay values computed with the two methods, separately for inter-
hemispheric connections (top) and intra-hemispheric connections (bottom). Inter-hemispheric 
delays are significantly overestimated with standard methodology (see main text). (F):  Scatter plot 
of tract length values and delays computed using the �� matrix obtained with FEDE. Orange line 
represents the expected delays according to standard methodology. Significance notation: **** 
stands for p<0.00001. 

 

Anatomically-accurate lead field matrix allows to precisely deduce cortical sources of 
simulated EEG signals.  

To achieve a high-fidelity replication of individual neural activity, we computed an anatomically-
accurate forward-solution utilizing personalized tissue reconstruction from MRI data (Fig 3A). In 
FEDE, neural activity is simulated using the Jansen-Rit neural mass model37 on a high density 
cortical mesh of 20.484 vertices. The simulated cortical activity is then projected onto the scalp 
surface via a lead-field matrix (LFM) meticulously derived from the patient's anatomical data (see 
below and Methods). This matrix ensures that the projection of neural signals to the EEG 
electrodes accurately reflects the patient's unique brain anatomy38.  

To generate an anatomically-accurate LFM, FEDE constructs a finite element model (FEM) of 
anatomical tissues from MRI data using the SIMNIBS software (see Methods). This approach 
allows the LFM computation to account for ten distinct tissue types (plus two for electrodes and 
saline solution used on the patient scalp), each with its specific conductivity and anisotropic 
properties (see Supplementary Fig. S2). 

We compared this anatomically-accurate LFM to one derived from standard boundary element 
methods (see Methods). For each electrode, we calculated the cortical contributions to the LF 
matrices, organizing cortical vertices by their distance from the electrode (Fig 3B). A Kolmogorov-
Smirnov test revealed significant differences in the distributions of LFM values between the two 
matrices for all electrodes (p<0.00001). We analyzed LFM values channel-wise, to assess if 
standard methodology introduced a significant bias in determining LFM contributions for different 
electrodes. Significant differences were found in 11/16 electrodes. The standard method 
overestimated contributions for 13/16 electrodes, with significant overestimation (p<0.05) in 9 
electrodes. For the remaining 3 electrodes, standard methodology caused an underestimation   
though this difference was statistically significant only in two of them. Notably, the bias introduced 
by standard methodology was strongly lateralized, with 10 of the 11 electrodes that presented 
statistically relevant differences located in the central or left portion of the scalp (Fig 3C).  

Additionally, we conducted a separate analysis for vertices near to the electrode position (defined 
as the 20% closest vertices for each electrode), to assess whether standard methodology 
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overestimated their LFM contributions. Quantitative analysis confirmed this hypothesis, with the 
standard method significantly overestimating contributions from near vertices (0.32±0.08 for FEM 
vs. 0.50±0.10 for standard method, Fig 3D), with a strong statistical significance (U=57, p=0.008).
On the contrary, differences between the two methods were non-significant for vertices far from the 
electrodes (defined as the top 20% farthest vertices for each electrode, U=113, p=0.58). The 
interaction between the distance from the electrode and the differences in LFM contribution 
between standard method and FEDE was confirmed by a two-way ANOVA (f=3.49, p=0.066). 

In summary, the standard method introduced substantial bias in estimating cortical contributions to 
EEG signals, particularly by underestimating the effects of volume conduction and overestimating 
cortical source specificity. 

 

 

Figure 3: Anatomically-accurate forward-solution with personalized tissue reconstruction 
identifies correct cortical sources of each EEG channel. (A): From left to right: (i) Cortical 
activity computed on the high-density cortical mesh; (ii) anatomical tissues, each with its own 
conductance value, were reconstructed with SIMNIBS software, creating a 3D FEM model of the 
patient’s head, which was combined with tissue anisotropy computed from DWI data (iii). This 
allowed for the precise propagation of the electric field onto the scalp surface, and thus to the 
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electrode grid (iv). This procedure results in the reconstruction of the cortical contribution to the 
activity of each electrode. (B): Different LFMs for the F4 electrode (i) plotted as an example, with 
FEDE model LFM (ii) and standard method LFM (iii); In each EEG channel, LFM contribution as a 
function of the distance to the electrode (iv) presented strong differences between FEDE model 
(salmon) and standard method (light blue). Only channels selected for experimental analysis are 
shown.  (C): Scalp view and boxplot of LFM values according to both standard methodology and 
FEDE. Statistical tests revealed that standard method resulted in an overestimation of LFM values 
in most EEG channels (indicated by blue color in the boxplot and in the scalp plot), while it resulted 
in an underestimation only in two channels (indicated by red color in the boxplot and in the scalp 
plot). Only channels selected for experimental analysis are shown, and channels with significant 
differences across methods were highlighted. Whiskers represent interquartile ranges. (D): 
Standard methodology significantly overestimates contributions from near vertices. Near vertices 
are defined (for each channel) as the 20% of closest vertices; in panel (B) is reported the example 
of LFM values of near vertices for the F4 electrode. Notation is the same as in (C). Significance 
notation: ** stands for p<0.01, Bonferroni correction. 

 

FEDE replicates accurately the spatiotemporal structure of experimental EEG recordings  

Leveraging its anatomically accurate 3D cortex and head model, FEDE allowed to simulate 
individual brain activity with high precision. We validated the model by reproducing the previously 
acquired experimental recordings of the toddler with ASD (see Methods).  

We determined the combination of model parameters leading to the optimal replicated the 
experimental EEG signals. We first analyzed the PSD of the digital twin model, finding high 
resemblance to the experimental one (Fig 4A). The analysis of different EEG frequency bands (Fig 
4B) further demonstrated that the relative power of the digital twin’s PSD correctly replicated the 
theta and delta dominant rhythm observed in the experimental recording supporting the model’s 
reliability in simulating distinct oscillatory behaviors. Linear regression between simulated and 
experimental PSD values confirmed the high accuracy of the digital twin, with a correlation value 
r=0.92, 
�=0.84 p<0.00001. 

Additionally, the model reproduced the complex topography observed in experimental recording 
(Fig 4C), maintaining consistent correlations with experimental EEG across all channels (see Fig 
4D for differences between the two). The average correlation between simulated and experimental 
single channel PSDs was r=0.81 ± 0.11, and a mean squared error analysis yielded a 1-MSE value 
of 0.84 ± 0.10 (Fig 4E). These results indicated that the FEDE not only captured individual channel 
characteristics but also preserved a high degree of accuracy in simulating spatial EEG patterns. 
Channel-wise comparisons between simulated and experimental PSDs can be found in 
Supplementary Fig. S3A (an example channel is found in Fig 4F). We also conducted a single 
channel analysis for each frequency band, to assess the ability of the digital twin in replicating the 
experimental relative powers in each band for each channel. Kolmogorov-Smirnov test conducted 
between simulated and experimental distributions of relative powers revealed no difference in the 
EEG frequency bands (Supplementary Table 2, distributions are found in Supplementary Figure 
S3B). 

The digital twin also correctly replicated experimental FC. When comparing functional connectivity 
matrices derived from both simulated (Fig 4G) and experimental recordings (Fig 4H), the digital 
twin produced FCs with strong correlation to experimental data (Fig 4I, r = 0.80, 
�=0.64, p < 
0.00001). A Kolmogorov-Smirnov test comparing the distributions of FC values from the two data 
sets found no statistically significant difference (test = 0.13, p = 0.58), indicating that the model 
successfully replicated the complex patterns of brain connectivity observed in the experimental 
recordings (Fig 4J). A channel-by-channel comparison further corroborated the absence of relevant 
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differences between simulated and experimental signals in FC values (Mann-Whitney U test, 
U=159.0, p=0.25, not shown). FC replication was also repeated with metrics less affected by 
volume conduction such as phase slope index39, obtaining similar results (r=0.53, p<0.00001). 

Despite the generally good performance in replicating experimental EEG features, only few 
parameter combinations yielded precise replication of experimental PSD (Fig 4K), while many 
combinations allowed for an accurate replication of experimental FC (Fig 4L). This finding may be 
due to the influence of anatomical connections in shaping FC patterns (see Discussion) which 
highlights once more the importance of the digital twin model used as a scaffold to simulate brain 
activity. 

 

 

Figure 4: FEDE spatiotemporal accuracy in replicating experimental EEG signals (A): 
Patient’s average PSD (top plot, light blue) superimposed to the average PSD of the digital twin 
(salmon). Bottom inset shows residual plot. The r-value between simulated and experimental data 
was of 0.918. (B): Relative power in different EEG bands for the patients and the digital twin. 
Notation is the same as in (A). (C):  Topographic plot of scalp EEG activity in the patient and in the 
digital twin, indicating that the model can reproduce the non-trivial topographies encountered in 
experimental recordings. Signals were normalized between -1 and 1. (D): Topographic plot of the 
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(absolute) difference between experimental and simulated EEG activity reported in (C). (E): Fit 
scores of the digital twin, reporting correlation values and accuracy (measured as 1 – mean 
squared error) between simulated and experimental recordings. Each point represents a different 
EEG channel. Note how correlation was > 0.6 for all channels. (F): Cz channel is reported as an 
example, with PSD (top plot) and regression line between experimental and simulated PSD values 
(bottom plot). Notation is the same as in (A). (G): FC matrix computed from simulated recordings of 
the digital twin. (H): FC matrix computed from patient’s experimental recordings. (I): Linear 
regression between simulated and experimental FCs, with correlation value reported. The digital 
twin’s FC had a correlation of 0.80 with the experimental one.  (J): Histogram of FC values for the 
patient and the digital twin. Kolmogorov-Smirnov test highlighted no significant differences between 
the two distributions. Notation is the same as in (A). (K): PSD Goodness of fit analysis for tested 
combination of model parameters (only values greater than 0 are reported).  (L): FC Goodness of 
fit analysis for tested combination of model parameters (only values greater than 0 are reported). 
While most combinations of model parameters produced FCs similar to the experimental one, only 
few combinations allowed to replicate the PSD. 

We assessed the ability of the model constructed with FEDE to replicate EEG signals, by 
comparing it to a model constructed using a methodology not including the advancements 
introduced with FEDE. Specifically, we calculated the LFM using a standard 3-layer simplified 
Boundary Element Method (BEM) model of the head without anisotropy and with region-based 
simulations (see Methods). The structural connectivity matrix implemented in the standard model is 
the one obtained with the FEDE preprocessing pipeline, including anatomical constrained and 
probabilistic tractography. We conducted another parameter search to identify the optimal 
parameter combination for this standard approach. In terms of functional connectivity, the standard 
approach resulted in reduced fidelity with respect to FEDE (Fig 5A), with the correlation coefficient 
declining from r=0.80 to r=0.75. Regarding PSD, results indicated a notable decrease in fidelity for 
simulated PSD when compared to the FEDE model; the correlation (r-value) between experimental 
and simulated PSDs dropped from 0.92 to 0.60. Furthermore, this method produced simulated 
signals with a different dominant frequency than the experimental PSD, and it lacked key features 
such as the secondary peak in the PSD (Fig 5B).  

To evaluate the robustness of both methods, we analyzed the top 100 parameter combinations for 
each, comparing their fit functions with experimental FCs (Fig 5C) and PSDs (Fig 5D). In both 
cases, simulations generated by the FEDE model significantly outperformed those generated by 
the standard method (Mann-Whitney U test: U=9969, p<0.00001 for FC; U=7685, p<0.00001 for 
PSD).  

Notably, the similarity between experimental and simulated FC remained high even in the 
simplified model, probably reflecting the high anatomical accuracy of the connectome 
reconstruction obtained with FEDE (considering that both models utilized the FEDE-derived 
connectome). However, the absence of anatomical details in the LFM and in the 3D head replica of 
the standard model significantly decreased its ability to capture finer details of the experimental 
PSD such as the second peak at low alpha frequency. 
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Figure 5: FEDE outperforms standard digital twin models in replicating experimental EEG 
features. Model parameters selected through parameter exploration were utilized in a region-
based simulation, using as scaffold the 379-regions HCPMMP1 atlas employed for gray matter 
parcellation. No conduction velocity map was included, and both Lead-field matrix and 3D head 
model were reconstructed using standard methodology (see Methods). Results were compared 
with both the experimental values and with surface-based simulations.  (A): FC matrices computed 
from standard digital twin showed different patterns with respect to those observed in experimental 
FC. For FC also, standard digital twin simulation presented a smaller Pearson r-value with 
experimental FC compared to the value obtained with FEDE. (B): PSD computed from region-
based simulations present reduced similarity with experimental signals, presenting different 
dominant frequency and no second peak in low-alpha band. This caused the standard digital twin 
simulation to present a smaller Pearson r-value with experimental PSD compared to the value 
obtained with FEDE. (C): Fit values between experimental and simulated FC for 100 best standard 
and FEDE simulations. FEDE presented higher fit values in almost all simulations. (D): Fit values 
between experimental and simulated PSD for 100 best standard and FEDE simulations. FEDE 
presented higher fit values with high significance. Significance notation: **** stands for p<0.00001. 
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Hierarchical parameter fitting to reconstruct personalized structural parameters of the 
patient’s brain 

To determine the best combination of model parameter that replicated at best experimental EEG 
signals (see Fig 4), we simulated EEG signals from various parameter combinations (see 
Methods). We then analyzed their performance in replicating key metrics such as power spectral 
density and functional connectivity. These simulated signals were compared to the actual EEG 
recording of the patient, using the hierarchical parameter fitting procedure implemented in FEDE, 
based on the loss functions reported in Equations 3-4 (see Methods).  

In each step of the procedure (Fig 6A), FEDE operates a grid search over a range of candidate 
parameters, identifying the optimal parameter combination by minimizing the loss functions. In the 
first step, FEDE determines the optimal values of parameters describing connections between 
brain areas. These parameters include the global connectivity coupling, the area and the strength 
of the local connectivity gaussian kernel (Step 1 in Fig 6A), and the conduction velocity 
proportionality constant. The second step comprises the identification of parameters determining 
the frequency output of the Jansen-Rit model, including the post synaptic potentials, noise and 
time constants of excitatory and inhibitory subpopulations, as well as the mean input firing rate. 
The ratio between inhibitory and excitatory time constants allows to determine also the excitation to 
inhibition ratio (EI ratio) of the brain. The last step involves the tuning of Jansen-Rit parameters 
that determine finer effects on output activity, such as the total number of connections in the neural 
mass, and the magnitude of links between single subpopulations and the sigmoid term 
transforming membrane potential into firing rate37. At each step, the initial point of the grid is 
determined by the best match identified in the previous step.  

In our patient, this procedure allowed to increase at each step the precision of both simulated FC 
(Fig 6B) and PSD (Fig 6C). FEDE also comprises a module for the analysis of fitted parameters, 
allowing to identify the structural brain parameters playing the most relevant role in the agreement 
with experimental EEG activity of the patients (see Methods and Fig 6D). A SHAP analysis (see 
Methods) is implemented to quantitatively identify the model parameters that allow to replicate at 
best experimental EEG activity. The analysis revealed that only two parameters presented 
relatively high SHAP values, being EI ratio (0.0033�0.008) and noise (0.0041�0.024), while all 
other parameters presented values <0.00001. 

Since each model parameter describes biophysical quantity closely related to microscopical 
mechanisms of neural connectivity and synaptic transmission, the optimal values identified by the 
procedure can be compared with physiological values to support diagnosis of pathological 
conditions. In our patient, this approach led to the identification of aberrant values of background 
noise (whose optimal value was 100 times greater than the standard one2,37, Fig 6E) and EI ratio 
(found to be five times greater than the standard healthy value37, see Fig 6E), which were essential 
in correctly replicating the experimental EEG activity. Aberrant values of both parameters are 
consistent with current hypotheses on ASD pathophysiology24,25,40,41. 
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Figure 6: Hierarchical parameter fitting was employed to replicate EEG features and 
reconstruct underlying structural parameters. (A): The parameter fitting procedure followed 
three steps. At each step, the procedure identified a combination of model parameters, that was 
used as starting point for the next step of the parameter fitting procedure. The first step (i) identifies 
values of structural parameters of global and local connectivity, as well as velocity proportionality 
constant. The second step (ii) identifies Jansen-Rit parameters that dictate the frequency output of 
the model and mean input firing rate. The third step (iii) identifies Jansen-Rit parameters that 
govern finer features of the simulated output (see for example the second peak of the PSD). The 
last step focused on the sigmoid transforming membrane potential into firing rate. (B-C): At each 
step, the fidelity in replicating both FC and PSD increases, thanks to the identification of more 
precise parameters. (D): The parameter analysis module allows to investigate the importance of 
each parameter in correctly replicating experimental EEG activity, including statistical tools like 
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SHAP analysis (in the labels Baseline input represents the total input to excitatory interneurons as 
sum of mean input firing rate, noise, global and local coupling outputs). (E): The pipeline allows to 
identify the structural parameters that more robustly determine EEG activity, that in our patient 
were aberrant values of the EI ratio and of background noise. FEDE includes tools for the 
visualization of fit values in relation to model parameters values. In the two scatter plots each dot is 
a different simulation, higher values of the corresponding parameter (respectively EI ratio and 
noise) are reported in yellow. See how higher values of both parameters allowed to obtain high fit 
values for both PSD and FC.  
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Discussion:  

The FEDE pipeline generated a high-fidelity digital twin of the brain of a with ASD and to replicate 
experimental EEG signal with unprecedented precision, while concomitantly identifying structural 
culprits of relevant EEG features. This was achieved by integrating state-of-the-art methods for 
MRI analysis, brain modelling and EEG simulation, and represents a substantial leap forward in the 
use of computational brain models in clinical settings, particularly in the context of personalized 
medicine.  

The use of a detailed conduction velocity map derived from T1-w, T2-w, and DWI data provides a 
more accurate and nuanced understanding of neural signal transmission delays. It corrects the 
biases introduced by the traditional approach, ensuring that the physiological variability in 
conduction velocity across white matter fibers is properly accounted for. In Newman et al.16 a 
similar procedure based on the derivation of a conduction velocity map from MRI recordings 
highlighted significant differences between healthy and ASD subjects.  Our approach allows not 
only to replicate the personalized determination of conduction velocity maps, but also to assess the 
role played by this quantity in shaping whole-brain activity. 

A critical component of our methodology was the precise computation of the lead-field matrix, 
which defines the contribution of electrical activity from different cortical regions to the signals 
recorded by each EEG electrode. Our high-resolution cortical model allowed for an accurate 
calculation of this matrix, minimizing potential errors in source localization. This accuracy was 
reflected in the detailed comparison of the simulated and experimental EEG data, where the spatial 
correlations of neural activity (the FC matrix) closely replicated real-life recordings. In current 
computational brain models, the LFM is derived from an approximated boundary element method 
based on  the compartments between brain, skull and scalp7,8,42,43. However, this approach 
neglects several aspects of brain anatomy, such as orientation of cortical sources and presence of 
several intermediate tissues between sources and electrodes with different conductivity values.   

In the FEDE pipeline the EEG activity was computed from local sources on a high density (20,484 
vertices) cortical mesh. In Wang et al.8 neural activity is simulated from a high density cortical mesh 
of more than 200,000 vertices. However, this procedure required to perform model inversion with a 
neural mass model-based simulation of 180 nodes, with parameters that were then translated to 
the surface simulation on the cortical mesh, in which neural activity was computed with a neural 
field model approach. In our study, we found a decrease in the fidelity of simulated neural signals 
(see Supplementary Fig S4 for an example). Our approach includes the parameter fitting 
procedure directly on the activity computed on the cortical mesh, enabling a more precise 
replication and localization of neural activity, crucial for both clinical and research applications. In 
clinical contexts, such precision can enhance the diagnosis and monitoring of neurological 
conditions, where understanding the exact origins of abnormal neural activity is critical.  

FEDE allowed to replicate both spatial and time-frequency features of EEG activity. Several work 
have attempted the replication of PSD7,42,44 computed from electrophysiological recordings, no one 
reporting the high fidelity obtained with FEDE. The replication of experimental EEG functional 
connectivity with personalized brain modeling has instead never been attempted before to the best 
of our knowledge. Several studies focused on the replication of FC matrices deduced from 
functional MRI (fMRI) recordings45–49. Modeling fMRI functional connectivity is more feasible that 
reproducing functional connections in EEG, as the high spatial resolution of functional MRI allows 
for precise localization of cortical sources and reduced volume conduction effects, which heavily 
affect EEG FC metrics39.  

The introduction of a module for parameter analysis led to the identification of structural culprit of 
experimental EEG features. This module could be crucial for the translational use of FEDE, as it 
allows to reconstruct from EEG recordings key parameters related to structural brain mechanisms 
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like synaptic transmission and noisiness of brain activity. This holds great promise for the clinical 
use of the model. In the case of our patient, FEDE identified as key structural parameters aberrant 
values of EI ratio and background noise. (both quantities are currently hypothesized to concur in 
determining the ASD pathophysiology24,40). FEDE allows to test multiple hypothesis about ASD 
underpinning neural mechanisms for the specific patient, which could potentially be different from 
one patient to another due to the heterogeneity of ASD; the model was prepared also to test 
hypothesis about conduction velocity and local/global connectivity impairments, however the lack 
of a healthy control group for comparison did not allow to test them (this being our next focus). It is 
also important to consider that ASD could potentially be the result of multiple concurrent 
impairments due to a non-typical neurodevelopment, and this can be tested using the current 
pipeline (see for instance concurrent combination of high background noise and high EI ratio found 
in the current subject); this can also be generalized to a multitude of conditions and recording 
techniques. FEDE offers a unique method for investigating the presence of these alterations from 
non-invasive recordings, nowadays unfeasible with current methods. 

The choice of testing our pipeline with the creation of the first digital brain twin of a toddler patient 
affected by ASD also holds important implication. This complex task has never been attempted 
before, as both modelling a toddler brain and capturing the complexities of ASD present unique 
challenges yet to be addressed by current models. Working with very young subjects presents 
unique challenges, particularly in the acquisition and preprocessing of MRI and EEG data, affected 
by subject restlessness, causing several motion artefacts. By incorporating local connectivity into 
our models and developing a detailed representation of cortical surface activity, we have provided 
a novel framework for exploring the structural and functional alterations associated with ASD. The 
realization of a high-fidelity digital twin replica of a toddler with ASD underscores the potential of 
personalized precision medicine to revolutionize the diagnosis and treatment of 
neurodevelopmental disorders, paving the way for more effective and individualized therapeutic 
strategies. 

Our study presents several limitations that should be addressed in future research. Firstly, the 
primary limitation is that our work was conducted on a single patient diagnosed with ASD. While 
this allowed us to demonstrate the feasibility of creating a digital brain twin in such a complex case, 
it limits the generalizability of our findings. The absence of a control group or additional subjects 
further restricts our ability to draw definitive conclusions about the broader applicability of the 
pipeline. A control subject or group would have provided a valuable baseline to compare the digital 
brain twin's performance, enhancing the robustness of our results. This will be key in future 
activities. Additionally, our computational pipeline has yet to be validated across a diverse range of 
patients with varying conditions. The complexities of brain development and ASD are unique, and 
while our approach seems to be promising, it remains uncertain whether it will perform equally well 
in other populations, such as older children or adults with ASD, or those with other neurological 
conditions. Future studies with larger and more diverse cohorts are essential for validating our 
pipeline and assessing its broader utility in personalized medicine. Furthermore, while in principle it 
is possible to model several virtual versions of real-life methods of imaging and recordings, FEDE 
has been tested only for the replication of EEG signals. 
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Methods: 

Subject recruiting, ethical approval and data acquisition 

The proband is a male toddler aged between 1y and 3y with a diagnosis of ASD formulated by a 
multi-disciplinar team according to the Diagnostic and Statistical Manual of Mental Disorders-Fifth 
Edition50 criteria, and supported the administration of the ADOS-2 Toddler Module51. The child’s 
developmental level was measured by an experienced psychologist through the Griffiths Scales of 
Child Development 3rd Edition52, and the following scores were obtained: scale A (Foundations of 
Learning) 99; scale B (Language and Communication) 60; scale C (Eye and Hand Coordination) 
105; scale D (Personal–Social–Emotional) 88; scale E (Gross Motor) 105. Moreover, the Childhood 
Autism Rating Scale second edition (CARS-2)53 was administered by a qualified evaluator with 
clinical experience in ASD, and resulted in an overall score of 36, which indicates a level of 
moderate autism. He underwent both neuroimaging and neurophysiological investigations for 
clinical purposes at a tertiary care university hospital, the IRCCS Fondazione Stella Maris (Pisa, 
Italy), in order to exclude brain anomalies. The electroencephalogram (EEG) (Micromed, Mogliano 
Veneto, Italy) study was performed according to the 10-20 International System. Brain magnetic 
resonance imaging (MRI) was obtained with a GE 3T scanner (Signa HDx, GE-Medical-Systems, 
Milwaukee, United States) using a protocol optimized for neurodevelopmental disorders which 
included three-dimensional (3D) T1-weighted (T1W) fast-spoiled gradient echo, 3D T2 fluid-
attenuated inversion recovery, two-dimensional (2D) T2-weighted (T2W) fast spin echo, and 
diffusion weighted imaging. This study was conducted in accordance with the Declaration of 
Helsinki and approved by the Regional Ethical Committee of Meyer Hospital (Florence, Italy), 
number 131/2024. Informed consent for the study was provided by the patient’s legal guardians. 

 

Pipeline Overview: 

T1-weighted (T1-w), T2-weighted (T2-w) and Diffusion-Weighted Imaging (DWI) acquisitions from 
a single pediatric subject (aged between 1y and 3y), provided by IRCSS Stella Maris, were 
processed to create the digital brain model. Due to the clinical data not meeting the mandatory 
requirements of the ‘TVB Image Processing Pipeline’ — specifically lacking B0 Reverse Phase 
Encoding12 (RPE), having only one non-zero B-value, and missing FLASH acquisition14 — a 
tailored pipeline was developed. This customized pipeline integrates multiple tools and software 
packages to achieve the necessary preprocessing and analysis: 

- FSL and ANTs: Employed for preprocessing steps such as denoising, unwarping, removal of 
eddy currents, bias correction, and brain mask generation. 

- MRtrix3: Utilized for tractography, constructing the connectome, computing structural connectivity 
(SC) weights, mean tract lengths and conduction velocity. 

- FreeSurfer: Used for anatomical reconstruction, cortical mesh creation, and 
segmentation/parcellation of the brain. 

- SimNIBS: Applied to create the Head Model and the EEG Forward Leadfield Matrix 

- MNE (MNE-Python): Implemented to generate inputs for The Virtual Brain (TVB). 

 

This integrated approach ensures that the subject-specific data, despite its limitations, can be 
effectively processed and used as inputs for advanced brain modeling and analysis within TVB. 
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MRI acquisition: 
 
The subject data were acquired in a clinical setting at IRCSS Stella Maris in Pisa (Italy). MRI was 
acquired with a 3T General Electric scanner; T1 with voxel size of 1.0mm by 0.4297 mm by 0.4297 
mm, TR=2471.42ms, TE=3.824ms; T2 with voxel size of 0.799805mm by 0.5 mm by 0.5 mm;DTI 
with voxel size of 0.9375mm by 0.9375mm by 5.0mm 30 gradient encoding directions and 
B=1000s/mm2 TR=3100ms, TE=59.6ms.   
 

MRI Preprocessing: 

The preprocessing phase involved several critical steps to prepare the imaging data for further 
analysis9,54. Initially, the DWI data underwent denoising to remove noise artifacts and removal 
of Gibbs’ ringing artifacts, followed by unwarping to correct for geometric distortions55 Concerning 
this latter, since clinical data were lacking the Reverse Phase Encoding, a synthetic RPE was 
created using SynB0-DISCO12,56. 

Eddy current-induced distortions were also corrected57, and bias correction was applied to mitigate 
intensity inhomogeneities9. A brain mask was generated to isolate the brain from non-brain tissues. 
Preprocessing steps were performed using FSL58 and ANTs59 softwares. A possible different 
segmentation of subcortical structures (by using Freesurfer Infants60) was also tested with the 
current subject, with no relevant differences in segmentation results. Images were subsequently 
preprocessed following the preprocessing pipeline outlined in Andy's Brain Book (Jahn, 2022. 
doi:10.5281/zenodo.5879293). 

 

Constrained Spherical Deconvolution: 

To characterize the white matter structure, a constrained spherical deconvolution (CSD) was 
performed10. This process included estimating the white matter, cerebrospinal fluid and gray matter 
response functions for the subject, generating fiber orientation densities61 (FODs) and normalizing 
them. Due to the limited diffusion data available (only one gradient direction with B=1000s/mm²), 
the response functions  were generated using MRtrix3Tissue (https://3Tissue.github.io), a fork of 
MRtrix362

l. 

 

Tissue Boundaries and Coregistration: 

Following deconvolution, tissue boundaries were created, and the diffusion images were co-
registered with the anatomical T1-weighted images63. The boundary interface between gray matter 
and white matter was identified and used as a seed region for streamline generation through 
Anatomically Constrained Tractography13 (ACT). This step was performed to ensure that the 
tractography results were anatomically accurate, providing a robust foundation for subsequent 
connectivity analysis and brain modeling. 

 

Probabilistic Tractography: 

Probabilistic tractography64 was performed using Constrained Spherical Deconvolution10 coupled 
with Anatomically Constrained Tractography13 and Spherical-deconvolution Informed Filtering of 
Tractograms65 (SIFT2). Dynamic seeding was also employed to ensure robust streamline 
generation. The maximum length of fibers was set to 250 mm, following the guidelines of the TVB 
Image Processing Pipeline66. We chose a number of streamlines proportional to the numerosity of 
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regions considered in the parcellation (1000 streamlines for each pair of regions). Specifically, this 
resulted in a number of 71.631 million streamlines for the adopted HCPMMP135 atlas. 

 

Anatomical Reconstruction: 

Anatomical reconstruction was conducted using FreeSurfer's `recon-all` command, which 
performed cortical mesh creation and segmentation/parcellation using HCPMMP1 atlas. The `-
autorecon1` command executed the initial five steps, with tailored inputs to improve subsequent 
skull extraction. Brainmask was checked and small manual adjustments performed. After the `-
autorecon2` the white matter mask was checked and slightly edited followed by autorecon2-wm; at 
last, the `-autorecon3` command completed the remaining steps of the anatomical reconstruction 
process. 

 

Structural Connectivity Weights, Mean Tract Length: 

We employed MRtrix362 to generate the connectome and calculate structural connectivity (SC) 
weights, intended as weighted (since SIFT2 was used) number of streamlines connecting two 
regions,  and mean tract length 

 

Myelin volume fraction, g-ratio and conduction velocity: 

We conducted a comprehensive preprocessing and analysis of MRI data to derive conduction and 
myelinization properties67. It has been followed the methodology from Newman et al.16. Initially, 
the T2-w was co-registered to T1-w. 

Brain extraction was performed on the T1-w and T2-w images using the bet function from FSL with 
specific fractional intensity and gradient threshold settings to generate brain-only images and their 
masks. The intensity values of these images were then standardized. Minimum and maximum 
intensity values of T1 and T2 images were computed using fslstats, and the images were rescaled 
to a 0-100 range via fslmaths. 

Subsequently, a T1/T2 ratio map was generated. We then extracted fixels (“fiber population within 
a voxel”) from the normalized wmfod using MRtrix3 fod2fixel and computed the sum of the 
Apparent Fiber Density (AFD) using fixel2voxel. 

Coregistration and regridding was achieved by aligning the fixel-derived apparent fiber density36 
(AFD) sum map with the T1/T2 map using the flirt command, followed by transformation matrix 
conversion (transformconvert) and regridding (mrtransform, mrgrid).  

Calculation of the myelin volume fraction11 (MVF) and axon volume fraction (AVF), are derived by 
the method described by Mohammadi and Callaghan68, computing MVF/AVF ratios and generating 
a voxel-wise g-ratio map using fslmaths. The equation for the g-ratio is:  

                                                                 �    ��  �1 � ������ � ���                                                                �1�    
where (d) is the axon diameter and (D) is the external myelinated fiber diameter. 
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This g-ratio map was subsequently upper-thresholded. We further computed the voxel-aggregated 
conduction velocity (CV) based on the derived g-ratio and AVF using the model by Berman, Filo, 
and Mezer15, according to the equation: 

                                                                         ��  ����� �����                                                                        �2�         
 The CV map was then coregistered with diffusion-weighted imaging (DWI) to align with 
streamlines from tractography. 

Finally, the CV map was sampled along the streamlines of tractography to extract mean velocity 
per streamline (tcksample) and from this latter the CV matrix was calculated (tck2connectome).  

 

Cortex Surface Processing: 

In order to reduce computational time, the cortical mesh was downsampled from FreeSurfer's 
original fsaverage(7) with 327680 triangles to the fsaverage5, which has 20,484 vertices and 
40,960 triangles (for comparison, the TVB default cortical mesh2 uses 16,384 vertices and 32,760 
triangles). 

 

Reconstruction of Head Model and Calculation of anatomically-accurate EEG Forward Leadfield 
Matrix:  

The replication of EEG signals requires projecting neural activity from the high-density cortical 
mesh to the electrodes on the scalp surface, computing a mathematical quantity called lead-field 
matrix. The lead-field matrix is a �����	
��  �  ����
����� matrix, whose entries encode how the 
activity of each vertex in the cortical mesh can influence the signal in each EEG electrode. We 
implemented a pipeline to determine patient-specific lead-field matrix based on patient anatomy. 
Anatomical tissues between cortex and scalp electrodes were reconstructed with the SIMNIBS 
software (see Methods). 

In order to calculate the EEG Forward Problem Leadfield Matrix, it has been first reconstructed the 
Head of the subject with 12 tissues using SimNIBS4.1.0 : the T1-w and coregistered/regridded T2-
w were used as input to charm command together with the Freesurfer anatomical reconstruction 
folder and the initial transformations (the SimNIBS template was coregistered to the T1-w using 
Freesurfer to find the Transformation matrix used to initialize the affine registration of the SimNIBS  
template to the subject MR), then also the DWI image was used with the dwi2cond command 
(based on FSL dtifit), in order to calculate the tensors necessary to compute the anisotropic 
properties of conductivity for GM and WM (see Supplementary Figure S5) using the “Volume 
Normalized” algorithm as shown by Opitz et al17 

It has been chosen an EEG cap from Neuroelectrics following the 10-10 system69 and with 64 
channels (see Figure 1) using electrodes with circular shape (10mm diameter and 4mm of saline 
gel). This latter, together with the Head Model, the conducitivities shown in Supplementary Figure 
S2, and the calculated anisotropic properties, allowed to calculate the EEG Leadfield Matrix using 
the TDCSLEADFIELD algorithm.    

TVB Format Conversion 

The next step involved the use of MNE to rearrange the cortical mesh and prepare inputs for The 
Virtual Brain (TVB). A Python script, derived from `convert2TVB_format.py`66, was employed to 
achieve this.  
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The script generates for each vertex the pertaining region, hemisphere, and assigns a flag 
indicating the vertex to be either in a cortical or in a non-cortical area. We computed a mid-
thickness cortical surface by averaging the white and pial surfaces (this in order to match one to 
one the SimNIBS cortex), with a dummy region for non-cortical areas70. Also it writes the ‘Leadfield’ 
Matrix  in TVB format, convert the vertices coordinates from Freesurfer system (ras-tkr) to image 
coordinates (Subject World) and write the cortex file in zipped TVB format (normals, triangles, 
vertices), then converts electrodes coordinates (again from FS ras-tkr to image coordinates 
“Subject World”) and write the EEG sensors locations in TVB format, write in zipped TVB format 
the SC weight, Mean Tract Length, Mean Velocity, Region Centres, Average Orientation (mean 
normal of vertices for a triangle). 

As last step, the local connectivity matrix of the cortical surface, providing the weight of the lateral 
connectivity between cortical columns (assumed as instantaneous), was computed using a 
gaussian distribution (where amplitude and sigma were chosen after the parameter fitting) applied 
to the geodesic distance on the mid-thickness cortex. Also, conversion to h5 format was performed 
in order to use the visualizer of TVB. 

To compare the anatomically-accurate forward solution with current standard methodology, we 
created the BEM model of the patient’s with Brainstorm, importing the result of SimNIBS charm 
and then considering only the interfaces between brain tissue, skull and scalp. Default conductivity 
values (measured as conductance over length, S/m) were assigned to different volumes: 0.465 
S/m for brain compartment, 0.008 S/m for skull compartment, and 0.465 S/m for scalp 
compartment71 (this because for BEM method it is the ratio between compartments driving the 
results, which is normally 1:1/80:1,18 however it was reduced in order to account for the young age 
of the subject). The leadfield matrix was computed with OpenMEEG43. BEM surfaces and 
electrodes coordinates were converted from the FreeSurfer system (ras-tkr) to the image 
coordinate system (ras-scanner), and the lead field matrix was converted into TVB format with the 
same procedure adopted for the anatomically-accurate one. 

 

Importing Input Files into The Virtual Brain and Creating Brain Simulation: 

SC data, conduction velocity, Region mapping, cortical vertices, electrode positions and local 
connectivity were imported in TVB to perform the simulations (h5 were created for import and 
visualization purposes in TVB GUI). Activity on cortical vertices was simulated by using the 
Jansen-Rit model37. The Jansen-Rit cortical was chosen for its capacity of replicating EEG 
signals37. Subcortical structures were minimally segmented and modeled using the same Jansen-
Rit model as the cortex. The simulation of cortical surface activity allows the modeling and analysis 
of both local and global connectivity2, as both are reported to be aberrant in ASD26,30,72,73. An 
anatomically-accurate forward solution was used to compute virtual EEG from simulated activity74. 
As already mentioned, the Local connectivity was computed from geodesic brain distance by using 
a gaussian kernel, whose extension and strength was determined by parameter fitting. 

 

Parameter Fitting with Experimental EEG Recording: 

To tune model parameters using the experimental EEG recording, a hierarchical grid search 
procedure was implemented (see Results). Parameters varied including white matter speed, SC 
weights scaling, sigmoidal Jansen-Rit coupling, local connectivity, and Jansen-Rit model 
parameters. For each combination of parameters, a simulated EEG was generated, with a total of 
1480 simulations. 

Simulated signals were fitted to experimental recordings, based on a loss function that computes 
the difference in functional connectivity and power spectral densities. The two loss functions are: 
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Where ��

 is the standard Pearson correlation. In the �������  function, the PSD were truncated 
at 20 Hz (this in order to improve the efficacy of the loss function in locating the best fits). The best 
match between simulated and actual EEG was computed using these metrics, thus identifying the 
optimal parameter values. 

 

Experimental EEG acquisition and pre-processing: 

EEG data were acquired using the Micromed System Plus Evolution with a sampling rate of 256 
Hz, utilizing a 21-electrode sensor system adhering to the standard 10-20 layout. The recorded 
signals were imported into EEGLAB75 for further processing. Initially, the resting state epoch was 
extracted from the continuous EEG recording to capture the subject's brain activity in a relaxed 
state without any task-specific stimuli. The EEG data were then filtered in the 1-40 Hz range using 
a Hamming windowed sinc filter, following an initial high-pass filtering at 1 Hz to remove slow drifts 
and baseline wander, ensuring the relevant frequency components were retained for analysis. 

To enhance the quality of the EEG signals, the cleanrawdata plugin in EEGLAB was used to 
identify and remove bad channels and segments. Channels that were silent or flat for more than 5 
seconds, exhibited a large amount of noise based on their standard deviation (with a rejection 
threshold of 4 standard deviations), or had low-frequency signals poorly correlated with nearby 
channels (using a threshold value of 0.8) were removed. This resulted in a final number of 16 
channels selected for further experimental analysis. Additionally, bad portions of the data series 
were rejected using the Artifact Subspace Reconstruction76 algorithm for regions exceeding 20 
times the standard deviation of the calibration data, and further rejection was based on how many 
channels within a specified time range exceeded a standard deviation threshold, with a maximum 
out-of-bound channel percentage set at 25%. 

The remaining data were re-referenced using the average reference method77, averaging the 
signals across all electrodes and subtracting this mean from each electrode. Independent 
Component Analysis (ICA) was then performed using the infomax algorithm to decompose the 
EEG signals into independent components, which were classified using the ICLabel plugin78. 
Components identified as artifacts (e.g., eye blinks, muscle activity, or electrical noise) were 
removed from the dataset, ensuring that only clean EEG signals were retained for further analysis. 
This preprocessing ensured a robust foundation for accurate characterization of neural activity and 
the validity of subsequent analyses. 

 

EEG features: power spectral distribution: 

We computed the power spectral distribution (PSD) using Welch’s method, dividing the signal into 
overlapping segments, applying windowing, and taking the discrete Fourier transform to obtain 
power spectrum estimates. These estimates were averaged to reduce variance, producing a 
binned array of power spectral densities for each frequency. 

Oscillations in neural data are embedded within aperiodic activity, typically following a 1/f 
distribution. Traditionally, this aperiodic component was disregarded or treated as noise. However, 
variations in aperiodic activity are now recognized as potential biological indicators for disease, 
aging, and development. Therefore, we parametrized PSDs into periodic and aperiodic 
components using the FOOOF (fitting oscillations and one-over f) algorithm79. 
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FOOOF models the PSD as a combination of 1/f activity � and ( periodic components )!: 

log�$%��-�!  � . / )!

!

 

With periodic components )! modeled with Gaussians and the aperiodic component � is modeled 
as: 

��-�  � � log �0 . -"� 

where � is the broadband offset, 1 is the exponent, and 0 is the knee parameter. 

FOOOF involves initial fitting of the aperiodic component, detrending the spectrum, detecting and 
fitting periodic components iteratively, and combining these fits to create the model, computing 
goodness-of-fit scores. If the knee parameter 0  0, aperiodic exponents are more comparable 
and interpretable, serving as potential biomarkers. 

 

EEG features: functional connectivity: 

Functional connectivity was computed with standard Pearson correlation, considering only 
significant (p<0.05, Bonferroni correction) values. The choice of the Pearson correlation metric was 
motivated by the limited number of electrodes39. Furthermore, we adopted this metric to prove that 
the FEDE pipeline is able of replicating also FC measures heavily affected by volume conduction80. 
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