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Abstract 1 

IntroducƟon: Scalp electroencephalography (EEG) is a cornerstone in the diagnosis and treatment of 2 
epilepsy, but rouƟne EEG is oŌen interpreted as normal without idenƟficaƟon of epilepƟform acƟvity 3 
during expert visual review. The absence of interictal epilepƟform acƟvity on rouƟne scalp EEGs can 4 
cause delays in receiving clinical treatment. These delays can be parƟcularly problemaƟc in the diagnosis 5 
and treatment of people with drug-resistant epilepsy (DRE) and those without structural abnormaliƟes 6 
on MRI (i.e., MRI negaƟve). Thus, there is a clinical need for alternaƟve quanƟtaƟve approaches that can 7 
inform diagnosƟc and treatment decisions when visual EEG review is inconclusive. In this study, we 8 
leverage a large populaƟon-level rouƟne EEG database of people with and without focal epilepsy to 9 
invesƟgate whether normal interictal EEG segments contain subtle deviaƟons that could support the 10 
diagnosis of focal epilepsy. 11 

Data & Methods: We idenƟfied mulƟple epochs represenƟng eyes-closed wakefulness from 19-channel 12 
rouƟne EEGs of a large and diverse neurological paƟent populaƟon (N=13,652 recordings, 12,134 unique 13 
paƟents). We then extracted the average spectral power and phase-lag-index-based connecƟvity within 14 
1-45Hz of each EEG recording using these idenƟfied epochs. We decomposed the power spectral density 15 
and phase-based connecƟvity informaƟon of all the visually reviewed normal EEGs (N=6,242) using 16 
unsupervised tensor decomposiƟons to extract dominant paƩerns of spectral power and scalp 17 
connecƟvity. We also idenƟfied an independent set of rouƟne EEGs of a cohort of focal epilepsy paƟents 18 
(N= 121) with various diagnosƟc classificaƟons, including focal epilepsy origin (temporal, frontal), MRI 19 
(lesional, non-lesional), and response to anƟ-seizure medicaƟons (responsive vs. drug-resistant epilepsy). 20 
We analyzed visually normal interictal epochs from the EEGs using the power-spectral and phase-based 21 
connecƟvity paƩerns idenƟfied above and evaluated their potenƟal in clinically relevant binary 22 
classificaƟons. 23 

Results: We obtained six paƩerns with disƟnct interpretable spaƟo-spectral signatures corresponding to 24 
putaƟve aperiodic, oscillatory, and arƟfactual acƟvity recorded on the EEG. The loadings for these 25 
paƩerns showed associaƟons with paƟent age and expert-assigned grades of EEG abnormality. Further 26 
analysis using a physiologically relevant subset of these loadings differenƟated focal epilepsy paƟents 27 
from controls without history of focal epilepsy (mean AUC 0.78) but were unable to differenƟate 28 
between frontal or temporal lobe epilepsy. In temporal lobe epilepsy, loadings of the power spectral 29 
paƩerns best differenƟated drug-resistant epilepsy from drug-responsive epilepsy (mean AUC 0.73), as 30 
well as lesional epilepsy from non-lesional epilepsy (mean AUC 0.67), albeit with high variability across 31 
paƟents. 32 

Significance: Our findings from a large populaƟon sample of EEGs suggest that normal interictal EEGs of 33 
epilepsy paƟents contain subtle differences of predicƟve value that may improve the overall diagnosƟc 34 
yield of rouƟne and prolonged EEGs. The presented approach for analyzing normal EEGs has the capacity 35 
to differenƟate several diagnosƟc classificaƟons of epilepsy, and can quanƟtaƟvely characterize EEG 36 
acƟvity in a scalable, expert-interpretable, and paƟent-specific fashion. Further technical development 37 
and clinical validaƟon may yield normal EEG-derived computaƟonal biomarkers that could augment 38 
epilepsy diagnosis and assist clinical decision-making in the future. 39 

Keywords: normal interictal EEGs, quanƟtaƟve EEG analysis, spectral power, phase lag index, focal 40 
epilepsy, non-lesional epilepsy, drug-resistant epilepsy, unsupervised learning, tensor decomposiƟon 41 
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1. IntroducƟon 1 

Epilepsy is a neurological disorder characterized by recurrent, unprovoked seizures and is esƟmated to 2 
affect ~50 million people worldwide1. A scalp electroencephalogram (EEG) non-invasively records the 3 
electrical acƟvity of the brain, and its findings play a criƟcal role in the clinical diagnosis and 4 
management of epilepsy2–4. The diagnosƟc yield of a short 20–40-minute rouƟne EEG is determined by 5 
the presence of spontaneous transient interictal epilepƟform discharges (IEDs)5–7. However, ~30-55% of 6 
rouƟne EEGs of paƟents with epilepsy and 9-10% of prolonged video EEGs show no evidence of IEDs and 7 
delay the diagnosis of epilepsy12–17. 8 

In newly diagnosed epilepsy, anƟ-seizure medicaƟons (ASMs) are the first choice of therapy. However, 9 
despite a successful diagnosis, about half the paƟents do not respond to their first ASM, and about a 10 
third conƟnue to have uncontrolled seizures despite mulƟple ASM trials14,15. Therefore, the 11 
determinaƟon of drug-resistant epilepsy (DRE) can take several months or years, while the paƟents 12 
conƟnue to experience seizures and comorbidiƟes. Thus, the early idenƟficaƟon of DRE is essenƟal to 13 
reduce disease burden and to iniƟate evaluaƟons for addiƟonal therapies such as resecƟve surgery and 14 
electrical brain sƟmulaƟon. In focal epilepsy, magneƟc resonance imaging (MRI) scans of the brain can 15 
help clarify the disease eƟology by idenƟfying structural abnormaliƟes that lead to seizures16. In MRI 16 
negaƟve, i.e., non-lesional, epilepsy paƟents, normal EEGs can cause further delays in idenƟfying the 17 
epileptogenic brain regions for treatment. Broadly, the inability to idenƟfy interictal epilepƟform acƟvity 18 
during visual review of rouƟne EEGs can delay the iniƟaƟon of ASMs, increase healthcare costs18, and put 19 
the paƟent at an increased risk of seizure-related injuries and comorbidiƟes18,19. 20 

As such, there is a clear need for alternaƟve approaches that can assist with early diagnosis and 21 
treatment planning when tradiƟonal rouƟne EEG tests are inconclusive. Our goal in this study is to 22 
develop a quanƟtaƟve approach to explore automaƟc analysis normal interictal EEGs, which could 23 
provide early, objecƟve, and inexpensive clinical decision support. Emerging evidence suggests that such 24 
quanƟtaƟve approaches have the potenƟal to improve the diagnosƟc value of normal EEGs and augment 25 
decision-making in epilepsy17–20. Building on prior work, here we take a data-driven approach -- 26 
leveraging a large populaƟon database -- to idenƟfy spectral power and connecƟvity paƩerns of normal 27 
interictal EEG and evaluate their potenƟal in differenƟaƟng various focal epilepsy classificaƟons. 28 

In this study, we retrospecƟvely analyzed a large dataset of 13,652 rouƟne EEGs from a diverse 29 
neurological populaƟon of 12,134 adults and a cohort of 121 adults with confirmed focal epilepsy. 30 
PaƩerns of power spectral density and phase-based connecƟvity in eyes-closed wakefulness were 31 
extracted from the 6,242 normal EEGs in the populaƟon dataset using canonical polyadic tensor 32 
decomposiƟon. We examined the spaƟal and frequency distribuƟons of these paƩerns and invesƟgated 33 
their associaƟon with age and clinically assigned EEG grades. Then, paƩern loadings were computed to 34 
quanƟtaƟvely characterize the normal EEG acƟvity (i.e., interictal non-epilepƟform) of paƟents with focal 35 
epilepsy. With these loadings, we studied group differences and conducted classificaƟon analyses to 36 
explore the use of normal EEGs in epilepsy diagnosis and treatment planning. 37 

We found that data-driven decomposiƟon of spectral power and connecƟvity of normal EEGs yields 38 
paƩerns that are interpretable in terms of known scalp electrophysiology and sensiƟve to physiological 39 
and pathological changes. Furthermore, the quanƟficaƟon of expert visual review normal interictal EEG 40 
acƟvity using these paƩerns revealed relevant group differences in focal epilepsy. These results suggest 41 
that quanƟtaƟve characterizaƟon of normal interictal EEGs of focal epilepsy paƟents has the potenƟal to 42 
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augment visual EEG review and assist clinical decision-making in epilepsy. Future efforts will focus on 1 
validaƟng these findings using a larger out-of-sample epilepsy cohort with data collected from an 2 
external site. 3 

 4 

2. Data & Methods 5 

Clinical populaƟon dataset and expert EEG review: Our study uƟlized 13,652 rouƟne clinical EEG 6 
recordings obtained from 12,134 adult paƟents (18 or older) at Mayo Clinic, Rochester, MN, USA 7 
between 2016 and 202221. This study was approved by the Mayo Clinic insƟtuƟonal review board and 8 
paƟents provided informed consent. The EEGs were recorded using the XLTEK EMU40EX headbox 9 
manufactured by Natus Medical Incorporated, Oakville, Ontario, Canada. All EEGs followed the standard 10 
10–20 electrode placement system22 and were sampled at 256Hz. The paƟent populaƟon comprises 11 
individuals presenƟng with a diverse array of condiƟons including epilepsy, cogniƟve impairment, 12 
episodic migraines, syncope, and funcƟonal spells, among others. Overall, this dataset represents the 13 
paƟent populaƟon typically referred for rouƟne EEG assessments at the Mayo Clinic in Rochester, MN, 14 
USA. All EEG records were visually reviewed by board-cerƟfied epileptologists and graded based on the 15 
Mayo Clinic internal EEG grading protocol: Normal (no visible abnormaliƟes, within normal limits), 16 
asymmetry, persistent delta frequency slowing, and intermiƩent abnormaliƟes classified as Dysrhythmia 17 
1 (mild, non-specific slowing or excess of fast acƟvity), Dysrhythmia 2 (moderate to severe intermiƩent 18 
slowing), or Dysrhythmia 3 (e.g. epilepƟform abnormaliƟes, triphasic waves, intermiƩent rhythmic delta 19 
frequency acƟvity). 20 

Focal epilepsy cohort and matched control subjects without epilepsy: PaƟents with EEGs containing 21 
focal epilepƟform abnormaliƟes were used to triage focal epilepsy cases in the overall paƟent 22 
populaƟon. Based on further review of those paƟents, we idenƟfied a total of 121 focal epilepsy paƟents 23 
(frontal=21; temporal=100) who had a confirmed diagnosis of frontal or temporal lobe epilepsy and had 24 
no prior history of any cranial surgery. Their drug response status and MRI findings were determined by 25 
reviewing electronic health records and diagnosƟc MRI reports available within a year of their EEG 26 
assessments, respecƟvely. An age- and sex-matched control cohort of 76 subjects without epilepsy 27 
diagnosis with normal EEGs was selected for comparisons. Data of paƟents in focal epilepsy and matched 28 
control sets were excluded from the populaƟon set during subsequent analyses to prevent staƟsƟcal 29 
data leakage. 30 
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 1 

Figure 1: Overall analyƟc workflow of the study. (A) MulƟple eyes-closed awake interictal epochs from 2 
each EEG recording are idenƟfied for data analysis. The average power spectral density (PSD) and phase-3 
based connecƟvity (PC) between each channel pair are computed and stacked across recordings to obtain 4 
3-d PSD and PC tensors (recordings x channels or channel pairs x frequencies). (B) PSD and PC populaƟon 5 
tensors are decomposed separately in an unsupervised fashion to obtain mulƟple interpretable spaƟo-6 
spectral paƩerns (i.e., factors). (C) Normal interictal EEG data from focal epilepsy paƟents are projected 7 
on each populaƟon-level factor to obtain paƟent-specific factor loadings. Differences in drug-resistant 8 
and non-lesional MRI focal epilepsy are invesƟgated by using these loadings in staƟsƟcal group/sub-9 
group comparisons and predicƟve analyses. 10 

The complete analyƟcal workflow of this study from processing of raw EEGs to results is illustrated in 11 
Figure 1. Below we describe the methods used in this workflow. 12 

EEG preprocessing and epochs selecƟon: All rouƟne EEGs were preprocessed as follows: 1) selecƟon 13 
and ordering of the 19 EEG channels arranged according to the 10-20 system (i.e., Fp1, F3, F7, C3, T7, P3, 14 
P7, O1, Fp2, F4, F8, C4, T8, P4, P8, O2, Fz, Cz, and Pz), 2) resampling to ensure a sampling rate of 256 Hz, 15 
3) band-pass filtering between 0.1-45Hz, and 4) transformaƟon to common average reference. We note 16 
that no explicit arƟfact rejecƟon step was performed in this pipeline. Next, we applied a heurisƟc 17 
algorithm23 to select a maximum of six 10-second EEG epochs from the full recording represenƟng eyes-18 
closed wakefulness. The algorithm relies on sleep staging24, eye blinks, sample entropy, and occipital 19 
alpha power to select candidate epochs. These selected epochs are not guaranteed to be conƟguous. 20 
AŌer preprocessing, all EEG recordings were represented by at most six EEG epochs represenƟng eyes-21 
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closed resƟng-state wakefulness. Preprocessing was done using the numpy25 and MNE26 Python libraries. 1 
Epochs selecƟon used the MNE-features27 and YASA28 libraries. 2 

Manual review of EEG epochs extracted from focal epilepsy paƟents: A board-cerƟfied epileptologist 3 
visually idenƟfied interictal segments automaƟcally derived from the EEGs of focal epilepsy paƟents, 4 
excluding abnormal segments containing seizures, epilepƟform spikes, epilepƟform sharp waves, 5 
temporal intermiƩent rhythmic delta acƟvity (TIRDA), and excessive arƟfacts. Polymorphic, intermiƩent 6 
delta and theta frequency slowing (0.1 - <8 Hz) events, however, could not be excluded due to their 7 
pervasive presence in some EEGs. 8 

ConstrucƟng tensors of spectral power: Power spectral density (PSD) of EEG data was esƟmated for all 9 
19 EEG channels using Welch’s algorithm29, yielding log-power values at all integer frequencies between 10 
1-45Hz. We then averaged the PSD measures of each EEG recording across all the idenƟfied epochs to 11 
obtain a single PSD vector for each channel. The PSD measures of each EEG recording can now be 12 
represented as a matrix with shape 19 × 45 (19 channels and 45 frequencies). Stacking this average PSD 13 
matrix across recordings produces a 3-d power-spectral tensor (“PSD-tensor”) of the form: N recordings 14 
x 19 channels x 45 frequencies. The populaƟon PSD-tensor is globally min-max scaled between [0, 1] to 15 
maintain non-negaƟvity for subsequent tensor decomposiƟon. Focal epilepsy and control PSD-tensors 16 
are scaled similarly but are stacked together first to preserve group differences for downstream analyses. 17 

ConstrucƟng tensors of phase-based connecƟvity: An esƟmate of phase-based connecƟvity (PC) 18 
between a pair of channels (𝑖, 𝑗) is computed using the weighted Phase Lag Index30 (wPLI) measure 19 
defined as: 20 

𝑤𝑃𝐿𝐼(𝑖, 𝑗) =
ห𝐸ൣℐ൫𝑋௜௝൯൧ห

𝐸ൣหℐ൫𝑋௜௝൯ห൧
 21 

where 𝑋௜,௝ denotes the cross-spectral density of channels 𝑖 and 𝑗, ℐ(. ) is the imaginary part of the cross-22 
spectrum, and 𝐸[. ] represents a mean over the selected eyes-closed epochs. wPLI values range between 23 
[0, 1]. A posiƟve value reflects an imbalance between leading and lagging relaƟonships, with 1 indicaƟng 24 
a perfect lead or lag relaƟonship. At each integer frequency between 1-45Hz, wPLI provides a 25 
connecƟvity value for each of the 171 unique channel pairs. Thus, we obtain a 3-d phase-based 26 
connecƟvity tensor (“PC-tensor”) of the form: N recordings x 171 channel pairs x 45 frequencies. 27 

RepresenƟng the normal EEGs as tensors: We esƟmated the PSD and PC measures for the normal EEGs 28 
in the populaƟon dataset (N=6,242) and formed the populaƟon PSD-tensor and PC-tensor of shape 29 
(6,242 x 19 x 45) and (6,242 x 171 x 45), respecƟvely. 30 

DecomposiƟon of 3-d tensors into factors: The canonical polyadic (CP) decomposiƟon31,32 (also known 31 
as the PARAFAC decomposiƟon33) approximates a given tensor as a sum of 𝑅 rank-1 tensors, where 𝑅 is 32 
the decomposiƟon rank, i.e., the resulƟng number of factors obtained from decomposing the tensor. The 33 
CP decomposiƟon of a 3-dimensional tensor Τ with rank 𝑅 is defined as: 34 

Τ ≈ ෍ 𝐴௥ ⊗ 𝐵௥ ⊗ 𝐶௥

ோ

௥ୀଵ

 35 
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where ⊗ denotes an outer product and 𝐴௥, 𝐵௥, and 𝐶௥ are vectors with shapes matching each of the 1 
three dimensions of Τ (recording, channel, frequency). Each term in the summaƟon, i.e., a combinaƟon 2 
of 𝐴௥, 𝐵௥, and 𝐶௥ , is a rank-1 tensor and is referred to as a factor. The 𝐴, 𝐵, and 𝐶 factor matrices 3 
(containing 𝐴௥, 𝐵௥, and 𝐶௥ vectors as columns, respecƟvely) are opƟmized with a non-negaƟvity 4 
constraint using the hierarchical alternaƟng least squares33,34 approach.  5 

Determining the iniƟalizaƟon and rank for CP decomposiƟon: We provided a physiologically meaningful 6 
iniƟalizaƟon and rank derived from PSD characterisƟcs of healthy subjects to iniƟalize the decomposiƟon 7 
of the PSD-tensor. For this, we fit a parametric model of the EEG PSD, named FOOOF35 (“fiƫng 8 
oscillaƟons and one over f”), to the eyes-closed trials in the MPI Leipzig Mind-Brain-Body dataset36 9 
(N=207, 8 trials per subject, 60s trial duraƟon). The FOOOF model segments the observed morphology of 10 
an EEG PSD into superimposed aperiodic (𝐿) and oscillatory components (𝐺௡): 11 

𝑃𝑆𝐷 = 𝐿 + ෍ 𝐺௡

ହ

௡ୀଵ

 12 

Each 𝐺௡ is a Gaussian peak corresponds putaƟvely to a canonical brain oscillaƟon (delta, theta, alpha, 13 
beta, or gamma) and is parameterized by height, mean or center frequency, and a standard deviaƟon. 𝐿 14 

is a funcƟon of the form L(𝐹) = 10௕ ∗
ଵ

(௞ାி஧)
 whose parameters 𝑏, 𝑘, and 𝒳 capture aperiodic 1/f-like 15 

nature of the 𝑃𝑆𝐷. We refer readers to Donoghue et. al. (2020) for addiƟonal model details. We fit this 16 
six-component model to healthy PSDs in the MPI-Leipzig dataset. The fiƩed versions of 𝐺௡ and 𝐿 formed 17 
the frequency iniƟalizaƟons 𝐵௥ of the decomposiƟon soluƟon and informed the choice of rank 𝑅 = 6.  18 

Decomposing the populaƟon tensors: Factor matrix 𝐵 (containing 𝐵௥ vectors as columns) was iniƟalized 19 
with the six spectral “priors” described above. CP decomposiƟon with non-negaƟvity constraints and 20 
𝑅=6 was applied on the min-max scaled populaƟon PSD-tensor. The resultant 𝐵 was then used as an 21 
immutable iniƟalizaƟon for the subsequent CP decomposiƟon of the populaƟon PC-tensor. In other 22 
words, only factor matrices 𝐴 and 𝐶 were opƟmized in the PC-tensor decomposiƟon. The use of 𝐵, i.e., 23 
frequency paƩerns extracted from the PSD-tensor, in PC factors ensured that interpretaƟons were 24 
aligned across both decomposiƟons. Tensor analyses were done using the tensortools36 Python library. 25 

VisualizaƟon of factors derived from the normal EEG populaƟon: The 𝐴௥, 𝐵௥, and 𝐶௥ vectors resulƟng 26 
from both CP decomposiƟons represent semanƟcally coherent components: 𝐴௥ contains factor’s 27 
loadings per recording, 𝐵௥ holds the factor’s channel acƟvaƟons, and 𝐶௥ holds the factor’s frequency 28 
acƟvaƟons. The recording loadings are visualized as histograms, channel acƟvaƟons as topographical 29 
distribuƟons over the scalp, and frequency acƟvaƟons as power spectral profiles. Note that we obtain 𝐴௥ 30 
and 𝐶௥ separately from the PSD-tensor and PC-tensor decomposiƟons, while 𝐵௥ is shared between both 31 
as described above. We refer to values in 𝐴௥ as “PSD loadings” or “PC loadings” depending on the tensor 32 
they are associated with. 33 

CompuƟng factor loadings for the focal epilepsy cohort: We computed populaƟon factor loadings for 34 
the focal epilepsy cohort using a projecƟon operaƟon37. Consider the basis matrix 𝑃 containing 35 
vectorized versions of the spaƟo-spectral factors 𝐵௥ ⊗ 𝐶௥. Thus, matrix P has 𝑅 rows and 𝐶*𝐹 columns, 36 
where 𝐶 and 𝐹 is the length of the channel dimension and frequency dimension of the tensor, 37 
respecƟvely. Then, for a new EEG recording 𝑥௡௘௪ ∈ 𝑅஼×ி, its loadings are computed by 38 
𝑃ା × vectorized(𝑥௡௘௪), where 𝑃ା is the pseudo-inverse of 𝑃. The results of this operaƟon are weights 39 
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or loadings represenƟng how strongly each factor is expressed in the new recording. Note that this 1 
operaƟon does not guarantee non-negaƟve loadings. 2 

AssociaƟons and staƟsƟcal tesƟng: Pearson’s correlaƟon coefficient and Spearman’s rank correlaƟon 3 
coefficient were used to quanƟfy associaƟons of factor loadings with paƟent age and ranked degree of 4 
slowing, respecƟvely. The corresponding p-values test the null hypothesis that the distribuƟons 5 
underlying the samples are uncorrelated. The Mann-Whitney-Wilcoxon two-sided test24 was used for 6 
group-level comparisons with Bonferroni correcƟon25 for mulƟple comparisons. The test was performed 7 
using the stat-annot26 Python library. 8 

PredicƟve modeling: PaƟent-specific loadings were robustly scaled (subtract median, scale by 9 
interquarƟle range) and used as features in a logisƟc regression binary classifier. We explored three sets 10 
of features: PSD loadings, PC loadings, and both concatenated together. Nested k-fold cross-validaƟon 11 
(CV) was done to assess variability of model performance on different held-out sets (outer CV loop, 10-12 
fold) and to tune the ElasƟcNet regularizaƟon strength41 hyperparameter for each training set (inner CV 13 
loop, 5-fold). Grid for the hyperparameter search ranged between [0, 1] with increments of 0.1. Both CV 14 
loops used disjoint paƟent splits with target straƟficaƟon. Loss values were weighted using target class 15 
proporƟons to handle class imbalance. For each outer CV fold, a classifier was trained using the best 16 
hyperparameter seƫng found by the inner CV loop and evaluated on the corresponding outer test fold. 17 
We used the area under receiver operaƟng characterisƟc curve (AUC) to evaluate model performance 18 
across the outer CV folds. PredicƟve modeling was performed using the scikit-learn42 Python library. 19 

Data, code, and factor availability: Summary data and code can be made available by the corresponding 20 
authors upon reasonable request. 21 

 22 

3. Results 23 

3.1 CharacterisƟcs of the Neurological PopulaƟon, Focal Epilepsy Cohort, and Controls 24 

Table 1 provides an overview of the populaƟon-level rouƟne EEG dataset. This dataset included 13,652 25 
recordings from 12,134 unique paƟents. Expert visual review of these EEG recordings based on the Mayo 26 
Clinic grading criteria resulted in 45.7% (N=6,242) normal EEGs, 24.9% (N=3,395) EEGs with mild slowing 27 
(Dysrhythmia grade 1), 13.2% (N=1,800) EEGs with moderate to severe slowing (Dysrhythmia grade 2), 28 
and 16.2% (N=2,215) EEGs with epilepƟform abnormaliƟes (Dysrhythmia grade 3). From the populaƟon 29 
of Dysrhythmia grade 3 EEGs, we idenƟfied 121 focal epilepsy paƟents with clinically confirmed epilepsy 30 
in either the frontal (N=21) or temporal (N=100) region. In addiƟon, a set of 76 matched non-epilepƟc 31 
controls with normal EEGs and without a diagnosis of any neurological disease were idenƟfied for group 32 
comparisons. Table 2 summarizes the characterisƟcs of the confirmed epilepsy paƟents and controls. 33 

 34 

Data Property Summary Statistics 
Routine EEG recordings Total recordings: 13,652 

Unique patients: 12,134 
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Age Range: 18-103.7 
Mean: 50.9 (± 19.4) 
Age groups:  
18 – 30: 2,639 
30 – 50: 3,785 
50 – 70: 4,563 
>70: 2,665 

Sex Female = 6,464 (53.3%) 

EEG Grade (based on expert visual 
review) 

Normal: 6,242 (45.7%) 
Dysrhythmia 1: 3,395 (24.9%) 
Dysrhythmia 2: 1,800 (13.2%) 
Dysrhythmia 3: 2,215 (16.2%) 

Table 1: CharacterisƟcs of the overall neurologic clinical populaƟon. 1 

Study Cohort Summary Statistics 
Temporal Lobe Epilepsy (TLE) Unique records: 100 

Unique participants: 100 
Age: 52.5 (19.9) 
Sex: 50 (50%) Female 
Drug response status:  

44 Drug-resistant 
28 Drug-responsive 

MRI status:  
36 Non-lesional 
43 Lesional 

Frontal Lobe Epilepsy (FLE) Unique records: 25 
Unique participants: 21 
Age: 37.6 (13.6) 
Sex:  12 (57.1%) Female 

Non-epileptic Controls (CTL) Unique records: 76 
Unique participants: 76 
Age: 49.2 (19.3) 
Sex: 41 (53.9%) Female 

Table 2: CharacterisƟcs of epilepsy cohort and controls used in this study. 2 

3.2 Tensor DecomposiƟon Extracts Interpretable SpaƟo-spectral PaƩerns from Normal EEGs 3 
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 1 
Figure 2: Data-driven populaƟon-level paƩerns of eyes-closed awake EEG data extracted from 6,242 2 
normal EEGs. Three-dimensional tensors containing spaƟo-spectral informaƟon were decomposed using 3 
non-negaƟve Canonical Polyadic DecomposiƟon to yield six factors. Each row corresponds to a 4 
combinaƟon of a power spectral and connecƟvity-based factors, which is defined by the common 5 
spectral profile, the spaƟal power distribuƟon over the 19 channels, the pair-wise channel connecƟvity, 6 
and loadings of EEG recordings in the PSD-tensor and PC-tensor. Recording loadings are visualized as 7 
histograms, spaƟal acƟvaƟons are visualized as scalp topographical distribuƟons, and spectral 8 
acƟvaƟons are visualized as power spectral density. Note that the PSD-tensor was decomposed first, and 9 
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the resulƟng frequency factors were kept frozen during the decomposiƟon of the PC-tensor to align 1 
interpretaƟon of the factors. (a.u. refers to absolute units.) 2 

Figure 2 shows the factors obtained by decomposing the normal EEGs in the populaƟon dataset, i.e., the 3 
populaƟon PSD-tensor and PC-tensor. The frequency profiles are largely disƟnct, except in the case of 4 
factors 2 and 6, where their spaƟal distribuƟons uniquely characterize the overall paƩern. 5 

Factor 1 shows the characterisƟc 1/f frequency profile with minor deviaƟons around the oscillatory 6 
bands and spaƟal acƟvaƟons in the fronto-temporal and posterior regions, characterizing the 7 
background non-oscillatory (i.e., aperiodic) brain acƟvity. Factor 2 shows high frequency acƟvaƟons 8 
(>25Hz) in the prefrontal region, suggesƟng eye-movement-related arƟfacts. Factor 3 predominantly 9 
contains high-theta/low-alpha acƟvity (6-9Hz) in fronto-parietal regions, possibly indicaƟng the high 10 
theta rhythm or slow alpha rhythm. Factor 4 shows occipital acƟvaƟons in 8-13Hz, resembling the 11 
characterisƟc posterior dominant rhythm. Factor 5 shows centro-parietal acƟvaƟons in 13-25Hz, 12 
capturing the Rolandic beta acƟvity. Lastly, factor 6 shows high-frequency acƟvaƟons (>25Hz) in the 13 
temporal regions, which may represent muscle arƟfacts. The analyses and findings presented in the 14 
remaining text focus on the four putaƟvely physiologic factors (1, 3, 4, and 5). 15 

3.3 PaƟent Loadings Show SensiƟvity to Aging and EEG Dysrhythmia Grades 16 

 17 
Figure 3: AssociaƟons of PSD and PC loadings of the four putaƟvely physiologic factors (1, 3, 4, and 5) 18 
with physiological (aging) and pathological (slowing, epilepƟform acƟvity) variables. Factor numbers 19 
correspond to those in Figure 2. Loadings describe acƟvity found in eyes-closed awake EEG segments 20 
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selected from expertly graded rouƟne EEGs in the populaƟon-level dataset. (A) CorrelaƟons of PSD and 1 
PC loadings of normal EEGs with paƟent age. (B) CorrelaƟons of PSD and PC recording loadings with 2 
expert-assigned severity of slowing. The ranked severity levels are 0 (normal EEG, no slowing), 1 3 
(Dysrhythmia 1 EEG, mild slowing), and 2 (Dysrhythmia 2 EEG, moderate to severe slowing (C) 4 
CorrelaƟons of PSD and PC recording loadings with the presence of epilepƟform acƟvity (Dysrhythmia 3 5 
EEGs abbreviated as “Dys3”). Significance levels correspond to the Mann-Whitney-Wilcoxon test. Loading 6 
values along y-axes are in arbitrary units. * indicates a significant correlaƟon with p < 0.05 and **** 7 
indicates a significant correlaƟon with p < 1e-4. 8 

 9 

Figure 3 shows the associaƟons between the loadings of populaƟon EEGs for factors 1, 3, 4, and 5 10 
against paƟent age and expert-assigned EEG grades 11 

Trends with paƟent age (Fig. 3A): Factor 3 is posiƟvely correlated with age (p<1e-4), while factors 1 (PSD: 12 
p<1e-4, PC: p<0.01) and 4 (p<1e-4) are negaƟvely correlated. Although the correlaƟon strength varies 13 
between the PSD and PC loadings of the same factor, they are direcƟonally consistent. CorrelaƟons of 14 
factor 5 are either marginally significant (PSD: p<0.05) or not significant (PC). 15 

Trends with expert-ranked degree of slowing (Fig. 3B): Factor 1 is posiƟvely correlated with severity of 16 
slowing (p<1e-4), while factor 4 is negaƟvely correlated (p<1e-4). CorrelaƟon of factor 3 is either low 17 
(PSD: p<0.05) or not significant (PC). The correlaƟon of factor 5, although significant (p<1e-4), is 18 
direcƟonally divergent between the PSD and PC loadings. 19 

Differences in presence of epilepƟform acƟvity (Fig. 3C): Here, loadings of EEGs with epilepƟform acƟvity 20 
were compared against those of normal EEGs. PSD loadings of factor 1 increase under presence of 21 
epilepƟform acƟvity, while those of factors 4 and 5 decrease (p<1e-4 in every case). Factor 3 PSD 22 
loadings show no significant change. PC loadings of factors 1 and 4 show trends consistent with 23 
corresponding PSD loadings (p<1e-4 in both cases). However, the PC loadings of factors 3 and 5 show 24 
slight increases (p<1e-4). 25 

3.4 QuanƟtaƟve Analysis of Normal Interictal EEG Reveals Differences in Focal Epilepsy 26 
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 1 
Figure 4: DifferenƟaƟon of focal epilepsy and epileptogenic. (A-B) PSD and PC loadings of focal epilepsy 2 
paƟents (FOCAL-EPI) are compared to those of non-epilepƟc controls (CTL) across the four physiologic 3 
populaƟon factors. Loading values along y-axes are in arbitrary units. * indicates a significant difference 4 
with p < 0.05 and **** indicates a significant difference with p < 1e-4 in the Mann-Whitney-Wilcoxon 5 
test. (C) PSD and PC loadings are used as features to classify focal epilepsy vs. non-epilepƟc controls 6 
within a binary classificaƟon framework. (D-E) The same classificaƟon is broken down by temporal (TLE) 7 
and frontal (FLE) sub-types of focal epilepsy. (F) DifferenƟal diagnosis of the epileptogenic lobe, i.e., TLE 8 
vs. FLE, within the focal epilepsy cohort. Note that all classificaƟons used only the four putaƟve 9 
physiologic factors (1, 3, 4, and 5) and were conducted with three sets of features/loadings - only those 10 
of PSD factors (“PSD only”), only those of PC factors (“PC only”), or both concatenated (“PSD + PC”). 11 

Figure 4 shows results for group differences and binary classificaƟons between non-epilepƟc controls 12 
and the focal epilepsy cohort using paƟent-specific PSD and PC loadings of the physiologic factors. We 13 
find focal epilepsy paƟents to have elevated factor 1 (p<0.001) and factor 3 (p<0.05). in both PSD and PC 14 
comparisons (Figure 4A-B). In addiƟon, we find PC loadings for factor 5 (p<0.05) significantly different in 15 
focal epilepsy relaƟve to non-epilepƟc controls. Factor 4 loadings do not show significant differences in 16 
either the PSD or PC comparisons. 17 

Figure 4C shows classificaƟon of focal epilepsy vs. non-epilepƟc paƟents is possible above chance levels, 18 
with PC loadings providing the largest contribuƟon to the average classificaƟon performance (AUC=0.76). 19 
This performance is marginally improved by using a combinaƟon of PSD and PC loadings (AUC=0.78). All 20 
feature sets show high variability in performance across the held-out folds (0.09-0.13). Figures 4D-E 21 
show results for the classificaƟon of frontal (FLE) and temporal lobe epilepsy (TLE) against non-epilepƟc 22 
controls. TLE is beƩer differenƟated from non-epilepƟc paƟents than FLE (top mean AUC=0.8 vs. 0.7). 23 
TLE is best differenƟated by combined PSD and PC loadings (AUC=0.80), with PC loadings contribuƟng 24 
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the most to classifier performance (AUC=0.77). FLE is best differenƟated using PC loadings alone 1 
(AUC=0.70), and the addiƟon of PSD loadings slightly worsens the performance (AUC=0.68). Variability in 2 
AUC performance across folds ranges from 0.05-0.19. Lastly, Figure 4F shows the classificaƟon of TLE vs 3 
FLE based on factor loadings derived from normal interictal epochs. Results indicate that none of the 4 
feature sets can differenƟate the epileptogenic lobe (i.e., temporal vs. frontal) in focal epilepsy above 5 
chance levels (AUCs range between 0.47-0.55) based on normal interictal epochs. 6 

3.5 QuanƟtaƟve Loadings of Normal Interictal EEG Exhibit Capacity for DifferenƟaƟon in Drug-7 
Resistant and Non-lesional Epilepsy 8 

 9 
Figure 5: DifferenƟaƟon of drug-resistant and non-lesional temporal lobe epilepsy (TLE) paƟents using 10 
four physiologic paƩern loadings (factors 1, 3, 4, and 5). (A) Loadings are compared between non-11 
epilepƟc controls (CTL), TLE paƟents that are drug resistant (TLE-resis) and those that are drug responsive 12 
(TLE-respon). (B) Binary classificaƟons of drug resistant vs. responsive paƟents using the same feature 13 
sets as Figure 4. (C-D) Analyses similar to (A) and (B) are conducted for lesional (TLE-les) and non-lesional 14 
(TLE-nonles) TLE sub-groups. Loading values in (A) and (C) along y-axes are in arbitrary units. * indicates 15 
a significant difference with p < 0.05 and **** indicates a significant difference with p < 1e-4 in the 16 
Mann-Whitney-Wilcoxon test with Bonferroni correcƟon. 17 

Figure 5A shows differences in loadings of non-epilepƟc controls (CTL), drug-responsive (TLE-respon), 18 
and drug-resistant (TLE-resis) temporal epilepsy paƟents. Only the PSD loadings for factor 5 show 19 
differences between the two sub-groups (p<0.05), while the others show differences only relaƟve to 20 
controls. None of the PC loadings show significant differences between the two sub-groups. PC loadings 21 
other than those of factor 1 show no differences between non-epilepƟc controls and both sub-groups. 22 
Figure 5B shows the classificaƟon performance of different sets of factor loadings in classifying drug 23 
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resistance. PSD loadings provided the best average performance (AUC=0.73) while PC loadings 1 
performed marginally beƩer than chance (AUC=0.58). Variability in model performance ranged from 2 
0.07 to 0.13 AUC points. 3 

Figure 5C shows differences in normal interictal EEG loadings between non-epilepƟc controls (CTL), non-4 
lesional (TLE-nonles), and lesional (TLE-les) temporal lobe epilepsy. While PSD loadings of factors 1, 3, 5 
and 4 show significant differences relaƟve to non-epilepƟc controls for both groups, only factor 4 shows 6 
a significant difference between non-lesional and lesional paƟents (p<0.05). Trends seen in factors 1 and 7 
3 are similar between the PSD and PC loadings. However, none of the PC loadings differed significantly 8 
between the MRI sub-groups. Figure 5D shows the classificaƟon between lesional and non-lesional 9 
paƟents. PSD loadings best differenƟate the two groups of paƟents with an AUC of 0.67. PC loadings, 10 
either alone or in addiƟon to PSD loadings, significantly worsened the average classificaƟon 11 
performance. However, all models exhibited high variability in AUC performance (0.11-0.22 AUC points). 12 

 13 

4. Discussion 14 

The goal of this study was to explore whether normal interictal EEGs of people with focal epilepsy 15 
contain subtle signals that could be used to augment epilepsy diagnosis and treatment planning, 16 
especially in paƟents with drug-resistant and MRI normal epilepsy. We proposed a scalable, physiology-17 
informed, and data-driven tensor decomposiƟon approach that extracts spaƟo-spectral paƩerns from a 18 
large populaƟon of normal rouƟne EEGs. Each paƩern had a disƟnct signature in the EEG channel 19 
(spaƟal) and frequency (spectral) dimensions. We obtained paƟent-specific paƩern loadings or 20 
“features” that allowed us to study group differences through staƟsƟcal comparisons and binary 21 
classificaƟons. Our findings suggest that quanƟtaƟve descripƟon and analysis of visually reviewed 22 
normal rouƟne EEGs has the potenƟal to provide addiƟonal value to clinical decision-making in epilepsy. 23 

Tensor DecomposiƟon with Spectral Priors Recovers Interpretable PaƩerns 24 

This study hypothesized that the informaƟon content of normal EEGs can be explained by a 25 
parsimonious number of latent paƩerns. To test this hypothesis, we decomposed the spectral and 26 
connecƟvity contents of a populaƟon of normal rouƟne EEGs into several meaningful paƩerns (i.e., 27 
factors) using a canonical polyadic tensor decomposiƟon. In general, determining the exact number of 28 
factors, i.e., the presumed rank of the populaƟon tensor, is challenging and involves trial-and-error43. 29 
However, prior work has demonstrated that the morphological content of the scalp EEG PSD can be 30 
sufficiently explained by six physiological components, namely one aperiodic 1/f paƩern and five 31 
oscillatory bands35. We used this spectral parameterizaƟon model to construct six corresponding 32 
frequency priors that, in turn, provided the spectral iniƟalizaƟon as well as an appropriate rank for the 33 
decomposiƟon. Furthermore, we fixed the spectral paƩerns extracted from PSD-tensor during the 34 
decomposiƟon of PC-tensor to recover semanƟcally consistent paƩerns from both the tensor types. 35 

Several prior works have explored data-driven or unsupervised recovery of spaƟal, spectral, or temporal 36 
profiles of oscillatory sources and background paƩerns comprising spontaneous EEG acƟvity44–48. In this 37 
study, we presented an approach that quanƟfies spaƟo-spectral EEG paƩerns with the goal of decision 38 
support when clinical EEGs are normal on expert visual review. Beyond the use of spectral-prior-based 39 
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iniƟalizaƟon, our approach did not place any assumpƟons on the staƟsƟcal nature or morphology of the 1 
latent EEG paƩerns and can be applied without sophisƟcated arƟfact removal. 2 

The populaƟon paƩerns (Fig. 2) can be loosely interpreted to reflect dominant and overlapping 3 
physiological processes whose linear superposiƟon (summaƟon) yields the original EEG trace. We then 4 
interpreted the idenƟfied paƩerns based on clinical domain knowledge. The putaƟve interpretaƟons of 5 
these paƩerns are supported by their sensiƟvity to paƟent age and severity of pathology (Fig. 3). 6 

AugmenƟng Epilepsy Diagnosis and Treatment Planning 7 

Scalp EEG is an indispensable tool in epilepsy that can non-invasively record brain electrical acƟvity with 8 
excellent temporal resoluƟon. Due to this unique resoluƟon, scalp EEG tests can capture transient 9 
interictal epilepƟform discharges (IEDs) such as epilepƟform spikes or sharp waves associated with 10 
epilepsy49. In current clinical pracƟce, the expert idenƟficaƟon and characterizaƟon of IEDs on rouƟne 11 
scalp EEG is crucial for epilepsy diagnosis. RouƟne EEGs are also useful in measuring the efficacy of 12 
ongoing ASM trials50. In the case of drug-resistant epilepsy, the distribuƟon of IEDs idenƟfied on scalp 13 
EEGs can help localize the seizure onset zone, especially in paƟents with no visible lesion on MRI. Thus, 14 
the idenƟficaƟon of IEDs is central to the clinical value of scalp EEGs in current pracƟce. 15 

Recent studies have shown significant interest in the automated idenƟficaƟon of IEDs to augment expert 16 
visual review 51–53. However, the diagnosƟc yield of a single rouƟne scalp EEG is limited, with only 29-55% 17 
of them capturing epilepƟform abnormaliƟes54. MulƟple EEGs may increase epilepƟform yield up to 18 
~75%55,56, but the expected gain sharply drops aŌer the third normal EEG. As such, normal interictal EEGs 19 
can cause treatment delays in mulƟple stages of epilepsy care. Previous studies that explored biomarkers 20 
of interictal non-epilepƟform EEG support the possibility of augmenƟng decision support in epilepsy 21 
using spectral and connecƟvity-based EEG features17–19,23,57–61. Drawing inspiraƟon from these smaller 22 
scale studies, we explored data-driven recovery of spectral features using a large populaƟon dataset of 23 
normal EEGs and analyzed their differences in epilepsy. 24 

Our findings in Figures 4 and 5 suggest that normal interictal EEG acƟvity of focal epilepsy paƟents 25 
contains significant differences in putaƟve physiologic oscillaƟons (factors 3, 4, and 5) as well as 26 
aperiodic 1/f(Hz) acƟvity (factor 1). Increases in expression of 1/f and theta frequency acƟvity, coupled 27 
with a decrease in alpha frequency may represent general intermiƩent slowing of the EEG background. 28 
Although we idenƟfied differences in factor 5, the differences in beta frequency rhythm may arise due to 29 
the presence of ASMs. The factors exhibited relaƟvely lower performance in detecƟng FLE (Fig. 4E) and 30 
in differenƟaƟng FLE vs TLE (Fig. 4F). We believe that this may be due to either the lower sample size of 31 
the FLE cohort compared to the TLE cohort (Fig. 4D) or the global/symmetric nature of the populaƟon 32 
paƩerns. 33 

Understanding Subtle VariaƟon in Visibly Normal EEGs through their QuanƟtaƟve Descriptors 34 
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 1 
Figure 6: Variability in EEG power and phase characterisƟcs based on factor loading values. (A) Variability 2 
in the power spectra of EEGs whose PSD loadings score in the boƩom 10-percenƟle (low), between 40-3 
60-percenƟle (medium), and top 10-percenƟle (high). Examples are shown for factors 3, 4, and 5. (B) 8-4 
Hz-filtered EEG traces of the weakest (top) and strongest (boƩom) channel pairs for an example EEG that 5 
scored in the top 10-percenƟle for factor 3 (whose spectral power peaks at 8Hz). Overlapping EEG traces 6 
reveal phase relaƟonships, i.e., Ɵme lags that maximize correlaƟon within the channel pairs. These lags 7 
or phase differences are visualized in polar coordinates (right). 8 

Our results (Figure 4) indicate that factor loadings extracted from normal EEG segments have the 9 
potenƟal to classify focal epilepsy above chance levels (best mean AUC=0.78).  We analyzed the changes 10 
in actual power spectral and Ɵmeseries data corresponding to the changes in factor loadings to further 11 
illuminate the factor interpretaƟons. 12 

Fig. 6A shows the full power spectra of normal EEG segments whose loadings fall in the boƩom 10-13 
percenƟle (low), between 40-60-percenƟle (medium) and top 10-percenƟle (high) of a parƟcular 14 
physiologic oscillatory factor. We find that EEGs that score high in factors 3, 4, and 5 have higher power 15 
in high-theta/low-alpha, alpha, and beta bands, respecƟvely. 16 

Effects of the phase-lag-based connecƟvity (i.e., wPLI) at a parƟcular frequency can be observed by 17 
leading/lagging relaƟonships in the Ɵme-domain EEG signal filtered at that frequency. Fig. 6B focuses on 18 
factor 3 whose spectral power peaks at 8Hz, with the weakest edge connecƟng Fp1 and Fp2, and the 19 
strongest edge connecƟng P4 and P8 (shown in Figure 2). We visualize the phase relaƟonships using an 20 
example EEG segment whose loading value was in the top 10-percenƟle for factor 3 aŌer filtering its EEG 21 
trace around 8-Hz to. We find that the strongest channel pair (Fig 6B, boƩom) has a consistent non-zero 22 
phase difference, while the weakest channel pair (Fig 6B, top) has no phase difference. These phase 23 
differences can be quanƟfied by the Ɵme lag that maximizes Ɵmeseries correlaƟon within the channel 24 
pair and are visualized in polar coordinates (Fig 6B, right). 25 

These illustraƟons highlight that the quanƟtaƟve loading values provided by this tensor-based 26 
framework are interpretable based on physiologically relevant concepts such as signal power and phase 27 
and offer sensiƟvity to subtle changes in the EEG signal. These subtle changes in normal EEGs are likely 28 
to be missed during tradiƟonal expert visual review, which focuses mostly on transient abnormaliƟes in 29 
the Ɵme domain. 30 
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Influence of Sample Size and Selected EEG Epochs on Study Findings 1 

 2 
Figure 7: Repeated CTL vs TLE classificaƟons using two bootstraps to evaluate bias introduced by the 3 
dataset selecƟon process. Strategy A (leŌ) uses either the first or last three of the six EEG epochs from a 4 
subset of TLE paƟents (N=41). Strategy B (right) uses at most 3 epochs that are randomly chosen but uses 5 
all available TLE paƟents (N=100).  6 

The rouƟne EEG protocol contained diverse paƟent states (eyes-closed, eyes-open, awake, drowsy, 7 
asleep) and provocaƟve maneuvers62 (phoƟc sƟmulaƟon, hypervenƟlaƟon, sleep deprivaƟon), making it 8 
necessary to select EEG epochs corresponding to a fixed paƟent state for data analysis. Such data 9 
selecƟon may introduce bias in our findings since we selected only a maximum of six EEG epochs from 10 
each recording for our analyses. 11 

To evaluate whether a bias exists, we repeated the controls vs TLE classificaƟon (result in Fig. 4D) with 12 
two bootstrapping strategies, whose results are shown in Figure 7. In strategy A (Fig. 7A), we considered 13 
TLE paƟents (N=41) with exactly six normal interictal EEG epochs and showed differences in classificaƟon 14 
performance depending on which 50% data are used for classificaƟon (i.e., first three epochs or last 15 
three epochs). Mean performance was higher when the first 3 epochs were used (AUC=0.65) than last 3 16 
epochs (AUC=0.59). In strategy B (Fig. 7B), we maintained the sample size of the original TLE cohort 17 
(N=100) but used at most three randomly picked EEG epochs per recording to perform classificaƟon. For 18 
paƟents with >3 epochs available, 3 epochs were randomly chosen and for those paƟents with <=3 19 
epochs, all epochs were chosen. Our results did not show any significant differences between those two 20 
sampling approaches and the overall performance closely matched that using all available epochs. 21 

These results suggest that: 1) our findings may be sensiƟve to low cohort size but are less likely to be 22 
biased by the algorithmic selecƟon of EEG epochs within a recording, and 2) even as few as three normal 23 
interictal EEG epochs (30 seconds) are sufficient to derive a pretest measure of TLE. 24 

Study LimitaƟons  25 

Our goal in this study was to evaluate whether a quanƟtaƟve analysis of normal EEG segments of 26 
epilepsy paƟents can indicate the possible presence of focal epilepsy. To test this hypothesis, we 27 
analyzed non-epilepƟform interictal segments idenƟfied by a board-cerƟfied epileptologist within EEG 28 
recordings containing epilepƟform abnormaliƟes at other Ɵmes (i.e., Dysrhythmia grade 3). However, an 29 
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analysis using enƟrely normal EEGs of epilepsy paƟents will be necessary to evaluate the true potenƟal 1 
of our results. However, idenƟficaƟon of such EEGs requires extensive review of paƟent records, which 2 
we hope to accomplish in a follow-up study. Furthermore, eyes-closed wakefulness was determined by a 3 
heurisƟc algorithm validated in previous studies23,63. Events markers or comments added by EEG 4 
technologists70 during the EEG study could help to idenƟfy the paƟent’s behavioral state more reliably. 5 
Extension of our analysis to different sleep states will be pursued in future studies.  6 

The esƟmaƟon of connecƟvity could benefit from EEG source modeling to avoid volume conducƟon71 7 
and acƟve reference72 effects on the scalp. However, the lower spaƟal density of clinical EEGs prevented 8 
source/inverse modeling efforts, as previous studies have shown that EEG source modeling with fewer 9 
than 64 channels is highly error-prone65–67. Phase-based connecƟvity, and wPLI in parƟcular, was chosen 10 
to suppress spurious zero-lag correlaƟons and parƟally alleviate the effects of volume conducƟon67,68. 11 
Due to absence of paƟent-specific head models, average referencing was chosen to miƟgate reference-12 
related effects on connecƟvity beƩer than alternaƟves like Cz and linked mastoids69. 13 

Our classificaƟon analyses demonstrated a high level of variance between cross-validaƟon folds (Fig. 4 14 
and Fig. 5). Such variance could be a result of low sample size and the potenƟal effects of 15 
comorbidiƟes70,71 and medicaƟons72.  The effects of these confounders may be miƟgated either by 16 
comprehensive paƟent review to idenƟfy a clinically homogeneous set of focal epilepsy paƟents or with 17 
the use of larger epilepsy and matched control cohorts. Given that the EEG background paƩerns 18 
idenƟfied in this study are not specific to epilepsy, apparent differences in factor loadings must be 19 
interpreted within the appropriate clinical context. AddiƟonally, validaƟons using normal interictal EEGs 20 
from an external site are needed to assess the generalizability of the presented findings. 21 

 22 

5. Conclusion 23 

Normal interictal EEGs recorded from epilepsy paƟents can lead to delays in neurological care, especially 24 
in paƟents with drug-resistant and normal MRI epilepsy. This study explored the value of quanƟtaƟve 25 
analysis of normal interictal EEGs in supporƟng a focal epilepsy diagnosis. ApplicaƟon of this 26 
unsupervised learning approach could benefit treatment planning in the future. We presented a 27 
scalable, interpretable, data-driven approach based on canonical polyadic decomposiƟon that recovered 28 
physiologically meaningful spectral power and phase-based connecƟvity paƩerns from a populaƟon-29 
scale dataset of normal EEGs and provided paƟent-specific loadings for each paƩern. These loadings 30 
demonstrated value in classifying focal epilepsy and, in temporal lobe epilepsy, drug resistance and 31 
absence of lesions. These findings suggest that normal rouƟne EEGs may contain subtle abnormaliƟes 32 
that can be captured using a quanƟtaƟve approach and be potenƟally used to augment decision-making 33 
in clinically challenging scenarios. 34 
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