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ABSTRACT 

The U4 small nuclear RNA (snRNA) forms a duplex with the U6 snRNA and, together with U5 

and ~30 proteins, is part of the U4/U6.U5 tri-snRNP complex, located at the core of the major 

spliceosome. Recently, recurrent de novo variants in the U4 RNA, transcribed from the RNU4-2 

gene, and in at least two other RNU genes were discovered to cause neurodevelopmental 

disorder. We detected inherited and de novo heterozygous variants in RNU4-2 (n.18_19insA 

and n.56T>C) and in four out of the five RNU6 paralogues (n.55_56insG and n.56_57insG) in 

135 individuals from 62 families with non-syndromic retinitis pigmentosa (RP), a rare form of 

hereditary blindness. We show that these variants are recurrent among RP families and 

invariably cluster in close proximity within the three-way junction (between stem-I, the 5' stem-

loop and stem-II) of the U4/U6 duplex, affecting its natural conformation. Interestingly, this region 

binds to numerous splicing factors of the tri-snRNP complex including PRPF3, PRPF8 and 

PRPF31, previously associated with RP as well. The U4 and U6 variants identified seem to affect 

snRNP biogenesis, namely the U4/U6 di-snRNP, which is an assembly intermediate of the tri-

snRNP. Based on the number of positive cases observed, deleterious variants in RNU4-2 and 

in RNU6 paralogues could be a significant cause of isolated or dominant RP, accounting for up 

to 1.2% of all undiagnosed RP cases. This study highlights the role of non-coding genes in rare 

Mendelian disorders and uncovers pleiotropy in RNU4-2, where different variants underlie 

neurodevelopmental disorder and RP.  
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MAIN TEXT  

While approximately 2 million individuals are affected by retinitis pigmentosa (RP) worldwide, it 

is estimated that 30-50% of these individuals remain without a conclusive genetic diagnosis, 

even when exome and/or genome sequencing is performed1-4. This is due, in part, to the high 

genetic heterogeneity of the disease, limited opportunities for genetic testing, and the existence 

of yet-to-be-identified causal genes. Moreover, the identification of novel disease-associated 

genes is hindered because RP variants are exceedingly rare in the population, with 97% and 

81% occurring at allele frequencies below 0.1% and 0.01%, respectively, in any control 

subpopulations5,6. 

Non-coding RNAs are essential to many regulatory cellular processes, such as the regulation of 

gene expression and pre-mRNA gene splicing7. In particular, five small nuclear RNAs (snRNAs), 

U1, U2, U4, U5, and U6, are constituents of the major spliceosome, a large and dynamic 

macromolecular complex involved in pre-mRNA splicing, a critical intermediate step between 

transcription and translation for the vast majority of genes in the human genome. Recently, 

recurrent de novo variants in RNU4-2, one of the two paralogues encoding the human U4 

snRNA, have been associated with a frequent neurodevelopmental disorder (NDD), ReNU 

syndrome (OMIM: 620851). Pathogenic variants in this gene have been shown to cause 

systematic bias in the recognition of the donor splice site by the spliceosome and to account for 

as much as 0.4% of all individuals with NDD8,9. Likewise, other snRNA genes, RNU2-2P and 

RNU5B-1, have also been recently described to be linked to the same condiiton10-12. 

Several spliceosomal proteins are also known to be involved in a wide range of hereditary 

diseases, including RP. Specifically, out of the 114 genes (https://retnet.org/) that are currently 
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associated with non-syndromic RP, the tri-snRNP splicing factors genes PRPF3, PRPF4, 

PRPF6, PRPF8, PRPF31, and SNRNP200 underly the autosomal dominant form of the 

condition (adRP), with variants in PRPF31 accounting for 10-20% of all such cases3,13.  

Here, we identified both inherited and de novo variants in RNU4-2 and four paralogues of RNU6, 

encoding the U6 snRNA, as the molecular cause of adRP in 135 individuals across 62 families. 

We demonstrate that all identified variants cluster in close proximity, within the U4/U6 duplex, 

and specifically in a region that binds directly to PRPF31 and PRPF3, and indirectly to PRPF6 

and PRPF814,15. Finally, we show that the RP-associated variants increase the association of 

U4 and U6 snRNAs with di-snRNP-specific proteins SART3 and PRPF31. 

RNU4-2 variants underlie adRP  

We initially examined a non-consanguineous family with adRP spanning two generations. Seven 

of eight siblings (II:1-II:7) and their father (I:1) were affected, each experiencing a symptomatic 

onset of night-blindness and progressive loss of peripheral vision beginning in late adolescence 

to early adulthood. Fundus examination and electrophysiological testing of all affected 

individuals revealed classical RP features (Supplementary Fig. 1, Supplementary data 1). 

Genome sequencing was performed for all ten individuals of the family and selective DNA variant 

filtering and shared haplotype analysis revealed the presence of a variant in RNU4-2 

(NR_003137.2:n.18_19insA, Supplementary Table 1) as the possible cause of disease. Among 

other features, this variant was absent from genomic databases of controls and was present in 

a highly conserved region of the genome6,16-18. 

We then extended our analysis to 1,893 individuals with RP without prior genetic diagnosis and 

identified three additional families, consisting of 15 affected individuals segregating the same 
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pathogenic variant. In addition, we detected another DNA variant, n.56T>C, that recurred in 

seven individuals from four families (Supplementary Table 1 and 2, Fig. 1A,C). Similar to 

n.18_19insA, the n.56T>C variant was absent from genomic databases of control populations. 

Additional screening of patient cohorts from our respective institutions, as well as the analysis 

of the UK National Genomic Research Library, hosting data from the Genomics England 100,000 

Genomes Project (GEL)19 , and from the NHS Genomic Medicine Service (GMS), comprising a 

total of ~3,000 cases, uncovered an additional patient harboring n.18_19insA and four families 

(five affected individuals) carrying the n.56T>C variant. Altogether, recurrent variants in RNU4-

2 were identified in 36 affected individuals from 13 families (Supplementary Fig. 2). Twenty-

seven additional affected individuals from these families could not be assessed genetically as 

no DNA was available. Of note, incomplete penetrance was observed for nine obligate carriers 

(of which four were deceased) in 38% of families (five out of 13), who would bear pathogenic 

variants but have no visual symptoms (Supplementary Fig. 1). One of these individuals was 

shown to be subclinically affected, one showed no clinical signs of disease upon clinical 

examination, and three were not clinically evaluated to confirm their unaffected status. 

Since the only U4 paralogue, RNU4-1, differs from RNU4-2 only at four positions (n.37, n.88, 

n.99, and n.113), we also assessed this gene (Supplementary Table 3). We did not identify any 

potentially pathogenic variants, including variants at the sites corresponding to n.18_19 and n.56 

of RNU4-2 (Fig. 1B). Conversely, 63 likely benign variants were detected (Supplementary Table 

4). NR_003925.1:n.56T>C was observed in two individuals from the “All of Us” database18 but 

we were unable to assess their phenotype. Notably, RNU4-1 appears to be more tolerant to 

variation compared to RNU4-2, as evidenced by the many and frequent variants that are present 

in genomes from the general population (cumulative allele frequency of 20.4% in RNU4-1 vs 

1.2% in RNU4-2, gnomAD v4.1) (Fig. 1B,C, Supplementary Fig. 3), although these seem to be 
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reduced in the region corresponding to where pathogenic NDD variants were described in 

RNU4-2 (Supplementary Fig. 3), indicating that RNU4-1-derived U4 could be partly functional. 

In addition to n.18_19insA and n.56T>C, we identified 10 other unique rare variants in RNU4-2 

in 10 RP families, which were classified as variants of uncertain significance (VUS), as well as 

17 benign changes (Supplementary Table 4). 

Variants in U6 paralogues also cause RP 

In the U4/U6.U5 tri-snRNP complex, U4 binds to U6, to form the U4/U6 RNA duplex. Since the 

pathogenic variants observed in U4 were predicted to affect this RNA-RNA structure, we 

reasoned that variants in U6 could also be associated with adRP and extended our analysis to 

all five identical paralogous genes producing U6 RNA, scattered across the genome (RNU6-1, 

RNU6-2, RNU6-7, RNU6-8 and RNU6-9; Supplementary Table 3). In the same international 

cohorts of patients that were previously analyzed, we identified variants at two specific sites in 

U6 (n.55_56insG and n.56_57insG) in all RNU6 paralogues, except RNU6-7. Importantly, these 

variants were either absent or extremely rare in controls and were identified only in individuals 

with RP (Fig. 1A,D, Supplementary Fig. 2). 

In total, pathogenic and likely pathogenic U6 variants were detected in 99 affected individuals 

from 49 families; 112 additional affected individuals from the same pedigrees could not be tested, 

but are likely to carry the same pathological genotypes. Variant n.55_56insG was present in the 

majority of the cases (89 individuals from 43 families), occurring in four out of the five RNU6 

paralogues: RNU6-1, RNU6-2, RNU6-8, and RNU6-9 (Supplementary Table 1 and 2, 

Supplementary Fig. 2). Notably, this variant was confirmed to be a de novo event in seven 

individuals, clinically identified as sporadic cases. In 12 additional pedigrees, n.55_56insG was 
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observed in individuals born to unaffected parents, for which de novo-ness was suspected but 

could not be proven, due to lack of parental DNA. 

The nearby U6 variant, n.56_57insG, was identified in RNU6-1, RNU6-2, and RNU6-9, in six 

families with adRP (10 individuals, Fig. 1A,D, Supplementary Fig. 2). This variant is observed 

once in RNU6-2 in gnomAD v4.1, in a non-Finnish European individual in the age range of 50-

55 with an unknown health-status. 

Similar to the screening of the RNU4 paralogues, our analysis of RNU6 paralogues revealed 20 

VUSs and 70 benign variants, validated by Sanger sequencing (Supplementary Table 4). 

In summary, we identified variants in RNU4-2 or RNU6 paralogues to underlie de novo or 

inherited dominant RP in 62 families. The overall phenotype in all cases in the study cohort was 

consistent with classical RP on examination and electrophysiological testing with symptomatic 

onset beginning predominantly in adolescence (Supplementary Table 5). In addition, other 

concurrent ocular disease features were noted across individuals in the cohort: cystoid macular 

edema (CME) (55.9%), non-age-related lens opacities (23.6%), and various vitreomacular 

complications (30.6%) (Supplementary Table 5). Based on our data from ~5,000 RP cases (most 

lacking a genetic diagnosis) and taking into consideration that on average ~40% of people with 

RP remain genetically undiagnosed, we can estimate that RNU4 and RNU6-associated RP 

could be responsible for 1.2% of all undiagnosed cases with this disease. Furthermore, 

considering that ~30% of RP cases are adRP20,21 and 40 adRP families had recurrent variants 

in RNU4-2 or RNU6 paralogues, we can further infer that those variants can account for ~2.7% 

of adRP families. 
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Predicted effects of variants on the U4/U6 duplex 

Analysis of the position of the detected variants in the three-dimensional space of the tri-snRNP 

complex showed that all variants clustered in close proximity to each other, and in particular 

within the three-way junction between stem-I and stem-II of the U4/U6 duplex and the 5’ stem-

loop of U4 (Fig. 1A). The duplex is stabilized by intramolecular motifs and through base-pairing 

between U4 and U6 within stem-I (n.56-61), stem-II (n.1-16), stem-III (n.73-79) and the U4 quasi-

pseudoknot (n.62 and n.64). 

The U4 and U6 variants associated with RP cluster in a different region compared to those 

underlying NDD (Fig. 1A). In silico modeling predicts that the RNU4-2 variant n.18_19insA 

inserts a nucleotide between stem-II and the U4 5’ stem-loop affecting the normal base-pairing 

(Fig. 2A,B), while n.56T>C disrupts the base-pairing between stem-I of the U4/U6 duplex (Fig. 

2A,C). Both alterations lead to the extension of the internal loop, an event that was predicted to 

impact the overall stability of the duplex. In addition, n.18_19insA also modifies the orientation 

of the 5’ stem-loop relative to stem I and stem II (Fig. 2B).  

In contrast, variants n.55_56insG and n.56_57insG in the RNU6 paralogs are predicted to 

introduce an additional wobble base-pairing (G-U) with n.56T of U4 and three additional pairings 

in stem-I of the U4/U6 duplex. These changes alter the duplex’s secondary structure by 

extending the length of stem-I, reducing the size of the internal loop, and drastically changing 

the orientation of the 5’ stem-loop (Fig. 2D-F). Interestingly, we observed that a benign insertion 

at the same position, n.55_56insT, was present in gnomAD v4.1 in all five RNU6 paralogues 

with a cumulative frequency of 0.12% (n=181). Similarly, a nearby variant, n.57T>G was 
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observed in multiple paralogues, in genotypes from the unaffected population (n=21, gnomAD 

v4.1). 

The recurring variants cluster in the three-way junction close to the 5’ stem-loop (Fig. 1A, 3A), 

which is known to be critical for the binding of the U4/U6 duplex with the splicing factors PRPF31, 

PRPF3, PRPF6, and PRPF8, all previously associated with adRP (Fig. 3B)14,15. Specifically, this 

structure first binds either PRPF31 or PRPF3/4, and is then stabilized to its original orientation 

when all factors are bound22. The mutated and neighboring U4 and U6 nucleotides in RP cases 

detected in our study directly participate in the binding of PRPF31 and PRPF3 (Fig. 3C,D), via 

hydrogen bonds with eight and three residues of these proteins, respectively. Notably, by 

querying the ClinVar database23, we identified a missense variant affecting one of these 

residues, p.(Arg449Gly) of PRPF3, that was described in a three-generation family of seven 

affected individuals with an adRP phenotype similar to most of the affected cases in our study 

cohort24. 

RNU4 and RNU6 genes and their expression 

Since the human genome contains several RNU4 and RNU6 pseudogenes25, we investigated 

whether any of these might be incorrectly annotated and could instead produce functional RNA, 

potentially contributing to the disease. In addition, we sought to understand why the various U4 

and U6 paralogues appear to be differentially mutated, with RNU4-1 and RNU6-7 displaying 

none of the recurrent pathogenic variants in RP cases. We used RNA-seq data from 

neurosensory retina (NSR), retinal pigment epithelium (RPE), and human choroid, that had been 

enriched for small RNA, with bioinformatics analysis performed in a strict manner to mitigate 

complexities associated with reads aligning against multiple paralogues and/or pseudogenes 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 6, 2025. ; https://doi.org/10.1101/2025.01.06.24317169doi: medRxiv preprint 

https://doi.org/10.1101/2025.01.06.24317169
http://creativecommons.org/licenses/by-nc/4.0/


13 

(see Material and Methods). This analysis showed that RNU4-2 has a higher expression 

compared to RNU4-1 in all tissues analyzed, with an average ratio of 1.65 (Fig. 4A). Conversely, 

for RNU6 genes and pseudogenes, individual expression in the retina could not be reliably 

quantified by RNA-seq, since their sequences are identical, except for the last nucleotide. 

Therefore, we compared total expression of RNU4 and RNU6, regardless of their respective 

paralogues and pseudogenes. RNU6 expression was on average 2.89x higher across the three 

tissues, compared to RNU4 (Fig. 4B). Of note, NSR and RPE had higher expression of RNU4 

(2.45x) and of RNU6 (6.24x) with respect to the choroid, an ocular tissue that is not directly 

involved in vision and was therefore used as a control (Fig. 4B). This observation is in agreement 

with previous data, showing that snRNA expression in the retina is approximately 6-fold higher 

compared to muscle, testis, heart, and brain26, indicating a high demand for snRNAs in these 

two retinal layers. 

In addition, we analyzed ATAC-seq and H3K27ac ChIP-seq data from retinal tissues27 in 

genomic regions spanning all RNU4 and RNU6 sequences. ATAC-seq assesses chromatin 

accessibility across the genome, while H3K27ac ChIP-seq reveals the presence of active 

enhancers. Combined, they provide indirect evidence of active transcription, even in the absence 

of reliable RNAseq data. Our analysis showed clear marks of active transcription in all 

paralogous genes (RNU4-1, RNU4-2, RNU6-1, RNU6-2, RNU6-7, RNU6-8, and RNU6-9) in the 

retina (Fig. 4C,D). Conversely, these signatures were absent from the 105 U4 pseudogenes and 

the 1,312 U6 pseudogenes, except for RNU4-8P, which displayed strong signals, but probably 

by virtue of its close proximity to the ACTR1B promoter. Of note, RNU6-92P and RNU6-656P 

had a high ATAC-seq signals but very low H3K27ac signals (Fig. 4C,D).  
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Likewise, we performed the same analysis for other snRNA genes present in the human 

genome, which revealed a similar trend: all RNU genes, with the exception of RNU5F-1, had 

marks of active transcription and only four (RNU2-2P, RNU1-27P, RNU1-28P, and RNU5E-6P) 

among the thousands of RNU pseudogenes displayed signals compatible with potential 

expression, therefore representing plausible candidate genes for retinal disease (Supplementary 

Fig. 4). Of note, RNU2-2P was recently associated with an NDD phenotype without a description 

of ocular features12. Interestingly, the same type of analysis, based on conservation and 

expression data from GTEx, was recently performed by others, showing similar results28. 

For RNU6-7, both ATAC-seq and H3K27ac values were within the same range as those 

observed for other RNU6 genes (Fig. 4D), and, therefore, the absence of pathogenic variants 

could not be explained by a potential differential expression. We thus analyzed the genetic 

landscape of variations in healthy individuals in all the five U6 paralogues, and observed that 

RNU6-7 displayed a lower number of variants, compared to the others (Supplementary Fig. 5). 

In addition, we identified the recurrent variant n.55_56insG in RNU6-7 in six control individuals 

of African / African American ancestry in gnomAD v4.1 (AF=0.014%) and in 14 individuals of 

African origin in the “All of Us” database (AF=0.013%). Considering these results, we propose 

that RNU6-7-derived U6 is either not part of the spliceosome or is present in only a small number 

of tri-snRNP complexes, a possibility that warrants investigation in future studies. 

Effect of RP variants on snRNP assembly 

We immunopurified ectopically expressed U4 and U6 snRNAs containing the RP variants and 

analyzed their association with specific markers for U4/U6 di-snRNP (SART3 and PRPF31) and 

U5 snRNP (SNRNP200). All recurrent RP variants in U4 and U6 snRNAs increased the 
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interaction between these snRNAs and di-snRNP markers (Fig. 5), while the U4 n.64_65insT 

change, which causes NDD, did not.  

Similarly, U6 RNA bearing the n.55_56insT and n.57T>G variants, observed in healthy control 

individuals, did not affect the assembly process, and the low amount of protein associated with 

them indicates that they did enter the assembly process only minimally (Fig. 5B). Taken together, 

the results indicate that RP pathogenic variants have a specific dominant effect on snRNP 

biogenesis and slow down the assembly process at the di-snRNP stage. 

Discussion 

The numerous genes associated with RP and allied diseases belong to very diverse functional 

classes, ranging from retina-restricted biochemical pathways to ubiquitous cellular processes. 

Although the molecular deficit resulting from specific RP variants can be modeled for many 

genes, the general mechanism of pathogenesis, linking thousands of DNA variants in dozens of 

genes to a common pathological phenotype, remains unknown, despite 40 years of intensive 

research. The correlation between pathogenic variants in splicing factors belonging to the tri-

snRNP, essential for survival in all eukaryotes, and RP, a phenotype restricted to the eye, 

constitutes perhaps the most intriguing and complex of such molecular enigmas. Variants in 

these spliceosomal proteins (RP-PRPFs) are associated with the dominant form of the condition, 

the least prevalent one, at times with reduced penetrance3,13. 

In this study, we have identified recurrent variants in RNU4-2, encoding U4 RNA, and in multiple 

paralogues of the U6 RNA, scattered across the whole human genome, as a cause of RP. 

Interestingly, these snRNAs are also an integral part of the di- and tri-snRNP and directly interact 

with some RP-PRPF proteins. In addition, like RP-PRPFs, they are also associated with the 
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same specific phenotype: de novo or inherited adRP, with reduced penetrance for RNU4-2 

variants. The clinical presentation of patients with RNU4-2 and RNU6 variants from this study 

exhibit as well overlap with the other known forms of spliceosome-related adRP, particularly in 

terms of earlier disease onset (contrasting the generally milder prognosis of most other forms of 

adRP29,30) and the relatively high co-occurrence of features such as cataracts and CME found 

in PRPF3131,32, PRPF833 and SNRNP20034. Prevalence estimations indicate that these snRNA 

pathogenic changes may account for an elevated number of undiagnosed cases, and it is 

therefore surprising that the RNU4 and RNU6 genes have escaped disease association until 

now. A partial explanation for this phenomenon is that mainstream sequencing approaches, both 

in research and diagnostics, are biased towards DNA-capturing procedures that do not include 

snRNA genes. Nevertheless, genome sequencing is being implemented in routine diagnostics, 

and these variants may have eluded detection so far because they affect non-coding transcripts 

and are therefore more difficult to score in terms of potential pathogenicity by analytical pipelines. 

An intriguing feature of pathogenic changes in RNU4-2 is their pleiotropy with respect to NDD 

(ReNU) and RP. Although the exact mechanism for this phenotypic selectivity is unknown, it 

highlights the presence of a new allelic series involving non-coding RNA genes. A potential 

explanation for such divergent phenotypes could reside in the position that ReNU and RP 

variants have with respect to the U4/U6 duplex. ReNU pathogenic variants are included within 

the stem III of the duplex, whereas RP variants cluster, in close spatial proximity, to the three-

way junction, in regions to which several of the RP-associated splicing factors bind. Our ectopic 

expression experiments showed in fact that snRNAs bearing RP variants display enhanced 

interaction with di-snRNP protein markers, suggesting that pathogenesis could result from a 

gain-of-function / dominant-negative mechanism, rather than from haploinsufficiency. This 
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hypothesis was strengthened by the evidence that molecularly similar but benign variants, 

commonly observed in the general population, seemed not to efficiently bind to di-snRNP 

markers, supporting the idea that spliceosomal functions could be haplosufficient with respect 

to heterozygous and snRNA-depleting variants. Moreover, the pathogenic variants identified in 

this study are located precisely in regions of the U4/U6 duplex that interact directly with PRPF3 

and PRPF31 proteins, two splicing factors previously associated with adRP. These proteins, 

when mutated, destabilize the spliceosome complex formation, leading to delayed and abnormal 

splicing events, particularly in the retina26,35,36. Therefore, it is plausible that all RP variants 

identified in RNU4-2 and RNU6 paralogues could lead to photoreceptor death and subsequent 

visual loss via similar early events of pathogenesis, while having no influence on the 

development of the brain. The fact that RP variants in RNU4-2 are not located in the variant-

depleted region of the gene that defines the NDD hotspot also suggests that such variants may 

be milder with respect to those giving rise to ReNU, leading to delays in complex assembly rather 

than to defects in pre-mRNA processing. 

Although variants associating RNU4-2 to ReNU syndrome have been primarily reported as de 

novo events8,12, in our study most individuals with RP (67%) bear RNU4-2 and RNU6 changes 

as inherited variants. In part, this difference can be explained by the reduced reproductive fitness 

associated with NDD. Unlike ReNU syndrome, symptomatic onset (night-blindness and 

peripheral vision loss) in non-syndromic adRP begins later in life, with severe central vision loss 

occurring significantly beyond reproductive age. Another difference involves the inheritance of 

dominant variants, which in ReNU seems to be almost exclusively of maternal origin8. We did 

not observe the same trend for RP, with variants being inherited from fathers and mothers in 
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numerous cases, indicating the absence of any sex-specific negative selection during 

gametogenesis or at the embryonic stage.  

The human genome contains two RNU4 paralogues and five RNU6 paralogues. This indicates 

that, assuming equal expression within paralogues, the presence of only ~25% of mutant U4 

(heterozygous genotype, over two copies) or ~10% of mutant U6 (heterozygous genotype, over 

five copies) is sufficient to lead to a disease phenotype, again in support of a gain-of-function / 

dominant-negative molecular mechanism. This could be a crucial consideration for the 

development of potential gene-based therapies, as gene-augmentation strategies may be 

suboptimal compared to gene correction or antisense oligonucleotide approaches. Our data also 

highlight the existence of mutational hotspots outside the coding regions of the human genome, 

emphasizing the need for further research into these parts of our genetic material, and show that 

the clustering of de novo pathogenic variants is not restricted to severe diseases with childhood 

onset37, but may extend to milder pathologies, such as RP. 

In conclusion, we identified four recurrent pathogenic variants in RNU4-2 and four out of the five 

paralogues of the U6 snRNA as a frequent cause of de novo or inherited adRP. The immediate 

impact of these findings involves improved diagnosis and genetic counselling for patients with 

hereditary visual loss, especially for isolated cases who could potentially bear heterozygous de 

novo events. More fundamentally, this work significantly broadens our understanding of the 

genetic landscape of human disease, paving the way for the development of new molecular 

therapeutic approaches. 
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Supplementary Methods 

Patients and DNAs 

This study adhered to the tenets of the Declaration of Helsinki and complied with the ethical 

standards of each participating country. Signed informed consent forms were obtained in all 

study subjects. Our research was approved by the Ethikkommission Nordwest- und 

Zentralschweiz (Project-ID 2019-01660) and the Ethics Committee of the Radboud University 

Medical Center Nijmegen (MEC-2010-359; OZR protocol no. 2009-32). 

Clinical characterization and analysis 

Complete ophthalmic examinations were performed by a retinal specialist, which included 

measurement of best-corrected visual acuity (BCVA), intraocular pressures (IOP), and 

examination of anterior segment and fundus (dilated). Color fundus photographs and montages 

were captured using the FF450plus Fundus Camera (Carl Zeiss Meditec, Germany) and Optos 

200 Tx (Optos PLC, UK). Fundus autofluorescence FAF images (488-nm excitation) and high-

resolution spectral-domain optical coherence tomography (SD-OCT) scans were acquired using 

the Spectralis HRA+OCT module (Heidelberg Engineering, Heidelberg, Germany). Hyper-

autofluorescent ring contour were analyzed using a custom program in FIJI software (National 

Institute of Mental Health, Bethesda, MD, USA) as previously described38. Progression rates 

were calculated using linear mixed-effects regression in R (version 4.0.4) with time (years) since 

baseline as the primary independent variable, baseline ring size as a covariate and inter-ocular 

differences as a random effect. Photoreceptor+ thickness was assessed on horizontal SD-OCT 

scans through the fovea using a semiautomated procedure previously described39. 

Photoreceptor+ was defined as the distance between the Bruch’s membrane/choroid interface 
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and the inner nuclear layer (INL)/outer plexiform layer (OPL) boundary. Layer segmentation was 

performed in a semi-automated manner using a custom software in MatLab (MathWorks, Inc). 

Full-field electroretinogram recordings were conducted using the Espion Visual 

Electrophysiology System (Diagnosys LLC) according to International Society for Clinical 

Electrophysiology of Vision (ISCEV) standards40. 

Genome sequencing and annotation 

Genomic DNA from probands was isolated from peripheral blood lymphocytes according to 

standard procedures. Sequencing was performed by BGI Tech Solutions (Warszawa, Poland) 

using the DNBseq Sequencing Technology, with a minimal median coverage per genome of 

30x. The processing of the sequencing data (mapping, variant calling, and variant annotation) 

was performed as described previously2. Briefly, we used BWA41, Picard 

(http://broadinstitute.github.io/picard) and GATK42 for mapping and variant calling. For variant 

annotation, we used ANNOVAR43 with the addition of splicing predictions by MaxEntScan44 and 

SpliceAI45. 

Assessment of variants 

HGVS notations of the variants were retrieved using VariantValidator46 and ACMG 

classification47 was applied according to the ACGS Best Practice Guidelines for Variant 

Classification in Rare Disease 202348. All pathogenic and likely pathogenic variants are listed in 

Supplementary Table 1, all VUSs and likely benign variants that were reported are listed in 

Supplementary Table 4. 

Screening by Sanger sequencing 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 6, 2025. ; https://doi.org/10.1101/2025.01.06.24317169doi: medRxiv preprint 

http://broadinstitute.github.io/picard
https://doi.org/10.1101/2025.01.06.24317169
http://creativecommons.org/licenses/by-nc/4.0/


21 

Genomic DNA was collected, and RNU4-1, RNU4-2, RNU6-1, RNU6-2, RNU6-7, RNU6-8 and 

RNU6-9 genes were amplified using standard PCR procedures. RNU4-1, RNU4-2, RNU6-1, 

RNU6-2, RNU6-7, RNU6-8 and RNU6-9 PCR fragments were sequenced using Sanger 

sequencing and screened for novel variants in these genes. Sequences of primers used in this 

study are listed in the Supplementary Table 6. Additional details regarding PCR conditions or 

primer design are available upon request. 

2D modeling of the effect of variants and 3D representation 

We utilized RNAfold WebServer to model the effect of variants with default parameters49 and 

RNAcanvas was used for drawing the structure50. We used ChimeraX with PDB file using PDB 

file 6qw6 to draw 3D representation of the U4/U6 duplex with and without surrounding PRPF 

proteins. 

RNA-seq experiments and analysis 

RNA was isolated from human donor eye tissue, which was collected and dissected as described 

previously51 from an ethically approved Research Tissue Bank (UK NHS Health Research 

Authority reference no. 15/NW/0932). Total RNA was isolated from four neurosensory retina 

(NSR) samples, 16 pelleted retinal pigment epithelium (RPE) samples and 13 choroid samples 

that had been stored in RNAlater (Thermo Fisher Scientific, Carlsbad, CA, USA), using an 

Animal Tissue RNA Purification kit (Norgen Biotek, Canada), as per manufacturer’s instructions. 

Sequencing libraries were prepared using the NEBnext multiplex small RNA library preparation 

kit, as per manufacturer’s protocols, with size selection performed using Ampure beads. Paired-

end sequencing (2x75bp) was performed on an Illumina HiSeq 4000. 
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NEBnext adapters were removed from sequencing reads using trimmomatic prior to alignment 

against the GRCh38 reference genome with bowtie52. No mismatches between sequencing 

reads and the reference genome were allowed, and no restriction was set on multi-mapping 

reads. Sequence read counts were restricted to primary alignments using samtools v1.953, and 

therefore only counted once if they aligned to multiple RNU4 or RNU6 genes or pseudogenes. 

Calculations were drawn from read1 datasets, and normalised for the total read count achieved 

for the sample. Total RNU4 and RNU6 expression was based on all annotated genes and 

pseudogenes in gencode. 

ATAC-seq and H3K27ac data 

ATAC-seq data from Wang et al.54 (eight different experiments) and H3K27ac data from Cherry 

et al.55 (five different experiments) were downloaded as bigwig files from the RegRet database 

(http://genome.ucsc.edu/s/stvdsomp/RegRet)56. For both data types, the signal (the genes and 

500bp on each side) was extracted using bedtools after conversion using bigWigToWig. We 

quantified the signal for all RNU genes and pseudogenes first by normalizing the signal of each 

experiment to the maximum and then summing them. For RNU4, we quantified 3 genes and 105 

pseudogenes while for RNU6, it was 6 genes and 1,312 pseudogenes. 

U4 and U6 snRNP analysis 

U4 n.18_19insA, n.56T>C, and n.64_65insT variants were introduced by site-directed 

mutagenesis into the plasmid expressing U4-MS2 described previously57. The full-length U6 

sequence, including 256 bp upstream and 93 bp downstream of the RNU6-1 gene, was inserted 

into the pcDNA3 plasmid lacking the CMV promoter. The MS2 loop was inserted between 

nucleotides 10 and 11. U6 n.55_56insG, n.55_56insT, n.56_57insG, and n.57G>T variants were 
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introduced by site-directed mutagenesis. U4- and U6-expressing plasmids were transfected into 

HeLa cells stably expressing MS2-YFP protein. 24 hours after transfection, snRNAs were 

immunoprecipitated using anti-GFP antibodies and co-precipitated proteins were analyzed by 

Western blotting as described previously57. 
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Data availability 

Research on the de-identified patient data used in this publication from the Genomics England 

100,000 Genomes Project and the NHS GMS dataset can be carried out in the Genomics 

England Research Environment subject to a collaborative agreement that adheres to patient-led 

governance. All interested readers will be able to access the data in the same manner that the 

authors accessed the data. For more information about accessing the data, interested readers 

may contact research-network@genomicsengland.co.uk or access the relevant information on 

the Genomics England website: https://www.genomicsengland.co.uk/research. The data 

generated during this study (pathogenic variants and VUSs identified) are submitted to the 

Leiden Open (source) Variation Database (LOVD) (http://www.lovd.nl) and ClinVar. 
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Figure 1: U4-U6 structure and rare variants found in RP cases and controls 
(gnomAD). (A) 2D structure of U4-U6 duplex with recurrent variants identified in RP 
cases (in red for U4 and in green for U6), which cluster in the same region of the 
complex, the three-way junction. Nucleotides affected by variants previously observed 
in neurodevelopmental disorder cases are underlined. (B) Rare variants affecting 
RNU4-1, defined as AF<0.1% in gnomAD v.4.1, identified in RP cases and in controls. 
(C) same as (B) for RNU4-2 with recurrent variants displayed in red. (D) same as (B) 
for all five RNU6 paralogues combined, with recurrent variants displayed in green. 
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Figure 2: 2D modeling of the U4-U6 three-way junction. Wild-type (WT) structure 
of the U4/U6 duplex surrounding the internal loop (A, D) and structures including 
pathogenic variants affecting U4 (B, C), U6 (E, F). The gray circle gauges the normal 
size of the three-way junction, while the dashed lines show the normal orientations of 
the stems originating from the junction. 
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Figure 3: 3D structure of the U4/U6 duplex and its interactions with the neighboring 
splicing factors PRPF3, PRPF6, PRPF8 and PRPF31. (A) Naked U4/U6 pairing, showing 
the close proximity of the pathogenic variants identified (red and green). (B) Same as in 
(A), with interacting PRPF proteins. (C) Direct interactions of nucleotides of the U4/U6 
duplex with PRPF31, by direct hydrogen bonds. (D) Same as (C) but for PRPF3.  
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Figure 4: Expression and markers of transcriptional activity for RNU4 and RNU6 
genes. (A) Expression of RNU4-1 and RNU4-2 from RNA-seq of human donor choroid 
(n=13), neurosensory retina (NSR, n=4) and retinal pigmented epithelium (RPE, n=16). 
Data are represented in boxplots and the median value is written in the box. (B) Same for 
RNU4 genes (RNU4-1, RNU4-2 and their pseudogenes (in black)) and for all RNU6 genes 
(RNU6-1, RNU6-2, RNU6-7, RNU6-8, RNU6-9 and their pseudogenes (in black)). (C) 
ATAC-seq and H3K27ac signals for three RNU4 genes and 105 pseudogenes (D) ATAC-
seq and H3K27ac signals for six RNU6 genes and 1,312 pseudogenes. ATAC-seq data is 
from Wang et al.54 and H3K27ac data is from Cherry et al.55  
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Figure 5: RP variants in RNU4-2 and RNU6 inhibit snRNP maturation. 
(A) Immunoprecipitation of U4-MS2 (WT and variants) and (B) U6-MS2 (WT and variants). 
snRNPs were immunoprecipitated via MS2-YFP by anti-GFP antibodies and co-
precipitated proteins were detected by Western blotting. The position of the MS2 loop 
(green) in snRNAs is indicated. Three independent experiments were quantified.  
Immunoprecipitated proteins are normalized to input and U4 or U6 wild-type controls. 
Statistical significance was analyzed by the two-tailed unpaired t-test. * indicates P-value 
≤0.05, ** ≤0.01, and *** ≤0.001 
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