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Abstract 
Pancreatic cancer is one of the most deadly cancers, with early detection being critical for improving patient 
outcomes. This study evaluates the performance of several machine learning models in diagnosing 
pancreatic cancer using a synthetic dataset. We tested models including Logistic Regression, Random 
Forest, Support Vector Machine (SVM), Neural Networks, Decision Trees, and SuperLearner. Despite 
achieving high accuracy (76.05%-76.35%), the models struggled with sensitivity, which is crucial in the 
context of medical diagnoses. Among the models, the SuperLearner model achieved the highest precision 
(66.67%), while the Random Forest failed to detect any true positive cases. This highlights the need for 
further improvements, such as resampling or decision threshold tuning, to enhance the sensitivity of the 
models. The study concludes that while more complex models like SuperLearner provide high precision, 
simpler models like Logistic Regression may offer a better balance between accuracy and interpretability 
in clinical practice. 

Keywords 
Pancreatic cancer, machine learning, diagnosis, sensitivity, precision, SuperLearner, Logistic Regression, 
Random Forest, SVM, Neural Networks. 

see manuscript DOI for details

WITHDRAWN

remix, or adapt this material for any purpose without crediting the original authors.
preprint (which was not certified by peer review) in the Public Domain. It is no longer restricted by copyright. Anyone can legally share, reuse, 

The copyright holder has placed thisthis version posted January 3, 2025. ; https://doi.org/10.1101/2025.01.02.25319913doi: medRxiv preprint 

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

https://doi.org/10.1101/2025.01.02.25319913


	 2	

1. Introduction 
Pancreatic cancer is a devastating disease with a global incidence rate that continues to rise. It is the seventh 
leading cause of cancer-related deaths worldwide, with a dismal five-year survival rate of less than 10% 
(Gelman et al., 2020). Despite advances in medical technology, the disease remains notoriously difficult to 
detect in its early stages, primarily due to its asymptomatic nature. By the time symptoms such as jaundice, 
abdominal pain, or weight loss become apparent, the disease has often progressed to an advanced stage 
where treatment options are limited and largely palliative. 
Traditional diagnostic methods, including imaging techniques like CT and MRI scans, as well as invasive 
procedures such as biopsies, play a critical role in confirming pancreatic cancer diagnoses. However, these 
approaches are not without limitations. Imaging techniques often lack the sensitivity to detect small or 
early-stage tumors, and biopsies, while more definitive, are invasive and carry risks of complications. 
Additionally, these methods are resource-intensive, making them less accessible in low-resource settings 
where early diagnosis could make a significant difference in outcomes. 
The emergence of artificial intelligence (AI) and machine learning (ML) has revolutionized the landscape 
of medical diagnostics. These technologies offer the potential to analyze vast and complex datasets—
encompassing patient demographics, clinical symptoms, imaging data, and even genetic profiles—to 
identify patterns and correlations that might elude traditional diagnostic methods. Machine learning, in 
particular, has shown promise in enhancing the accuracy and speed of diagnostic processes, offering a new 
avenue for early detection and personalized treatment strategies. 
However, the application of machine learning in pancreatic cancer diagnosis is fraught with challenges. 
One of the most significant hurdles is the issue of data imbalance. Positive cases of pancreatic cancer are 
relatively rare compared to the negative cases, which can skew machine learning models towards the 
majority class. This imbalance often leads to high accuracy metrics that mask poor sensitivity—a critical 
limitation when the goal is to identify true positive cases. 
Another challenge lies in the interpretability of machine learning models. While simpler models like logistic 
regression provide clear and interpretable outputs, more complex models such as neural networks and 
ensemble methods often operate as "black boxes," making it difficult for clinicians to understand and trust 
their predictions. Bridging this gap between model performance and clinical applicability is essential for 
the successful integration of machine learning into medical practice. 
 
The present study aims to address these challenges by systematically evaluating the performance of six 
diverse machine-learning models in diagnosing pancreatic cancer. By leveraging a synthetic dataset 
designed to simulate real-world clinical scenarios, we explore the strengths and limitations of each model, 
focusing on metrics such as accuracy, sensitivity, and precision. The findings of this study not only highlight 
the potential of machine learning in this critical area but also underscore the need for advancements in 
model interpretability, data preprocessing, and handling of class imbalance to enhance their clinical utility. 

2. Methods 

2.1. Data Description 
The dataset used for this study is synthetic, generated to simulate the risk factors and symptoms associated 
with pancreatic cancer. The data consists of various predictors, including demographic features (age, 
gender), clinical factors (obesity, genetic mutations, diabetes history), and diagnostic symptoms (weight 
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loss, abdominal pain, jaundice). The target variable, `diagnosis,` is binary, where `0` represents a negative 
diagnosis (no pancreatic cancer) and `1` represents a positive diagnosis (presence of pancreatic cancer). 

2.2. Model Selection 
We selected six machine learning models for comparison: 
- Logistic Regression: A linear model often used for binary classification tasks. 
- Random Forest: An ensemble method that uses decision trees to improve classification accuracy. 
- Support Vector Machine (SVM): A model that tries to find the optimal hyperplane to separate classes in 
the feature space. 
- Neural Network: A non-linear model designed to capture complex relationships in data through multiple 
layers. 
- Decision Tree: A hierarchical model that splits the data based on the most significant feature. 
- SuperLearner: An ensemble method that combines several base learners to make predictions based on a 
weighted combination. 

2.3. Evaluation Metrics 
To evaluate model performance, we focus on several key metrics: 
- Accuracy: The proportion of correct predictions (both true positives and true negatives). 
- Sensitivity (Recall): The ability of the model to correctly identify true positive cases (i.e., detect cancer). 
- Precision: The proportion of positive predictions that are actually correct. 
- F1-score: The harmonic mean of precision and sensitivity. 
- Balanced Accuracy: The average of sensitivity and specificity, useful for imbalanced datasets. 

2.4. Preprocessing 
The dataset was split into training (80%) and test (20%) sets. The data was preprocessed by handling 
missing values, scaling numerical features, and encoding categorical variables where necessary. No 
additional resampling techniques (like oversampling or undersampling) were applied during training to 
preserve the original distribution of the dataset. 

3. Results 

3.1. Model Performance 
The performance metrics presented provide an overview of the strengths and weaknesses of each machine 
learning model. All models achieved comparable accuracy, ranging narrowly between 76.05% and 76.35%, 
indicating their general capability to classify data. However, accuracy alone is insufficient to evaluate their 
utility in the medical diagnostic context, where identifying true positive cases is critical. Sensitivity, a vital 
metric for detecting true positive cases, was disappointingly low across all models. Random Forest and 
Decision Tree performed the poorest in this regard, with both failing to identify any true positive cases, 
underscoring their inability to handle the class imbalance present in the dataset. 

SuperLearner demonstrated the highest precision at 66.67%, reflecting its capability to minimize false 
positives effectively. However, its sensitivity was only 0.42%, suggesting that it prioritized the correct 
classification of negative cases at the expense of identifying true positives. On the other hand, the Support 
Vector Machine (SVM) achieved the highest sensitivity at 1.90%, albeit still insufficient for practical use. 
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Logistic Regression and Neural Networks offered a better balance, achieving sensitivities of 1.47% and 
relatively high precision, making them more suitable for applications requiring a trade-off between these 
metrics. 
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Figure	1.	Heatmap of Gene Expression Profiles in Metastasized Cancer and 
Normal Colon Tissues. Each row represents a gene, while each column 
represents a sample. The samples are categorized into two groups: CASE (cyan), 
representing metastasized cancer tissues, and CTRL (purple), representing 
normal colon tissues. The color scale indicates gene expression levels: red for 
up-regulated genes (higher expression), blue for down-regulated genes (lower 
expression), and yellow/white for intermediate expression levels 
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Figure	2.	Principal	Component	Analysis	(PCA)	of	Gene	Expression	Profiles	in	Metastasized	
Cancer	and	Normal	Colon	Tissues.	The	scatter	plot	represents	the	first	two	principal	components	
(PC1	and	PC2),	which	together	explain	the	majority	of	variance	in	the	dataset	(95.7%	by	PC1).	
Each	point	corresponds	to	a	sample,	categorized	as	CASE	(blue)	for	metastasized	cancer	or	CTRL	
(orange)	for	normal	colon	tissue. see manuscript DOI for details
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Figure	 3. Correlation	 Heatmap	 of	 Gene	 Expression	 Profiles.	 The	 heatmap	 illustrates	 the	 pairwise	
Pearson	correlation	coefficients	between	samples,	with	rows	and	columns	representing	individual	
samples.	The	color	scale	indicates	the	degree	of	correlation:	blue	for	high	negative	correlation,	red	
for	high	positive	correlation,	and	lighter	shades	for	intermediate	values.	Samples	are	grouped	into	
two	 categories:	 CASE,	 representing	metastasized	 cancer	 tissues,	 and	 CTRL,	 representing	 normal	
colon	tissues 

 
Table 1 summarizes the performance of the models across the test set: 

Model Accuracy Sensitivity Precision F1-Score Balanced 
Accuracy 

Logistic 
Regression 

76.35% 1.47% 58.33% 2.89% 38.17% 

Random 
Forest 

76.05% 0% N/A N/A 38.00% 

Support 
Vector 
Machine 
(SVM) 

76.10% 1.90% 50% 2.86% 39.45% 

Neural 
Network 

76.30% 1.47% 58.33% 2.89% 38.17% 

Decision Tree 76.20% 0% N/A N/A 38.00% 
SuperLearner 76.30% 0.42% 66.67% 1.87% 38.21% see manuscript DOI for details
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3.2. Analysis 

The results reveal that all the machine learning models tested achieved similar levels of overall accuracy, 
ranging from 76.05% to 76.35%. However, this metric alone does not provide a comprehensive 
understanding of their performance, especially in the context of medical diagnostics, where detecting true 
positive cases is paramount. Sensitivity, which reflects the ability to identify true positives, was notably 
low across all models. Random Forest and Decision Tree exhibited the poorest sensitivity, with both failing 
to identify any true positive cases in the test set. This significant limitation underscores the difficulty these 
models face in dealing with highly imbalanced datasets. 
Support Vector Machine (SVM) achieved the highest sensitivity at 1.90%, marginally better than Logistic 
Regression and Neural Network, both of which had sensitivities of 1.47%. Despite this modest 
improvement, the sensitivity scores across all models remain insufficient for practical medical applications, 
particularly in diagnosing life-threatening conditions like pancreatic cancer. On the other hand, 
SuperLearner, while demonstrating the highest precision at 66.67%, struggled with sensitivity, achieving a 
score of only 0.42%. This indicates that the ensemble method prioritized the correct classification of 
negative cases over identifying true positives, a common issue when dealing with imbalanced datasets. 
Precision, a measure of how many predicted positives were actually correct, was relatively higher for most 
models compared to sensitivity. SuperLearner's precision score highlights its strength in minimizing false 
positives, but its low sensitivity limits its utility in clinical practice, where the primary concern is ensuring 
that true positive cases are not overlooked. Logistic Regression and Neural Networks also demonstrated 
reasonable precision, making them more balanced options in terms of trade-offs between sensitivity and 
precision. 
The low sensitivity observed across the models emphasizes the critical challenge posed by class imbalance 
in the dataset, where negative instances far outnumber positive ones. This imbalance skews the models 
toward favoring the majority class, resulting in high-accuracy metrics that fail to reflect their inadequacies 
in detecting true positive cases. Such limitations are particularly detrimental in medical diagnostics, where 
early and accurate detection of positive cases can significantly impact patient outcomes. 
Insights from the analysis of the heatmap of gene expression profiles (Figure 1) revealed distinct clustering 
of metastasized cancer and normal colon tissues, suggesting that these gene expression patterns could serve 
as valuable features for improving model sensitivity. By leveraging this biological insight, feature selection 
and engineering could be tailored to focus on the most discriminatory gene expression profiles, enhancing 
the ability of models to detect true positive cases. 
Similarly, the principal component analysis (PCA) plot (Figure 2) demonstrated a clear separation between 
the metastasized cancer and normal colon groups. The first two principal components, which accounted for 
a significant portion of the variance in the data, highlight the presence of underlying patterns that could be 
exploited to improve model performance. These components could be incorporated as additional features 
to enhance the differentiation between positive and negative cases. 
The correlation heatmap (Figure 3) added another layer of understanding by showing strong intra-group 
correlations and distinct clustering patterns between the metastasized cancer and normal colon samples. 
This observation underscores the importance of group-specific characteristics that could inform the 
development of more robust models. Incorporating these patterns through clustering-based preprocessing 
or group-specific feature extraction could help address the limitations posed by class imbalance and 
improve the overall sensitivity of the models. 
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These findings highlight the need for additional techniques to enhance model performance. Resampling 
strategies, such as oversampling the minority class or undersampling the majority class, could mitigate the 
imbalance issue and allow models to better focus on minority class predictions. Feature engineering efforts, 
guided by the insights from PCA and clustering analyses, could further enhance the models' predictive 
power. Additionally, threshold tuning could be employed to prioritize sensitivity over precision, 
particularly in critical medical applications where missing positive cases can have severe consequences. 
Future efforts should also focus on using real-world clinical datasets, which typically include more 
variability and noise, to provide a more accurate representation of model applicability in practical settings. 
By integrating these strategies and leveraging insights from data visualization, machine learning models 
can become more effective and reliable tools for critical healthcare applications. 

4. Discussion 
The findings of this study highlight critical challenges and potential solutions for implementing machine 
learning models in pancreatic cancer diagnostics. One of the primary concerns observed across all models 
was their low sensitivity, a crucial metric in medical diagnostics where the failure to identify true positive 
cases can have severe consequences. Logistic Regression and Neural Networks demonstrated a better 
balance between sensitivity and precision compared to more complex models like SuperLearner and 
Random Forest. However, even these models require further optimization to address the persistent issue of 
class imbalance effectively. 
Addressing class imbalance is paramount to improving the diagnostic accuracy of machine learning models. 
Techniques such as Synthetic Minority Oversampling Technique (SMOTE) and Adaptive Synthetic 
Sampling (ADASYN) can generate synthetic samples to strengthen the representation of the minority class, 
while methods like Tomek Links provide a means to refine the majority class. These resampling strategies 
can help models focus more on detecting true positive cases. Additionally, cost-sensitive learning 
algorithms, which assign higher misclassification penalties to minority class errors, have shown promise in 
prioritizing predictions for rare positive cases. For instance, Weighted Random Forests and cost-sensitive 
SVMs can be tailored to balance the trade-offs between sensitivity and specificity more effectively. 
Threshold tuning presents another avenue to enhance model performance. By lowering the decision 
threshold, models such as Logistic Regression or Neural Networks can classify more cases as positive, 
albeit at the risk of increasing false positives. This trade-off is often acceptable in critical medical contexts, 
where the goal is to minimize missed diagnoses rather than overly focus on specificity. Combining 
threshold adjustments with other techniques, such as resampling or cost-sensitive learning, could further 
bolster the models' ability to identify true positives without sacrificing overall performance. 
Feature engineering and ensemble methods also hold significant potential for improving model robustness. 
Introducing interaction terms between key risk factors or applying dimensionality reduction techniques like 
Principal Component Analysis (PCA) can enhance a model's capacity to capture nuanced patterns in the 
data. Ensemble approaches, such as bagging, boosting, and stacking, offer an additional layer of robustness 
by aggregating predictions from multiple models. While SuperLearner already demonstrates the benefits of 
ensemble methods, its performance could be further optimized by integrating advanced resampling 
strategies or cost-sensitive learning into its framework. 
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Another critical factor for the clinical adoption of machine learning models is interpretability. Simpler 
models like Logistic Regression and Decision Trees provide intuitive insights into the factors driving 
predictions, which are essential for building trust among clinicians. Conversely, more complex models such 
as Random Forest and SuperLearner often operate as "black boxes." Tools like SHAP (SHapley Additive 
exPlanations) and LIME (Local Interpretable Model-agnostic Explanations) can help bridge this gap by 
elucidating individual predictions and aligning them with clinical knowledge. Enhanced interpretability not 
only fosters confidence among medical practitioners but also ensures that predictions can be validated 
against existing diagnostic frameworks. 

Real-world data integration represents another frontier for improving machine learning applications in 
pancreatic cancer diagnostics. Unlike synthetic datasets, real-world clinical data are often noisy and 
incomplete, presenting additional challenges for model training. However, these datasets offer invaluable 
insights into the complexities of patient presentations. Robust preprocessing techniques, including data 
imputation and clinical metadata integration, can help address these challenges. Furthermore, leveraging 
longitudinal datasets that track patient history over time can enrich model training and improve early 
detection capabilities by capturing temporal trends that are often indicative of disease progression. 
Collaboration between data scientists and medical practitioners is essential for translating machine learning 
advancements into practical clinical tools. Clinicians bring domain-specific expertise that can inform 
feature selection and data annotation, while data scientists contribute technical skills for model development 
and optimization. Interdisciplinary teams can bridge the gap between technical innovation and clinical 
applicability, ensuring that machine learning models are both scientifically rigorous and operationally 
feasible. Building such collaborative frameworks will be pivotal in realizing the full potential of machine 
learning for pancreatic cancer diagnosis and other critical healthcare applications. 

5. Conclusion 
This study demonstrates that while machine learning models, including Logistic Regression, Random 
Forest, and SuperLearner, can achieve reasonable accuracy in diagnosing pancreatic cancer, they face 
significant challenges in detecting true positive cases, as reflected by their low sensitivity scores. 
SuperLearner achieved the highest precision, while Random Forest and Decision Tree performed poorly in 
terms of sensitivity. 
The findings suggest that further research is necessary to improve sensitivity and handle class imbalance in 
medical diagnostics. Addressing these limitations will involve strategies such as advanced data 
augmentation, employing novel loss functions tailored for imbalanced data, and leveraging explainable AI 
frameworks to build trust with clinicians. Additionally, integrating diverse data modalities—such as 
imaging and genomics—can significantly enhance the robustness and accuracy of machine learning models. 
While the promise of AI and machine learning in pancreatic cancer diagnosis is undeniable, achieving the 
right balance between sensitivity and precision remains a cornerstone for their clinical adoption. Future 
efforts should focus on real-world validation and fostering collaborations between data scientists and 
medical practitioners to ensure that these technologies are not only technically robust but also practically 
impactful. With continuous innovation, machine learning has the potential to revolutionize early cancer 
detection and improve patient outcomes globally. 
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