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Abstract 

 

Multichannel transceiver coil arrays are needed to enable parallel imaging and B1 manipulation 

in ultrahigh field MR imaging and spectroscopy. However, the design of such transceiver coils 

and coil arrays often faces technical challenges in achieving the required high operating 

frequency at the ultrahigh fields and sufficient electromagnetic (EM) decoupling between 

resonant elements. In this work, we propose a high impedance microstrip transmission line 

resonator (HIMTL) technique that has unique high frequency capability and adequate EM 

decoupling without the use of dedicated decoupling circuits. To validate the proposed technique 

for the ultrahigh field 10.5T applications, a two-channel high impedance microstrip array with the 

element dimension of 8cm by 8cm was built and tuned to 447 MHz, Larmor frequency of proton 

at 10.5T, for signal excitation and reception. Bench tests and numerical simulations were 

performed to evaluate its feasibility and performance. The results show that the proposed high 

impedance microstrip technique can be a simple and robust way to design high frequency 

transceiver coils and coil arrays for ultrahigh field MR applications. 
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Introduction  

Whole-body MR imaging at ultrahigh magnetic fields, such as 7T and 10.5T, offers significant 

advantages, including improved signal-to-noise ratio (SNR), which is crucial for achieving high 

spatial and temporal resolutions as well as enhanced spectral dispersion [1-9]. However, as the 

magnetic field strength increases, the corresponding Larmor frequency rises proportionally, 

posing considerable challenges in designing highly efficient RF coils—key components for MR 

signal excitation and reception. These challenges become even more pronounced in human 

imaging due to the requirement for large RF coils [10-25]. 

At such high frequencies, for example, 447 MHz at 10.5T, tuning RF coils is particularly difficult 

due to their large inductance and non-negligible parasitic capacitance [26]. Furthermore, the 

increased radiative behavior of resonant circuits at high frequencies significantly degrades the 

quality factor (Q-factor) of RF coils and exacerbates electromagnetic (EM) coupling between 

resonant elements in coil arrays, making multichannel coil array design particularly challenging 

[27-34]. 

Microstrip resonators, known for their high-frequency capability, high Q-factors, and reduced 

radiation losses, have been widely utilized in high-field and ultrahigh-field MR applications [35-

42]. Additionally, it has been shown that high-impedance coil designs can reduce EM coupling 

between array elements, as demonstrated in 1.5T NMR phased arrays [43, 44]. Recent studies 

have further validated this approach for ultrahigh-field applications, including 7T [45-50]. 

In this work, we propose a novel microstrip transmission line resonator design that incorporates 

a unique circuit configuration to achieve both high resonant frequency and high impedance. This 

design combines the high-frequency capability of microstrip coils with the excellent EM 

decoupling performance of high-impedance coils, addressing the challenges associated with 

multichannel coil arrays at the ultrahigh field 10.5T. The proposed technique was validated 

through numerical simulations and standard RF measurements on a prototype 2-channel high-

impedance microstrip array. 

The results demonstrate that the proposed high-impedance microstrip coil technique is a 

practical and efficient solution for designing multichannel coil arrays at ultrahigh magnetic fields, 

specifically for 10.5T MR imaging. 
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Methods: 

Two high impedance microstrip resonators with a dimension of 8cm by 8 cm were designed and 

constructed. The 3mm copper tape was used for making the strip conductor. The substrate 

material is Teflon, and its thickness is ~2mm. The coil schematics is shown in Fig 1. Ct and Cm 

are tuning and matching capacitors, respectively. This coil has two resonant modes. The high 

frequency modes possess high impedance feature and thus decoupling advantages, and 

therefore, is used for this 10.5T proton imaging application. The low frequency mode may not 

have a high impedance, and stronger coupling between resonant elements should be expected. 

Fig 2 shows the photograph of the prototype high impedance microstrip coils set up in a plane 

and around a human head phantom. The coil’s resonant frequency, Q-factors, decoupling 

performance were tested on a network analyzer through the measurement of scattering 

parameters. The coil array was further investigated using numerical simulation tool for its B1 

distribution and efficiency of each channel and its decoupling performance.    

 

Results: 

The high impedance microstrip was conveniently tuned to 447MHz level and its input 

impedance was matched to the system’s 50 ohm with a tunable capacitor. The decoupling 

performance was tested in two different gaps between the two resonant elements, 10 mm and 

2mm. Fig 3 shows the results of S11 and S21 measurement of the 10.5T high impedance 

microstrip array when it’s loaded with the human head phantom. The high frequency mode 

(447MHz) demonstrates robust decoupling of -21 dB between two channels when the two 

elements are 10mm apart, while the low frequency mode (at 116MHz) shows stronger coupling 

with a S21 of ~ -7.6 dB. Testing with a smaller gap of 2mm shows the low frequency had an 

unacceptable decoupling, making its resonant peak split, as shown in Fig 4. Therefore, unlike 

the high frequency mode, the low frequency mode does not have the self-decoupling capability. 

A numerical model of the proposed high impedance microstrip coil was built using Ansys 

simulation software. In the numerical modeling and simulation as shown in Fig 5, well defined 

B1 distribution of each channel was observed, indicating the excellent decoupling performance 

of the high frequency mode. The calculated B1+ value, with 2uT/sqrt W maximum, of the coil 

elements is also in a reasonable range.      

 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted January 2, 2025. ; https://doi.org/10.1101/2025.01.02.25319876doi: medRxiv preprint 

https://doi.org/10.1101/2025.01.02.25319876


Conclusion: 

A high impedance microstrip coil array was designed and tested for 10.5T MR applications. The 

coil design technique demonstrates its excellence in high frequency operation and element 

decoupling performance at 447MHz. This technique provides a simple and robust way to design 

high frequency transceiver arrays for ultrahigh field MR applications.  
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Figures: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1. The schematics of the proposed high impedance microstrip RF coil 
operating for 10.5T proton imaging applications. Ct and Cm are tuning and 
matching capacitors, respectively. The coil size is 8cm by 8cm. Width of the 
strip conductor is 3mm while thickness of the Teflon substrate is 2mm. The 
coil can be easily tuned to the high frequency of 447MHz. 
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Figure 2. The photograph of the prototype high impedance microstrip coils set up in a 
plane (A) and around a human head phantom (B)  
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Figure 3. S-parameter measurement of the proposed high impedance microstrip array at 
447MHz. The results demonstrate the excellent decoupling performance of the high 
frequency mode (at 447MHz) while the low frequency mode is weakly coupled. The gap 
between the coil element is 10mm.  
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Figure 4. S-parameter measurement of the proposed high impedance microstrip array 
when the resonant elements are placed 2mm apart. The split peak of mode 1 is observed 
due to strong coupling, while the high frequency mode still maintains decoupled.   
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Figure 5. Numerical modeling and simulation of the proposed high impedance 
microstrip array for 10.5T MR imaging. Well-defined B1 distribution of each channel 
indicates the excellent decoupling performance of the high frequency mode. The 
calculated B1+ of the high impedance microstrip coil is also in a reasonable range.   
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