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Abstract 

Introduction: Mu-opioid receptors (MORs) are G-coupled protein receptors with a high 

affinity for both endogenous and exogenous opioids. MORs are widely expressed in the central 

nervous system (CNS), peripheral organs, and the immune system. They mediate pain and 

reward and have been implicated in the pathophysiology of opioid, cocaine, and other substance 

use disorders. Using the long axial field-of-view (LAFOV) PennPET Explorer instrument and 

the MOR selective radioligand [11C]carfentanil ([11C]CFN), we measured the whole-body 

distribution of MORs in 13 healthy humans. We also examined sex differences in MOR 

distribution at baseline and after pretreatment with the MOR antagonist naloxone. Methods: Six 

female and seven male healthy subjects underwent two [11C]CFN PET imaging sessions—one at 

baseline and one immediately following pre-treatment with the MOR antagonist naloxone (13 

mcg/kg). Whole-body PET imaging was performed on the PennPET Explorer, a 142-cm axial 

bore instrument. [11C]CFN brain distribution volume ratios (DVRs) were determined using the 

occipital cortex and the visual cortex within it as reference regions. For peripheral organ DVRs, 

the descending aorta and proximal extremity muscle (biceps/triceps) were used as reference 

regions. Results: Naloxone blockade reduced MOR availability by 40-50% in the caudate, 

putamen, thalamus, amygdala, and ventral tegmentum, brain regions known to express high 

levels of MORs. Women showed greater receptor occupancy in the thalamus, amygdala, 

hippocampus and frontal and temporal lobes and a greater naloxone-induced reduction in 

thalamic MOR availability than men (p’s <0.05). For determining brain MOR availability, there 

was less variance in the visual cortex than the occipital cortex reference region. For peripheral 

MOR determination, the descending aorta reference region showed less variance than the 

extremity muscle, but both showed blocking effects of naloxone. Conclusions: [11C]CFN whole-

body PET scans are useful for understanding MOR physiology under both baseline and blocking 
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conditions. Extra-CNS reference regions may be useful for quantifying radiotracers when a 

region devoid of binding in the CNS is unavailable. The LAFOV PET instrument was useful for 

measuring changes in the short-lived radiotracer [11C]CFN, with and without naloxone blocking. 

Further research is needed to evaluate the behavioral and clinical relevance of sex differences in 

naloxone-MOR interactions. 

Keywords: Mu-opioid receptors, [11C]carfentanil, naloxone, positron emission tomography, 
PennPET Explorer, reference region, sex differences, long axial field-of-view  
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Introduction 

Opioid misuse is a worldwide epidemic associated with high overdose and mortality rates 

(1,2). The mu-opioid receptor (MOR) is the target of opioid drugs of abuse including fentanyl 

and heroin, as well as methadone and buprenorphine, opioid agonist medications used to treat 

opioid use disorder (OUD). A major risk associated with MOR agonists is respiratory depression 

(3). Naloxone is a highly effective, short-acting opioid antagonist that is widely used to reverse 

the effect of opioids (4,5), and in combination with buprenorphine for the chronic management 

of OUD (6-8). A better understanding of the interactions of agonists and antagonists with the 

MOR could help to elucidate the etiology, prevention, and treatment of OUD.  

MORs are widely expressed in the central nervous system (CNS), peripheral organs, and 

immune system (9,10). Although MOR pharmacology has been extensively studied using 

positron emission tomography (PET) imaging with radioligands such as [11C]carfentanil 

([11C]CFN) in vivo in humans (11-15), non-human primates (NHPs) (16,17), and rodents (18), 

these observations have largely been restricted to the brain in humans and NHPs due to the limits 

of available instrumentation. 

[11C]CFN-PET imaging has advanced our understanding of MOR behavior.  

Carfentanil, a potent MOR agonist with abuse potential, was developed for use in 

veterinary medicine (19,20). [11C]CFN-PET is a short-lived C-11 tracer that in 1989 was first 

used to measure MOR availability (21). It has subsequently been used to examine the role of the 

MOR in pain (22-26), and to study a variety of pathological conditions (e.g., obesity, gambling), 

exercise, and the experiences of pleasure and pain (27-30). Alterations in MOR availability and 

indirectly, endorphin release, have been measured following exposure to amphetamine, nicotine, 

alcohol, and nicotine in a variety of populations (29,31-35). 
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Using [11C]CFN-PET brain imaging, MOR availability has also been shown to increase 

with age in neocortical areas and the putamen of both sexes (26,36). Although women generally 

have higher MOR availability in both cortical and subcortical areas (26,36), postmenopausal 

women have lower MOR availability than men in the thalamus and amygdala (36). Using 

[11C]CFN-PET, women showed a greater association than men between beta-endorphin release 

and genetic risk for OUD and major depression during exposure to a stressful stimulus (37), 

underscoring the potential clinical relevance of MOR-related sex differences. Although dynamic 

interactions of naloxone with MORs have been studied with [11C]CFN-PET in men (7), sex 

differences in naloxone binding were not examined, despite their potential clinical relevance. 

Neuroreceptor measurements using long axial field-of-view (LAFOV) PET instruments. 

With only two notable exceptions that examined normal cardiac and lung cancer MOR 

availability(38,39), [11C]CFN-PET studies have been largely limited to the brain, with no studies 

of the spinal cord or peripheral organs. The development of long axial field-of-view (LAFOV) 

PET instrumentation has enabled a new focus in molecular imaging (40-43).  This innovative 

scanning technology combines the advantages of greater count sensitivity with dynamic whole-

body imaging (40). A prototype instrument, the PennPET Explorer was developed by the Physics 

and Instrumentation group at the University of Pennsylvania (41-44), which enabled the first 

whole-body C-11 radiotracer imaging of NHPs using [11C]CFN (45). Such instruments may 

allow for reference region methods for tracers that do not have a valid brain region.  Furthermore, 

the PennPET Explorer’s high temporal resolution could be harnessed to examine arterial input 

functions needed to measure kinetic parameters and improve PET quantitation approaches. Here, 

we present the first human whole-body neuroreceptor PET imaging study using [11C]CFN where 

extra-CNS reference regions (aorta and muscle) are investigated. 
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Material and methods 

Participants 

This study was conducted in accordance with the Declaration of Helsinki and all 

procedures were approved by the University of Pennsylvania’s Institutional Review Board and 

the study registered on clinicaltrials.gov (NCT05528848). Healthy, English-speaking individuals 

aged 18-45 gave informed consent to participate in the study. Using the Mini International 

Neuropsychiatric Interview(46), we excluded prospective participants with a history of 

Diagnostic and Statistical Manual of Mental Disorders, 5th edition (47) psychiatric or substance 

use disorders. We also excluded individuals taking psychotropic medications, those who were 

pregnant or planning to become pregnant, or breastfeeding; had a history of brain injury or 

material in the body that contraindicates magnetic resonance imaging (MRI). Subjects underwent 

urine drug testing at both the baseline visit and on the day of PET imaging to ensure the absence 

of an exogenous substance that could interfere with testing procedures.  

MRI Imaging 

To facilitate automatic generation of brain volumes of interest (VOIs), all participants 

received a T1-weighted anatomic MRI scan on a 3-T Prisma Fit Siemens scanner prior to the 

first of the two PET scans.  

Preparation of [11C]CFN 

[11C]CO2 was produced using the IBA cyclotron at the University of Pennsylvania by a 

14N (p,α) 11C reaction on an 0.5% O2 in N2 gas target. Briefly, [11C]CO2 was trapped in a liquid 

nitrogen-cooled tube in the Synthra MeIPlus synthesis module (Synthra GmbH, Germany). 

[11C]CO2 was converted to [11C]CH4 using a molecular sieve, nickel and hydrogen. [11C]CH4 

was converted to [11C]CH3I using iodine in a heated loop and bubbled into the reaction mixture 
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containing desmethylcarfentanil, dissolved in DMF. The solution was heated to 60°C for 5 min. 

The resulting radiolabeled products were purified with a C2 Bond Elut cartridge (Agilent, US) 

after dilution with 1% ammonium hydroxide solution. The product was eluted with ethanol and 

washed with sterile saline. The final product formulation was filtered through a 0.22 μm filter 

before being collected in a sterile final product vial. The finished products were tested for 

chemical and radiochemical purity by HPLC analysis. The specific activity was 480.5±401.2 

MBq/nmol. 

[11C]CFN PET data acquisition 

All [11C]CFN PET scans were conducted on the PennPET Explorer(42,43). A low-dose 

CT scan was performed for anatomical localization and attenuation correction followed by a 90-

min dynamic PET image acquired in list-mode after venous injection of 168.5 ± 58.6 MBq 

(injected mass: 19.6±8.4 ng/kg) of [11C]CFN. All PET images were reconstructed using a time-

of-flight list-mode ordered subsets expectation maximization (OSEM, 25 subsets) reconstruction 

algorithm(43). The reconstructed images had a matrix size of 300×300×712 and a voxel size of 

2×2×2 mm.3 

Image analysis 

All whole-body PET/CT images were processed and analyzed using PMOD software 

(version 4.2, PMOD Technologies Ltd., Zurich, Switzerland). Each perfusion phase (1-10 min) 

was cropped to focus on the brain and then was co-registered to the corresponding T1 image. 

Individual T1 images were spatially normalized to the Montreal Neurologic Institute (MNI) T1 

brain template(48). The spatial normalization parameters were applied to the corresponding 

dynamic brain PET data to transfer the images to MNI space.  Five bilateral volumes of interest 

(VOIs) were determined using the Automated Anatomical Labeling (AAL) atlas (49) for analysis: 
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bilateral amygdala, caudate, putamen, thalamus, and ventral tegmentum. The VOI was 

determined manually for the ventral tegmentum. The distribution volume ratio (DVR) for each 

brain VOI was computed with the Logan reference tissue model (50) using the visual cortex 

(modified from calcarine) as the reference tissue with fixed k2' (0.1237 min-1) from the literature 

(12,21). The DVR was calculated using a 0-90 min time-activity curve (TAC). The percent 

receptor occupancy (%RO) of the blocking effect for the naloxone pretreatment study was 

calculated using the following equation: 

%RO � 100 � �1 �DVRNaxlone block � 1
DVRBaseline � 1 � 

Additional VOIs of spinal cord (cervical, thoracic, and lumbar), spinal bone marrow, and 

peripheral organs (aorta, heart wall, kidneys, spleen, small intestine, spinal bone marrow (C-, T-, 

and L-), muscle, liver, and stomach were manually delineated on the PET or CT image of each 

scan. Area under the curve (AUC), summed standard uptake value (SUV), and standard uptake 

value ratio (SUVRAorta) analysis using data acquired 50-70 min following [11C]CFN 

administration were also used to measure radiotracer distribution. Prior work by Madar et al. 

examining [11C]CFN in primary non-small cell lung cancer supports these approaches (38). 

Statistical analysis 

Statistical analyses were performed using SPSS version 29.  

Brain MOR availability 

DVRs: Brain DVRs were analyzed using repeated-measures ANOVAs (5 VOIs: thalamus, 

caudate, putamen, amygdala, and ventral tegmentum using visual cortex as the reference region), 

with the naloxone intervention (baseline/naloxone) as a within-subject factor and sex 

(female/male) as a between-subject factor. A repeated-measures ANOVA was also performed on 
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the %RO, with sex as a between-subject factor. Post hoc two-tailed P-values < 0.05 were 

considered statistically significant. 

Whole-body MOR availability and reference regions 

SUVs and SUVRs: Paired t-tests were performed on whole-body SUVs and SUVRAorta 

(50-70 min post injection interval) for the following 14 peripheral regions: aorta, heart wall, 

kidneys, spleen, small intestine, spinal bone marrow (C-, T-, and L-), spinal cord (C-, T-, and L-), 

muscle, liver, and stomach. Bonferroni-corrected p-values of p<0.0036 (0.05/14) were 

considered statistically significant. 

Paired t-tests were also used to compare the baseline and the naloxone conditions on the 

AUC of the TACs for the occipital cortex, as defined by the AAL atlas and the visual cortex, a 

region defined as calcarine cortex in the AAL atlas. Finally, paired t-tests were performed 

between baseline and naloxone on the AUC of the TACs for aorta, muscle, cervical spinal cord, 

thoracic spinal cord and lumbar spinal cord. 

Results 

Brain MOR availability 

Participant characteristics and the [11C]CFN dose administered during baseline and 

naloxone scans are shown in Table 1.  

(Table 1 Here) 

DVR: Representative MOR availability at baseline and following naloxone blockade 

using the visual cortex as a reference region is shown in Figure 1. Visual cortex baseline and 

naloxone pretreatment TACs were less distinguishable when compared to the occipital lobe 

(Supplemental Figure S1) due to the automated definition of that region, which includes spillover 

counts in adjacent structures. There was a significant main effect of the naloxone intervention on 

the [11C]CFN Logan DVRs (F1,11=1132.9, p<0.001), with lower DVRs following naloxone than 
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at baseline for all brain VOIs (all p<0.0001). The effects of VOI (F4,8=31.7, p<0.001) and the 

interaction of naloxone x VOI (F4,8=35.1, p<0.001) were also significant (Figure 2). 

(Figures 1 and 2 Here) 

There were no effects of sex on baseline MOR (F1,4=1.6, p=.23), intervention x sex 

(F1,11=0.2, p=0.65), or intervention x VOI x sex (F4,8=2.1, p=0.17) (Figure 2). Exploratory 

analyses showed that thalamic DVRs were non-significantly lower in women than men both at 

baseline (p=0.074) and after naloxone (p=0.014).   

Naloxone %RO: There was a significant main effect of sex on naloxone %RO (F1,11=5.2, 

p=0.043), with %RO in the thalamus (p=0.009) and amygdala (p=0.040) greater among women 

than men. There were also non-significant sex difference in the caudate (p=0.094), putamen 

(p=0.062), and VTA (p=0.49). There was a significant main effect of VOI on %RO (F4,8=10.6, 

p=0.003), but no interaction of VOI x sex (p=0.94). There was no effect of age on %RO 

(F1,11=0.12, p=0.73). Sex differences for DVRs in MOR-rich regions at baseline and after 

naloxone, and in naloxone %RO are shown in Figure 2. Supplemental Figure S3 shows the %RO 

for the naloxone condition in all analyzed brain regions. Supplemental Table T1 includes all 

tested DVRs and %RO data by sex. 

Comparison of central versus peripheral reference regions  

TACs for the three reference regions (visual cortex, descending aorta, and upper 

extremity muscle) are shown in Figure 3. The AUC was significantly reduced with naloxone pre-

treatment for the visual cortex (t12=3.92, p=0.002), but neither the aorta (t12=0.86, p=0.41) nor 

muscle (t12=0.46, p=0.91).  

(Figure 3 Here) 
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Mean DVR values for the 5 MOR-rich regions using the established visual cortex 

(DVRvisual cortex) and either the aorta (DVRaorta) or muscle (DVRmuscle) as comparators showed 

linear relationships (Figure 4) albeit with a positive bias (slope=1.54 and 2.06, R=0.8373 and 

0.6889, respectively). Use of the descending aorta (SUVRaorta) or upper extremity muscle 

(SUVRmuscle, triceps/biceps) yielded robust measures of MOR availability following naloxone 

blockade in MOR-rich brain regions (see Supplemental Figure S2). Irrespective of the reference 

region (visual cortex, aorta, or muscle), differences in DVR between baseline and naloxone 

blockade were statistically significant (p<0.0001) in the 5 MOR-rich regions: ventral tegmentum, 

thalamus, caudate, putamen, and amygdala. SUV, SUVRaorta, or SUVRmuscle approaches all 

normalize [11C]CFN-PET data in similar distributions.  Representative data are shown in Figure 

5. 

(Figures 4 and 5 Here) 

Exploratory analyses also revealed a significant difference in AUC with naloxone pre-

treatment for the occipital cortex (t12=5.43, p<0.001), the cervical spinal cord (t12=8.0, p<0.0001), 

and thoracic spinal Cord (t12=3.6, p=0.004), but not the lumbar spinal cord (t12=1.14, p=0.19) 

(Supplemental Figures S1 and S4, Supplemental Table T3). 

Whole-body [11C]CFN distribution 

Summed SUVR DVR (SUVRAorta Figure 6), SUV, and TAC AUC (Supplemental Figure 

S4) approaches all showed robust differences in the PET [11C]CFN signal between baseline and 

blocking conditions in the cervical and thoracic portions of the spinal cord. Note that data are  

included in Supplemental Tables T2 (SUV whole-body analysis) and T3 (TACs for the cervical, 

thoracic, and lumbar portions of the spine). Graphs of TACs are shown in supplemental Figure 

S4. 
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Paired sample t-tests showed significant reductions in baseline SUV following naloxone 

in the cervical spinal bone marrow (t12=3.9, p=0.002), cervical spinal cord (t12=4.8, p=0.0004), 

and thoracic spinal cord (t12=2.6, p=0.025). The effects in the cervical spinal bone marrow and 

cervical spinal cord survived Bonferroni correction for 14 comparisons (i.e., both p’s<0.0036). 

Furthermore, paired sample t-tests also demonstrated reductions in the SUVRAorta with naloxone 

vs. baseline for the cervical spinal bone marrow (t12=3.1, p=0.010), cervical spinal cord (t12=3.8, 

p=0.003), and thoracic spinal cord (t12=3.0, p=0.011). Only the effect in the cervical spinal cord 

survived Bonferroni correction for 14 comparisons. 

 

Discussion 

This report describes the first whole-body neuroreceptor PET imaging study in humans. 

[11C]CFN is an established radiotracer that has been used extensively at multiple institutions 

(7,21,45,51). We used the MOR agonist [11C]CFN and the MOR antagonist naloxone to 

visualize the distribution of the MOR receptor throughout the human body. In addition to the 

significant technical advances in PET instrumentation and quantification strategies reflected in 

our findings, we show sex differences in MOR receptor occupancy by naloxone—the MOR 

antagonist critical to treating opioid overdose and used together with buprenorphine to prevent 

intravenous administration of the MOR partial agonist when used in the maintenance treatment 

of OUD. 

Zubieta et al. have previously shown greater brain MOR availability in healthy females 

than males, though in post-menopausal females, in the thalamus and amygdala it was less than 

that of males (36). Also using [11C]CFN-PET brain imaging, Smith et al. demonstrated greater 

MOR availability and activation of endogenous opioid neurotransmission in females during a 
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high estrogen state induced via exogenous dosing of the hormone (26). Using [11C]CFN-PET in 

a large sample, we previously found greater associations of MOR availability with genetic risk of 

OUD and major depression among females than males (37). Here, we did not take into 

consideration the reproductive cycle status or estrogen state of the 6 healthy premenopausal 

females at the time of scanning. Nonetheless, the greater receptor occupancy in the brains of 

healthy females in our sample following weight-based naloxone administration is consistent with 

prior literature demonstrating sex differences in MOR binding with [11C]CFN-PET. 

Use of the LAFOV (long axial field-of-view) PennPET Explorer PET instrument also 

permitted measurement of MOR availability and [11C]CFN distribution throughout the body. 

SUVr, SUV, and AUC methods all detected reductions in MOR availability in the cervical and 

thoracic portions of the spinal cord,  known regions of MOR expression (52). Further 

development of novel quantification strategies to define the strengths and weaknesses of each 

approach are needed. 

In keeping with a prior LAFOV scanner study that quantified the short-lived radiotracer 

[C-11]-butanol (53), our findings demonstrate robust reproducibility of a blocking effect using 

an established pharmacological challenge. Whereas LAFOV PET instruments provide many 

advantages over conventional PET/CT scanners, including superior sensitivity (40,41,43), they 

represent an important step forward for PET instrumentation that, as we demonstrate here, can be 

used for neuroreceptor studies. 

The measurement of whole-body dynamic [11C]CFN at baseline and after naloxone 

pretreatment also supported the use of non-brain reference regions. Reference region strategies 

for quantifying PET neuroreceptor binding proposed over 30 years ago (54) depend on a 

comparable background region that assumes the same K1/k2 ratio as the target region (55,56).  
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Because there is no MOR expression in the visual cortex, it is well suited to serve as a reference 

region to estimate regional brain MOR availability for [11C]CFN-PET measurements. This 

strategy has been useful, for example, in quantifying dopaminergic-receptor-targeting 

radiotracers that are generally confined to the striatum (57). However, such a reference region is 

not available for many neuroreceptor tracers. Although ideally the background would be located 

within the brain, using a peripheral background region strategy could support quantification 

approaches for other neuroreceptor tracers without a reference region completely devoid of brain 

receptor expression.   

Developing such a peripheral reference approach will require validation with established 

methods. Specifically, the high temporal resolution of the PennPET Explorer instrument offers 

the opportunity to determine individual study arterial input functions (AIFs)(42,43), often 

required for kinetic analysis, derived from image data only and potentially obviating arterial 

sampling for many radiotracers. Whole-body PET imaging that capitalizes on image-based AIFs 

with venous sampling could obviate invasive arterial line blood sampling while providing 

accurate, reproducible measurements (58).  However, further studies that use arterial-line 

sampling to precisely measure kinetic parameters (K1,k2) and compare approaches are needed to 

validate this approach. 

 We conclude that [11C]CFN PET imaging using a LAFOV instrument has many 

advantages, which include visualizing changes induced by a pharmacological challenge 

throughout the body.  LAFOV instruments may offer novel quantification strategies for 

measuring neuroreceptor tracers both within and outside the brain.  Finally, sex differences in 

naloxone-MOR interactions should be further investigated to provide additional insights into 

opioid neuropharmacology, especially given the present opioid epidemic. 
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Figure Legends 

Figure 1. DVR-weighted [11C]CFN-PET brain images for a 42-year-old, healthy male at 
baseline (top row) and following pretreatment with 13 mcg/kg naloxone (bottom row) using the 
visual cortex as a reference region. Images are shown in the transaxial (left column), sagittal 
(middle column), and coronal (right column) planes. A DVR intensity scale is at the bottom of 
the panel. 

Figure 2. Brain [11C]CFN DVR in MOR rich regions reveal robust blockade of MOR 
availability with naloxone (top) and sex differences in % MOR receptor occupancy for the 
thalamus and amygdala (bottom). * p<0.05, *** p<0.001, ****p<0.0001.   

Figure 3. Reference TACs are shown in SUV of three reference regions: visual cortex (left 
panel), descending aorta (middle panel), and upper extremity muscle (right panel). Baseline 
curves are shown in blue and naloxone pre-treatment curves in red. Optimally, the reference 
region should not differ between baseline and blocking conditions. 

Figure 4. There is a linear relationship between the established DVRvisual cortex with either 
DVRaorta or DVRmuscle. The left panel of figure 3 shows DVRAorta plotted DVRvisual cortex at both 
baseline (blue) and naloxone blocking (red) conditions.  The right panel shows DVRaorta plotted 
DVRmuscle. DVRaorta more strongly correlates to DVRvisual cortex than DVRmuscle (R

2=0.8373 and 
0.6889, respectively). Dotted lines represent 95% confidence range for the solid linear regression 
line. 

Figure 5. Strategies for whole body semi-quantification of [11C]CFN-PET distribution. This 
figure Summed images acquired 50-70 min post-injection of a representative subject at baseline 
(A, top row) and following naloxone administration (B, bottom row). The three columns 
represent different quantification strategies: SUV sum (first column), SUVR with aorta as the 
reference region (second column), and SUVR with upper extremity muscle as the reference 
region (third column). Note that the naloxone blocking effect in brain is evident using each 
approach. 

Figure 6. Whole body naloxone alters [11C]CFN distribution. This figure illustrates the effect of 
naloxone blockade throughout the body using the LAFOV instrument. SUVRAorta summation 
between 50-70 minutes following [11C]CFN administration are shown (* p<0.05, ** p<0.01, *** 
p<0.001).   
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Table 1: Participant Characteristics 

Scans All Male Female 
Sample Size 13 7 6 

Scans 26 14 12 

Age 29.1 ± 8.3 29.4 ± 7.4 28.7 ± 10.1 

Weight 74.5 ± 16.7 82.8 ± 19.3 64.9 ± 3.6 

Injection Dose (MBq)    

   Baseline 167.1 ± 79.6 178.0 ± 81.0 154.3 ± 83.4 

   Naloxone Blocking 164.3 ± 32.3 170.7 ± 32.7 156.7 ± 33.0 
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Figure 1 
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Figure 2 
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Figure 3 
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Figure 6 
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