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Abstract 

Chronological age is a cornerstone of medical decision-making but is limited because individuals 

age at different rates. We recently released an open-source deep learning model to assess 

biological age from chest radiograph images (CXR-Age), which predicts incident all-cause and 

cardiovascular mortality better than chronological age. Here, we compare CXR-Age to two 

established epigenetic aging clocks (First generation – Horvath Age; Second generation - DNAm 

PhenoAge), to test which is more strongly associated with measures of cardiopulmonary disease. 

Our cohort consisted of 2,097 participants from the Project Baseline Health Study (PBHS), a 

prospective cohort study of individuals from four US sites enriched for cardiovascular and 

cardiometabolic disease risk factors. We found that CXR-Age was most strongly associated with 

the presence of coronary calcium, cardiovascular risk factors, worsening pulmonary function, 

increased frailty, and abundance in plasma of two proteins implicated in neuroinflammation and 

aging. Associations with second generation epigenetic clocks were weaker for pulmonary 

function and for all outcomes in younger adults. No associations were found with first generation 

clocks. These results suggest that opportunistic screening using CXR-Age may help identify high 

risk individuals who could benefit from directed screening and prevention. 
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INTRODUCTION 

Chronological age is a critical component of medical risk scores (e.g., atherosclerotic 

cardiovascular disease risk calculator)1 and medical decision-making (e.g., 50-77 years for lung 

cancer screening);2 however, there is considerable variability in how individuals age.3 Accurate 

measures of “biological age” can improve medical decisions currently predicated on 

chronological age. Tools to measure biological age (“biological aging clocks”) aim to summarize 

accumulated molecular and cellular damage and commensurate functional decline into a single 

number that matches chronological age in the average individual.4 Aging clocks have been 

derived from molecular sources (epigenetics,5 proteomics,6 telomere length);7 functional 

performance (grip strength,8 gait speed);9 and physical characteristics (waist circumference10, 

and muscle and fat composition).11   

 

Of these, the most studied clocks are epigenetic clocks which predict chronologic age based on 

methylation levels at CpG sites across the genome. First-generation epigenetic clocks were 

developed to strongly correlate to chronological age (r~0.9) using methylation patterns across a 

variety of tissues12 and whole blood.13 The deviation between blood-based epigenetic clocks and 

chronological age (termed “age acceleration”) is associated with cancer, dementia, and all-cause 

mortality.14  More recent “second-generation”  clocks (e.g., DNAm PhenoAge) have stronger 

associations with disease by focusing on methylation sites associated with abnormal clinical 

biomarkers.15 This DNAm PhenoAge clock was more strongly associated with mortality due to 

age-related disease (e.g., heart disease, cancer, lower respiratory disease, etc.) and age-related 

biomarkers (cholesterol, glucose, systolic blood pressure, etc.) than first-generation clocks 

targeted to predict chronological age.15 
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Biological aging is complex, and multiple aging clocks from different data sources may 

accurately measure components of this process.4 Methylation clocks themselves can give 

discordant predictions16, and multiple clocks with similar accuracy can be found using distinct 

CpG sites,17 suggesting that each captures only a component of the aging process. For clinical 

use, another main limitation of methylation clocks is that they require epigenetic testing not 

routinely acquired in practice.18 

 

Radiographic clocks from routine medical imaging are a promising way to measure a component 

of biological aging using images acquired in routine clinical practice. In particular, chest 

radiographs (CXRs) are among the most common tests in medicine and existing CXRs may 

enable biological age measurement without additional testing.19 We recently released a 

convolutional neural network (CNN) model to assess biological age from chest radiograph 

images (CXR-Age) (https://github.com/circ-ml/CXR-Age).20 The CXR-Age model was first 

trained to predict chronological age using ~25,000 healthy patients. It was then fine-tuned on 

~15,000 individuals’ images from the Prostate, Lung, Colorectal, Ovarian (PLCO) Cancer 

Screening Trial to predict a phenotypic age based on chronological age, prevalent risk factors, 

and observed mortality over 18-years of follow-up. This model was validated using ~40,000 

other PLCO participants, ~5,000 National Lung Screening Trial participants, and 36,924 

individuals undergoing health checkups in South Korea.21 In all cohorts, CXR-Age was 

associated with all-cause, cardiovascular, and respiratory mortality beyond chronological age and 

prevalent risk factors.  
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Limitations of these studies were the absence of information on subclinical disease measures, no 

direct comparison of CXR-Age with known measures of biological aging, and lack of 

interpretability in how the CXR-Age model produces a biological age output. Here, we compare 

CXR-Age with first (Horvath Age) and second-generation (DNAm PhenoAge) epigenetic clocks 

by assessing their association with age-related disease processes including cardiovascular 

disease, lung function, frailty, and disability.  We then conduct plasma proteomic analyses to 

better understand potential mechanisms captured by the CXR-Age model and epigenetic clocks. 

 

RESULTS 

Cohort Characteristics  

The study cohort consisted of 2,097 people who had CXRs as part of the Project Baseline Health 

Study22 (mean age 51.5 years, 56.2% female; Table 1). 61.6% of participants were Caucasian, 

17.6% Black or African American, and 20.8% were another self-reported race. Among the 1,294 

who also had DNA Methylation data, the mean CXR-Age in the cohort was 53.1 (± 3.5 sd), 

mean Horvath age was 55.2 (± 14.2), and mean DNAm PhenoAge was 39.1 (± 15.9). The mean 

CXR-Age acceleration was 0.0 (±3.5), mean Horvath age acceleration was -0.05 (±4.3), and 

mean DNAm PhenoAge acceleration was -0.2 (±5.8) (Supplemental Figure 1).  

 

Correlation between CXR-Age, DNA Methylation clocks, and chronological age 

There was moderate correlation between CXR-Age and chronological age (r=0.50, 95% CI: 

[0.47-0.53]), and a high correlation between epigenetic and chronological age (DNAm 

PhenoAge: r = 0.93 [0.92-0.94], Horvath r = 0.95 [0.94-0.96]) (Figure 1). There was no 

significant association between CXR-Age acceleration and both DNAm PhenoAge acceleration 
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(β = 0.08 [-0.04 – 0.18]) and Horvath age acceleration (β = -0.02 [-0.11 – 0.06]) after adjusting 

for covariates including chronological age.  

 

Association of CXR-Age and Epigenetic Clocks with cardiovascular disease 

Each year of CXR-Age acceleration was associated with a 1.10-fold [1.06-1.14] increase in 

coronary artery calcium score (CAC) and each year of DNAm PhenoAge acceleration was 

associated with a 1.03-fold [1.01-1.05] increase while there was no significant relationship 

between CAC and Horvath age. When stratifying by chronological age categories (<45,45-60, 

>60 years), there was a significant relationship between CXR-Age and CAC in the older two 

groups (Supplemental Figure 2). In all age subgroups, each year of CXR-Age and DNAm 

PhenoAge was associated with a 1.04-fold [1.01-1.07] and 1.00-fold [0.99-1.01] increase in 10-

year ASCVD risk calculated using the Pooled Cohort Equations23 based on cardiovascular risk 

factors. There was not a significant association between Horvath age and ASCVD risk. 

 

Association of CXR-Age and Epigenetic Clocks with pulmonary function 

There was a significant negative relationship between most measures of pulmonary function 

(FEV1/FVC ratio, DLCO % predicted, FEV1 % predicted- except peak expiratory flow) and 

CXR-Age acceleration. The strongest association was seen with DLCO % predicted where every 

1 year of CXR-Age acceleration was associated with a 0.74% [0.42-1.06] lower DLCO % 

predicted. For the epigenetic clocks, there was only a significant, negative association between 

the DNAm PhenoAge score and DLCO% predicted. (Figure 2). When stratifying by 

chronological age (<45,45-60, >60), there was a significant association between CXR-Age and 

DLCO% predicted and FVC% predicted in the older two groups (Supplemental Figure 3). When 
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stratifying by ever- vs. never-smokers, we found a significant association between CXR-Age and 

DLCO% predicted in both groups. For FVC% predicted, there was a significant relationship 

among never-smokers, and for FEV1/FVC ratio, there was a significant relationship among ever-

smokers (Supplemental Figure 4). There was only a significant relationship between DNAm 

PhenoAge and FEV1/FVC ratio in ever-smokers. 

 

Association of CXR-Age and Epigenetic Clocks with frailty and functional ability 

In all five available physical function tests, higher CXR-Age acceleration was associated with 

lower functional ability. Each year of CXR-Age acceleration was associated with 0.30 [0.04 – 

0.56] lbs lower hand grip strength, 0.61 [0.03 – 1.19] meter less six-minute walking distance, 1.1 

[0.44 – 1.77] centimeter/second slower walking speed, 0.05 [0.02 - 0.08] lower sit/rise score and 

0.61 [0.35 – 0.87] second lower time balancing on a leg (averaged between two legs). Similar, 

significant associations were found between DNAm PhenoAge acceleration and metrics of 

frailty and disability. Each year of DNAm PhenoAge acceleration was associated with 0.36 

[0.21-0.50] lbs less hand grip strength, 0.45 [0.30 -0.60] fewer seconds balancing on a leg, and 

0.64 [0.27 – 1.01] meter/second slower walking speed (Figure 2). CXR-Age and DNAm 

PhenoAge acceleration were also positively associated with two measures of disability (Sheehan 

Score and WHODAS 2.0 score; Figure 2). There were no significant associations between 

Horvath age and the frailty/disability metrics. When stratifying by chronological age (<45,45-60, 

>60), there was a significant relationship between CXR-Age and the leg balance test, sit/rise 

score, and the Sheehan disability score in the older two groups (Supplemental Figure 4). 
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Plasma proteins associated with CXR-Age and Epigenetic Clocks 

Two proteins had a significant, negative relationship with CXR-Age acceleration: CDH13 (T-

Cadherin) (0.008 [0.004 - 0.011] decrease in protein abundance per 1-year age acceleration) and 

ApoD (Apolipoprotein D) (-0.005 [-0.008 - -0.003]). While not significant, SAA2 (Serum 

Amyloid A2) (0.024 [0.011 – 0.037]) and DBH (Dopamine beta-hydroxylase) (-0.015 [-0.027 –  

-0.004]) had large, adjusted effect sizes. Thirteen proteins were significantly associated with 

DNAm PhenoAge acceleration. GSN (Gelsollin) had the lowest p-value and S100A8 had the 

largest adjusted effect size. CDH13 was significantly associated with both CXR-Age 

acceleration and DNAm PhenoAge acceleration. There were no significant associations between 

protein abundance and Horvath age acceleration. 

 

Interpretation of chest radiographs with high and low CXR-Age acceleration 

We manually examined 100 CXRs with the lowest CXR-Age acceleration and 100 CXRs with 

the highest CXR-Age acceleration. The CXRs with the lowest age acceleration tended to have 

clearer lung fields and overall were read as “normal” by the interpreting radiologist (Figure 4). In 

contrast, the CXRs with the highest age acceleration had various lung findings including 

interstitial infiltrates, patchy infiltrates, pleural effusions, hilar prominence, peribronchial 

cuffing, evidence of prior thoracic surgery, and pacemaker placement. In some cases, there were 

no clear findings on the CXR that could correlate to a higher age acceleration.  
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DISCUSSION  

Chronological age is a cornerstone of medical decision making, but it does not account for 

individual variability in the rate of aging. Biological aging clocks have the potential to improve 

medical decisions, but different clocks may capture complementary aspects of biological aging. 

In this work, we leveraged a diverse sample from the Project Baseline Health Study (PBHS) to 

assess the association of cardiovascular health, pulmonary function, frailty, and disability with a 

chest x-ray-based radiologic clock (CXR-Age) and two established epigenetic clocks (Horvath 

Age and DNAm PhenoAge). Our major findings were 1) chronological age was more strongly 

associated with epigenetic aging clocks (r ≈ 0.94) than CXR-Age (r=0.49), 2) deviations of the 

CXR-Age and DNAm PhenoAge clocks from chronological age were associated with subclinical  

coronary atherosclerosis, abnormal pulmonary function testing, and measures of 

frailty/disability, 3) the association of CXR-Age with functional measures was robust in adults as 

young as 45, which was not the case for DNAm PhenoAge, and 4) plasma proteomic analysis 

revealed novel associations of CXR-Age Acceleration with abundance of two proteins (CDH13 

and ApoD) and DNAm PhenoAge with thirteen plasma proteins including CDH13.    

 

CXR-Age is a deep learning-based model that estimates a biological age based on a single chest 

x-ray image. We previously showed that CXR-Age was moderately associated with 

chronological age but predicts all-cause and cardiovascular mortality over 18-years of follow-up 

beyond chronological age and prevalent risk factors in two US cancer screening populations20 

and in a South Korean health checkup population.21. Here, we used the existing CXR-Age model 

without modification to better understand how CXR-Age estimates biological age. We provide 

evidence that those at high CXR-Age relative to their chronological age have higher subclinical 
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cardiovascular disease, lower pulmonary function, and higher rates of frailty and disability after 

adjusting for demographics, smoking, and BMI, suggesting that CXR-Age may be capturing 

broad aging processes rather than specific pathology.  

 

We found that second generation (time to death predictors; e.g., DNAm PhenoAge) but not first 

generation (chronological age predictors; e.g., Horvath Age) epigenetic clocks are associated 

with subclinical cardiovascular disease including CAC; corroborating prior studies. 24,25 We 

further validate prior studies that second generation clocks are associated with disability26  but 

are not strongly associated with a broad set of functional measures27. Despite strong associations 

of second generation clocks with incidence of chronic airflow obstruction28,29, prior studies 

found little association between second generation clocks and pulmonary function tests29. In 

contrast, we found a weak association between DNAm PhenoAge and lung diffusion capacity; 

however, this was primarily in older adults and ever-smokers and may be confounded by 

smoking intensity and duration30.  

 

Despite concordant associations with cardiovascular disease and disability, there was no 

significant association between CXR-Age and DNAm PhenoAge, suggesting that they capture 

different aspects of aging. To gain further insight into aging processes captured by CXR-Age and 

DNAm PhenoAge, we conducted plasma proteomic analyses and found associations of four 

plasma proteins with CXR-Age (CDH13, ApoD, SAA2, and DBH) and 13 proteins associated 

with DNAm PhenoAge, including CDH13, which has known associations with deficits in 

learning and memory in addition to neurodevelopmental and psychiatric disorders31. ApoD is 

neuroprotective due to its presence in response to oxidative stress and inflammation and is linked 
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to longevity, albeit through an unknown mechanism32. SAA2 is strongly associated with chronic 

inflammatory diseases and Alzheimer’s Disease33. Among the proteins associated with DNAm 

PhenoAge, S100A8, S100A9, B2M, and ORM1;ORM2 have previously been shown to be 

associated with accelerated aging and neuroinflammation34–36 

 

These results demonstrate that CXR-Age may identify patients with subclinical functional 

decline (cardiopulmonary and frailty). A potential clinical use of CXR-Age is to improve 

medical decisions currently predicated on chronological age1,37,38 including clinical risk scores 

and screening/prevention guidelines. Replacing chronological with CXR-Age may better capture 

an individual’s current functional status and susceptibility to future insult. Chest radiographs are 

widely performed in routine clinical care, as a CXR is ordered in 34% of emergency department 

visits.39 CXR-Age could leverage these widely available tests in an “opportunistic screening” 

approach in which CXRs obtained for other purposes are automatically fed to the CXR-Age 

model to determine biological age. This biological age can then inform decisions around disease 

screening and risk assessment that currently rely on chronological age. 

 

The PBHS data are unique in that it is a diverse sample with a great breadth of available data 

including imaging, epigenetics, and a broad array of functional measures; however, our study has 

several limitations. We used Horvath Age and DNAm PhenoAge as representative first- and 

second-generation epigenetic clocks, respectively; however, newer epigenetic clocks are 

available (e.g., GrimAge40) that may have a stronger association with functional outcomes. In 

addition, several other -omics-based biologic age clocks have been developed, and we aim to 

study these in future work6,41. Longitudinal data (including serial CXRs) were unavailable in this 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 2, 2025. ; https://doi.org/10.1101/2025.01.02.24319734doi: medRxiv preprint 

https://doi.org/10.1101/2025.01.02.24319734
http://creativecommons.org/licenses/by-nc-nd/4.0/


13 
 

cohort so associations with incident outcomes were not assessed, and it is unclear whether the 

age acceleration measures predate subclinical cardiopulmonary disease and frailty. While this 

dataset represents four sites from two states, the results may not generalize to other domestic or 

international populations. This was a retrospective, observational study, so the causal mechanism 

linking aging clocks with functional outcomes must still be assessed in prospective studies. 

Socioeconomic measures and detailed smoking histories were unavailable in this cohort and 

were not included in multivariable adjustment which may introduce residual confounding. The 

CXR-Age model was developed in cancer screening trial data in adults 55-74 years; this may 

explain the attenuated associations in adults younger than 40 years. Lastly, deep learning models 

are a black box42 in that it is unclear what aspects of the image are used to arrive at a prediction. 

In some cases, we observed that those with the highest age acceleration tended to have less clear 

lung fields, and we previously found heatmap-based activations43 in the mediastinum, aortic 

knob, and lungs.20 however, future interpretability studies are necessary to better understand 

which image features are important to assess biological age. 

 

In summary, we found that CXR-Age was strongly associated with worse cardiopulmonary 

function and frailty. Similar associations were found for a second-generation epigenetic clock in 

older adults but were attenuated in younger age groups. Proteomic analyses revealed novel 

associations of image and epigenetic aging clocks with proteins linked to inflammation including 

a shared association with CDH-13 abundance. Future work will assess associations of these and 

other aging clocks with age-related disease incidence and whether these biological aging 

measures can improve medical decision-making. 
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METHODS 

Study Cohort 

Our cohort consisted of 2,097 participants with posterior-anterior CXRs from the Project 

Baseline Health Study22 (sponsored by Verily Life Sciences) (ClinicalTrials.gov Identifier: 

NCT03154346), a prospective cohort study of individuals from four US sites enriched for 

cardiovascular and cardiometabolic disease risk factors (Table 1). A subset (N=1,294) of 

participants had serum methylation data which we used to calculate DNAm PhenoAge and 

Horvath DNA methylation clocks, respectively,12,15,20 and a further subset (N=957) had plasma 

proteomics measured. This study was approved by the Mass General Brigham institutional 

review board with a waiver of informed consent for retrospective analysis of deidentified data. 

 

CXR-Age and chest radiographs 

PBHS participants had routine posterior-anterior chest radiographs, and these images were 

available in standard DICOM format. We preprocessed each CXR using histogram 

normalization44 due to the relatively low contrast in the original CXRs. We manually reviewed 

all CXRs to ensure correct orientation and quality. No images were removed for poor quality. 

We then applied the existing CXR-Age model as originally described.20 without any 

modification or fine-tuning to each image to calculate CXR-Age (https://github.com/circ-

ml/CXR-Age). Then, we calculated “CXR-Age acceleration” by regressing chronological age 

and sex on CXR-Age and subtracting this regression from the raw CXR-Age value. For example, 

a 55-year-old female with a CXR-Age acceleration of 2 years indicates her CXR appears 2 years 

older than the average CXR for 55-year-old females. 
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Measures of cardiopulmonary disease and frailty 

We considered measures of cardiovascular disease (Agatston coronary artery calcium [CAC] 

score from calcium scoring computed tomography (CT)45  and 10-year atherosclerotic 

cardiovascular disease [ASCVD] risk score46 calculated from risk factors like cholesterol and 

blood pressure), pulmonary function (FEV1/FVC ratio, DLCO % predicted, FEV1 % predicted, 

peak expiratory flow % predicted), physical function/frailty (six-minute walking test, hand-grip 

strength, sit-stand test, leg balance test, and walking speed), and disability scores (Sheehan and 

WHODAS 2.0).47,48 PBHS participants self-reported risk factors including BMI, smoking 

frequency, sex, and age to Project Baseline study personnel.  

 

DNA Methylation Data 

PBHS collected Genomic DNA (gDNA) from stored frozen whole blood. Then, they quantified 

the extracted gDNA using the Quant-iT PicoGreen dsDNA Assay Kit (Invitrogen, Waltham, 

MA) and ran it on a CLARIOstar microplate reader (BMG LABTECH, Ortenberg, Germany). 

PBHS processed Bisulfite-converted ssDNA for each sample and control through an automated 

version of the standard Illumina Infinium MethylationEPIC microarray assay protocol (Illumina 

Inc., San Diego, CA, USA).  PBHS scanned BeadChips on an Illumina iScan (Illumina Inc., San 

Diego, CA, USA) which generated IDAT files for downstream computational processing. With 

the resulting CpG site data, we calculated Horvath age and DNAm PhenoAge using previously 

described methods.12,15 We replaced missing CpG site values needed to calculate epigenetic ages 

with their median values provided in their respective original manuscripts. We calculated 
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epigenetic age acceleration for Horvath age and DNAm PhenoAge using the same method as for 

CXR-Age acceleration (see CXR-Age and chest radiographs, above) 

 

Protein Abundance Data 

Plasma protein abundance data were available for 957 participants in the Project Baseline Health 

Study. We used these data to hypothesize potential biological mechanisms of CXR-Age and 

epigenetic age acceleration. PBHS prepared each plasma protein sample by first doing microflow 

high-resolution liquid chromatography-mass spectrometry. Then, they converted this raw data to 

protein abundances through the use of Dia-NN v1.8.1 (https://github.com/vdemichev/DiaNN).49 

They implemented various quality control steps. At the end, PBHS detected 289 proteins across 

all patient plasma samples. Microbial proteins, contaminants and Ig variable chain proteins are 

not included in the analysis. PBHS collected protein abundance data in arbitrary units (AU).   

 

Statistical Analysis 

We assessed the association between CXR-Age and DNA Methylation-age with continuous 

outcomes using linear regression and reported the results per 1-year increase in age acceleration. 

We applied a log transformation to CAC score and ASCVD risk score to achieve normality. We 

adjusted all analyses for chronological age, body mass index (BMI), sex, smoking status, race, 

and recruiting site. We used a p-value threshold of 0.05 for cardiopulmonary and frailty 

outcomes. We used a Bonferroni corrected p-value threshold of 1.7e-4 for proteomic analysis to 

account for the 289 proteins analyzed. 
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Table 1. Project Baseline Health Study (PBHS) cohort characteristics 
 

    
Project 
Baseline 

N   2097 
CXR-Age (years)   53.1 (3.5) 
Horvath DNA methylation Age 
(years)   55.2 (14.2) 
DNAm PhenoAge (years)   39.1(15.9) 
Chronological Age (years)   51.5 (17.0) 
Log CAC Score  1.7 (2.4) 
Log ASCVD Risk Score  -3.8 (2.0) 
Sex (%) Female 1178 (56.2) 
  Male 919 (43.8) 
BMI (kg/m2)   28.0 (6.9) 
Site (%) Durham, NC 404 (19.3) 
  Kannapolis, NC 343 (16.4) 
  Los Angeles, CA 457 (21.8) 
  Palo Alto, CA 893 (42.6) 

Race (%) 
American Indian or 
Alaska Native 28 (1.3) 

  Asian 199 (9.5) 

  
Black or African 
American 370 (17.6) 

  
Native Hawaiian or Other 
Pacific Islander 22 (1.0) 

  Other 186 (8.9) 
  White 1292 (61.6) 
      
Smoking Status (%) Current 321 (15.2) 
  Former 455 (21.6) 
  Never 1321 (63.0) 
Values are mean (sd) or percentages. 
DNAm – DNA Methylation 
CAC – Coronary Artery Calcium 
ASCVD – Atherosclerotic cardiovascular disease 
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Figure 1. Association of Chronological and Biological Age (CXR-Age, DNAm PhenoAge, 

Horvath Age) Stratified by male (top) and female (bottom) sex.  
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Figure 2. Association of Cardiovascular Outcomes (top), Pulmonary Function Measures 

(middle), and Frailty Outcomes (bottom) with CXR-Age and Epigenetic Aging Clocks. 

Effect estimates and 95% CI per 1-year for each age acceleration metric are provided on the x-

axis.  
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Figure 3. Association between CXR-Age (top), DNAm PhenoAge (middle), Horvath Age 

(bottom) Acceleration and abundance of 289 proteins in plasma. 
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Figure 4. Representative Chest-X-rays with the Lowest CXR-Age Acceleration. CXRs with 

low age acceleration tended to have clear lung fields and normal cardiac silhouettes, while CXRs 

with high age acceleration tended to have lung field and airway findings such as patchy 

infiltrates, hilar enlargement, peribronchial cuffing, and deviated trachea. In addition, in general, 

the cardiac silhouette seemed to be larger in high age acceleration patients and there was a 

greater prevalence of hardware including pacemakers. 
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