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Abstract 
Quantitative analysis of human behavior is critical for objective characterization of neurological 
phenotypes, early detection of neurodegenerative diseases, and development of more sensitive 
measures of disease progression to support clinical trials and translation of new therapies into 
clinical practice. Sophisticated computational modeling can support these objectives, but 
requires large, information-rich data sets. This work introduces Neurobooth, a customizable 
platform for time-synchronized multimodal capture of human behavior. Over a two year period, a 
Neurobooth implementation integrated into a clinical setting facilitated data collection across 
multiple behavioral domains from a cohort of 470 individuals (82 controls and 388 with 
neurologic diseases) who participated in a collective 782 sessions. Visualization of the 
multimodal time series data demonstrates the presence of rich phenotypic signs across a range 
of diseases. These data and the open-source platform offer potential for advancing our 
understanding of neurological diseases and facilitating therapy development, and may be a 
valuable resource for related fields that study human behavior. 

Main Text 
Neurological disorders are the leading cause of disability and the second leading cause of death 
worldwide1. There is a large unmet need in neurology for safe and effective therapies. Drug 
development efforts for neurodegenerative diseases have accelerated in recent years2. 
However, efficient evaluation of new therapies is limited by subjective and insensitive outcome 
measures, diagnostic uncertainty, incomplete patient stratification, and difficulty in evaluating 
therapies at the earliest stages of disease3–5. Quantitative characterization of digitized behavior 
using signal processing and machine learning approaches has the potential to address these 
limitations and accelerate neurology drug development6. 

Through their effects at the molecular, cellular, and circuit levels, neurodegenerative diseases 
progressively alter motor and cognitive behavior in life-changing and characteristic ways. These 
behavioral changes are carefully evaluated by the neurologist during a neurological 
examination7 in order to 1) identify affected components of the nervous system, 2) make an 
accurate diagnosis, 3) track disease progression, and 4) evaluate response to interventions. 
Although powerful, clinician-performed assessments cannot capture behavioral patterns that 
exist beyond the threshold of human perception or that manifest during naturalistic behaviors 
not represented in the neurological examination. There is also information loss between what 
the clinician observes and the data recorded, which limits the ability to produce granular 
datasets to support discovery of new behavioral patterns and identification of disease 
subgroups. Quantitative capture of behavioral data has the potential to generate information-rich 
datasets and enable the use of sophisticated, data-driven computational methods to identify 
clinically-relevant behavioral patterns6,8. Adoption of standardized platforms for digital capture of 
behavior could lead to large scale datasets for training advanced, data-driven models that could 
broadly transform our understanding of neurological disease and human behavior. 

There is a long history of quantitative behavioral data collection in neurological diseases. 
Various sensor systems have been used to record and assess eye movements using video 
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oculography9–16, speech using microphones17–21, and body movement using wearable 
sensors22–28 and motion capture29–32 systems. It has been shown that eye trackers can detect 
eye movement control alterations in neurodegenerative populations at early stages11,33–35. 
Computer vision-based analysis of video data obtained from consumer-grade cameras can be 
used to characterize and quantify gait, hand movements, and eye movements from individuals 
with neurological diseases36–41. Wearable devices have been widely used in neurological 
populations to quantify gait and limb movements, and to perform disease classification and 
estimate severity42–46. Computational analysis of speech has demonstrated the ability to detect 
early disease signs, estimate disease severity, and sensitively measure change in 
neurodegenerative diseases47–56. Finally, it has been shown that quantitative analysis of 
computer mouse movements in both free-living conditions57 and during motor tasks58–60 reveals 
patterns informative for detecting neurodegenerative diseases, including Alzheimer’s, 
Parkinson’s, and cerebellar ataxias. These studies have improved our understanding of how 
neurological conditions affect behavior. Despite the value these sensor-based systems have 
demonstrated in the collection and analysis of quantitative behavioral data, digital measures 
have not been widely adopted in clinical care or in clinical trials23,61,62.  

Reasons for the limited impact of digital measures to date are that quantitative phenotyping 
studies typically involve a small number of participants with a well-established diagnosis, focus 
on a single behavioral domain, and/or use specialized systems for data collection and analysis. 
There is concern that measures developed from data collected using specialized systems (i.e., 
custom devices and task protocols) at a single site in a small number of individuals, will not 
generalize to the larger population and may be too time consuming and/or complex to 
implement in a clinical setting or in a multi-site clinical trial. The single population, single domain 
approach also limits the scientific questions that can be advanced and the computational 
methods that can be used to discover useful disease patterns in typically heterogeneous 
neurological populations. For example, to adequately detect and measure behavioral patterns 
that reflect subtle parkinsonism and spasticity in spinocerebellar ataxia populations, conditions 
with overt parkinsonism and spasticity, such as idiopathic Parkinson’s disease and hereditary 
spastic paraplegias, should be included and jointly analyzed. 

To address these gaps, we developed a high-throughput, open source, and flexible platform 
called “Neurobooth” to support large-scale multimodal data collection. We created and deployed 
the first version of this system in a space embedded within the Massachusetts General Hospital 
outpatient neurology clinic with integration into the clinical workflow. Over a two-year period, 
synchronized video, audio, inertial sensor, eye tracker, computer mouse, and button-board data 
were collected in a standardized manner across 782 sessions from 470 unique participants with 
wide ranging neurological diagnoses. Here we provide an overview of the software and 
hardware platform and the data generated along with data visualizations. This platform is 
available to researchers to support quantitative behavioral phenotyping studies and the dataset 
can be requested. Finally, this study demonstrates the feasibility to integrate into a clinical 
workflow, providing an avenue for much larger scale data generation with future implementation 
at additional clinical locations. Integration within a clinic also makes it possible to share results 
with clinicians and patients at the time of the assessment to provide new information and gain 
feedback. 
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Results 

System Capabilities 
Neurobooth is an integrated software and hardware system for collecting quantitative behavioral 
data. It supports presentation of behavioral stimuli and synchronized multimodal data collection 
across one or more computers. Because the Neurobooth operating system (NeuroboothOS) 
can be distributed across multiple computers, it enables concurrent, high-throughput recording 
across a large number of connected devices. Neurobooth software is open source and highly 
customizable. It is designed to facilitate the addition of new sensors, stimuli, and study 
parameters, thereby supporting multiple experimental protocols and disease populations. The 
Neurobooth software also supports the organization, visualization, and analysis of behavioral 
time series data. These capabilities aim to balance flexibility (to improve and adapt the system) 
with standardization (to promote data aggregation and replication of results). 

Dataset 
The first Neurobooth system (Fig. 1) was deployed in the Massachusetts General Hospital 
(MGH) neurology clinic in April 2022, supported by an award from the Massachusetts Life 
Sciences Center. All participants provided informed consent and the research protocol was 
approved by the MGH Institutional Review Board (2021P000257, approved March 3, 2021). The 
deployment at MGH aimed to collect longitudinal digital data from a broad range of 
neurodegenerative disease populations, including presymptomatic individuals who carry a 
specific disease gene but do not yet have symptoms or definite clinical signs of disease, and 
individuals who have not yet received a conclusive clinical diagnosis. With MGH Neurobooth 
situated in the clinic, most participants with neurologic disorders participated in the study directly 
before or after their regularly scheduled clinic visits, enabling scalable longitudinal data 
collection. The MGH Neurobooth is also wheelchair accessible to support data collection in 
disease populations with limited mobility.  
 
Between April 2022 and April 2024, data were collected during 782 sessions from 470 unique 
participants. Table 1 shows the clinical characteristics of these participants. A total of 213 of 
these participants have longitudinal data spanning up to 20 months (141 participated in two 
sessions, 45 participated in three sessions, and 27 participated in four sessions to date).   
 

FIGURE 1 ABOUT HERE 
 

TABLE 1 ABOUT HERE 
 
In addition to synchronized time-series data collected from a variety of sensors (Table 2), a 
corpus of contextual clinical data was collected to support development of clinically meaningful 
digital features. These data included both clinician-performed disease rating scales that were 
completed during the clinic visit and a battery of patient-completed surveys capturing 
information about daily function and quality of life. 
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TABLE 2 ABOUT HERE 
 
 

Behavioral Tasks 
Neurobooth data collection deployed a set of tasks spanning several neuromotor and 
neurocognitive behavioral domains—cognition, oculomotor function, fine and gross motor 
function, and speech—that are broadly relevant across neurodegenerative diseases and can be 
performed in a limited space and time setting (see Methods for task details). Several tasks 
involved coordination of multiple behavioral domains, taking advantage of the synchronous 
multimodal data capture supported by Neurobooth. The initial task set was designed such that it 
could be completed by most participants in 30-40 minutes without over-taxing patients on their 
clinic day, and to maximize the number of people who could participate on a given day. In the 
sections below, we provide a brief overview of the behavioral tasks and provide a data 
visualization for each task that highlights a potential disease-related behavioral pattern to 
motivate future population-level data analysis.  

Cognitive Tasks 

Cognitive tasks included the digit symbol substitution test (DSST) and the multiple object 
tracking test (MOT). We used the validated structure from TestMyBrain.org63 to develop the 
cognitive tasks in Python. 
 

FIGURE 2 ABOUT HERE 
 
The top row of Fig. 2 contrasts performance on a four-target, low-speed trial of MOT for a 
control versus a participant with corticobasal syndrome (CBS). The trajectory of gaze is shown 
in gray and the trajectory of the computer mouse is shown in blue, with cyan dots representing 
mouse clicks. The participant with CBS had less direct and longer gaze and mouse paths during 
the response period. One target was incorrectly selected, although their gaze and mouse 
trajectories indicate they considered the correct target. Though not shown in the figure, tracking 
gaze throughout the task could reveal different attention strategies for performing the task, 
which may be modified by neurological diseases64,65. 
 
The bottom row of Fig. 2 compares a healthy control participant versus a participant with mild 
cognitive impairment (MCI) performing DSST. The heat maps show the density of gaze duration 
over the 60-second long task. The density in the left plot shows that the gaze of the control 
participant was largely fixated on the location of the stimulus symbol. In contrast, the cognitively 
impaired participant spent a significant time gazing at the key, as is apparent from the larger 
spread of the density in the heat map on the right. This shows that the attention of the 
participant with MCI was divided between the stimulus symbol and the key. The horizontal plots 
below the heat maps are a time series of events over the 60-second task. Vertical blue lines 
indicate when a new stimulus symbol appeared. Shaded blue regions indicate the length of the 
response times. The control participant registered 61 responses compared to 25 responses 
from the MCI participant. Differences in the thickness of the blue shaded regions provide a 
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visual indication of the variance in response times. Both the control and the MCI participant 
were 100% accurate in these sessions.   

Oculomotor Tasks 

Oculomotor tasks included tasks that include a visual target (horizontal smooth pursuit, gaze 
holding, horizontal saccades, and vertical saccades) and gaze fixation without a target. Fig. 3 
compares the gaze during each task between healthy controls and participants with neurologic 
disorders. For smooth pursuit, the individual with multiple system atrophy had saccadic pursuit, 
with more pronounced saccadic pursuit when tracking the object moving rightward. For 
horizontal saccades, the person with Gordon-Holmes syndrome had hypermetric saccades in 
addition to gaze-evoked nystagmus during fixations. For vertical saccades, the individual with 
progressive supranuclear palsy had slowed and segmented saccades and evidence of ‘round 
the houses’ sign66 (curved trajectory apparent with concurrent movement in the horizontal 
direction). For gaze holding, the individual with cerebellar ataxia, neuropathy, and vestibular 
areflexia syndrome (CANVAS) exhibits downbeat nystagmus that varies in intensity depending 
on direction of gaze. For fixation without a target, the individual with spinocerebellar ataxia 
(SCA) type 3 (SCA-3) has vertical drift of gaze, with corrective saccades, and superimposed 
nystagmus. 
 

FIGURE 3 ABOUT HERE 
 

Motor Tasks 

Motor tasks included finger-to-nose, foot tapping, rapid alternating hand movements, sit-to-
stand, and the Hevelius mouse clicking task58,59. Fig 4 shows ten seconds of data collected 
during each task for a healthy control participant and an individual with a neurological disorder. 
 

FIGURE 4 ABOUT HERE 
 
Finger-to-nose data from an individual with spinocerebellar ataxia type 3 (SCA-3) and rapid 
alternating hand movements data from an individual with SCA-2 demonstrate reduced speed 
and variability in amplitude and rhythm compared with the healthy control participant (Fig. 4). 
 
Foot tapping data from an individual with multiple system atrophy, parkinsonian type (MSA-P) 
exhibits smaller movements and variability in amplitude compared with the healthy control 
participant (Fig. 4). 
 
Sit-to-stand data (lumbar sensor) from an individual with autosomal recessive cerebellar ataxia 
type 1 (ARCA-1) shows less regular and lower intensity movements in the dorso-ventral axis 
and sharp peaks in the rostro-caudal axis compared to the smoother movement profile seen in 
the healthy control example.  
 
On the computer mouse task, an individual with amyotrophic lateral sclerosis (ALS) took longer 
to perform the task and exhibited mouse movements that were less smooth and had more 
target re-entries. The presence of eye tracking data alongside mouse movements and stimulus 
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onset provides an opportunity to assess how eye-hand coordination is affected by different 
motor disorders (Fig. 4). 
  

Speech Tasks 

Speech tasks included sustained phonation, diadochokinetic tasks, and passage reading67,68. 
Fig. 5 compares recorded audio and gaze (for passage reading) for healthy control participants 
and individuals with neurologic disorders. For sustained phonation, in comparison with the 
control participant, a participant with Parkinson’s disease had decreasing loudness as the task 
progressed. For the diadochokinesis task, the individual with SCA-6 exhibited variability in 
amplitude and rhythm, as well as slowed consonant production. For passage reading, an 
individual with Friedreich’s ataxia had slowed speech and longer pauses during speech 
production, the presence of smaller saccades, and an increased frequency of regressions in 
gaze during reading. 
 

FIGURE 5 ABOUT HERE  
 

Study Feedback 
To collect participants’ feedback on the Neurobooth system and their overall study experience, 
we administered a standardized 10-item System Usability Scale (SUS)69 and a Study Feedback 
survey created by our team after each visit. A total of 581 responses were captured from 363 
unique participants.  
 
Each item in the SUS questionnaire was rated from 1 to 5 on the Likert scale (1=strongly 
disagree and 5=strongly agree). To interpret the score, we calculated the sum of the score 
contributions for each item. For items 1, 3, 5, 7 and 9 (odd-numbered, positive statements), the 
score contribution was the scale position minus 1. For items 2, 4, 6, 8 and 10 (even-numbered, 
negative statements), the score contribution was 5 minus the scale position. Next, we multiplied 
the total by 2.5 to obtain the overall System Usability value, which ranges from 0 (very poor 
perceived usability) to 100 (excellent perceived usability)69. Mean SUS score from Neurobooth 
respondents was 78.4 with a standard deviation of 16.4. This meets the benchmark score of 
68.05 for digital health applications as described in the current literature70.  
 
In the Study Feedback survey, we assessed participants’ willingness to complete the full 
Neurobooth assessment again in the future. The majority of responses indicated yes, they 
would be interested (81.1%) while some expressed willingness to complete a shorter version of 
the assessment (11.8%). A smaller proportion of responses indicated participants were unsure 
(3.5%), they would probably not be willing to participate again (2.6%), or they would definitely 
not participate again (1.0%). We also surveyed participants on their most and least enjoyed 
study tasks. 42.0% of responses indicated cognitive tasks as their most enjoyed, followed by 
21.7% for motor tasks. For least enjoyed tasks, 36.7% indicated none (they enjoyed all of the 
activities), followed by 26.8% for speech tasks. Lastly, participants were given an optional, free-
text comment box to report any neurological symptoms of theirs they felt were not captured 
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during testing. Participant responses, ordered from most to least frequent, included balance, 
gait, visual impairments (blurred vision, double vision, oscillopsia), neuropathy, weakness, 
handwriting, intermittent symptoms/general fluctuations throughout the day, dizziness, using 
stairs, reading comprehension, and lower extremity coordination during weight bearing 
activities.  

 

Discussion 
 
In the first two years of the project, data from hundreds of individuals have been collected using 
Neurobooth, demonstrating the feasibility of collecting high throughput, multimodal digital data 
from diverse disease populations in the outpatient neurology clinic setting. Data visualization at 
the individual level indicates the ability to capture key neurological signs in the range of 
populations studied. This granular and comprehensive dataset provides an opportunity to detect 
and quantify neurological signs, characterize early disease features and change over time, and 
identify the presence of neurological subgroups and subphenotypes. Developing an open 
source platform for standardized data collection that can be used at other institutions enables 
the possibility of generating even larger datasets in aggregate. These datasets, combined with 
sophisticated computational modeling techniques, will lead to a more complete understanding of 
how neurological diseases affect behavior. 
 
Neurobooth consists of a wide array of devices, including cameras, wearable sensors, an eye 
tracker, microphone, computer mouse, button board, and a mobile phone (with integrated 
camera and microphone). These devices, along with a broad set of behavioral tasks, enable a 
comprehensive capture of behavior relevant across neurological conditions. In addition to 
supporting single-domain analyses in a larger sample than prior studies, Neurobooth provides 
multimodal, time-synchronized data enabling new opportunities for the identification of less 
obvious patterns relating to the coordination of multiple motor domains. For example, 
multimodal modeling71–73 (e.g., eye movements and mouse movements during the computer 
mouse task; or speech, eye movements, and face movements during passage reading74) could 
enable discovery of new disease signs related to coordination of different behavioral domains 
that were not previously recognized or measurable by human assessors. Recent digital 
phenotyping efforts for screening of neurodevelopmental disorders highlights the importance of 
multimodal data75,76. The collection of contextual gold standard clinician rating scale data and 
patient reported measures of function enables validation of existing or newly discovered digital 
behavioral patterns or signs. Furthermore, the collection of longitudinal data, beginning in some 
individuals in the presymptomatic stage of disease, supports understanding how a digitally 
captured behavioral pattern begins and evolves over time. Although the diagnosis used for 
analysis will be the treating neurologist’s diagnosis, in cases where a definitive diagnosis can 
only be made based on neuropathology (e.g., progressive supranuclear palsy), attempts will be 
made to follow individuals until autopsy when possible. 
 
Neurobooth incorporates a broad array of devices, and also allows for the integration of new 
device types. The system can be extended to include devices to measure strength or to 
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measure physiological signals synchronously with behavior, such as respiration, 
electrocardiography (ECG), and electroencephalography (EEG). This flexibility makes it 
possible to broaden investigations while maintaining standardized data capture that allow for 
aggregation. Conversely, a system with a reduced set of devices can be deployed to reduce 
cost and allow data capture in a variety of settings. To this end, we are currently working to 
make it possible for a reduced version of Neurobooth to run on a single laptop and enable data 
collection in the home setting with consumer grade devices. In addition to device-flexibility, there 
is flexibility to change or remove existing behavioral tasks and to include additional tasks in a 
recording session. Thus the system can also be adapted to facilitate research beyond 
neurological populations. One goal of the platform is to maintain an open source library of 
behavioral tasks and device integrations that can be drawn upon by any research group or 
clinical team. 
 
There were challenges encountered in working with the range of disease populations and 
severity levels, especially given the time-constrained setting in the neurology clinic. Although 
Neurobooth is accessible for individuals who are wheelchair bound and would prefer to remain 
in their wheelchair for the session, the quality of eye tracking is sometimes reduced due to lack 
of adequate head support with some wheelchairs. In individuals with nystagmus or gaze holding 
difficulties, calibration and validation of the eye tracker can be time-consuming and occasionally 
unsuccessful after multiple attempts. Modifications such as inserting a cushioned headrest and 
adjusting the height of the computer monitor have improved eye tracking quality. The Mbient 
wearable inertial sensors that stream data continuously over Bluetooth to support 
synchronization, could at times lose connectivity resulting in lost data. Changing the location of 
Bluetooth receivers and automating wearable device resets prior to motor tasks improved data 
capture. Individuals with cognitive impairments in some cases had difficulty understanding and 
following task instructions, requiring repetition of the instructions or skipped tasks, and 
lengthening the duration of the session. In particular, the Multiple Object Tracking (MOT) task 
could take substantially longer for individuals with cognitive deficits to complete. An interim 
software update was made to automatically terminate the task after the easier trials if the task 
was taking extended time. Future studies focused on a reduced range of neurological 
populations could benefit from modifying the task set to optimize for feasibility and phenotypic 
capture. 
 
In summary, Neurobooth is a flexible research platform to collect multimodal quantitative 
behavioral data, with the goal to advance computational investigations of human behavior. The 
open source platform aims to reduce barriers for collecting standardized behavioral data and 
allow large aggregate datasets to emerge over time. These large multimodal datasets can then 
fuel discovery of new disease characteristics and result in a deeper understanding for how brain 
diseases give rise to changes in behavior. Ongoing work aims to increase the scale of the 
platform by enabling the system to run the same behavioral tasks using a subset of devices 
connected to a single laptop computer. An additional avenue of active research is the creation 
of data visualizations and reports that can summarize the complex multimodal digital data and 
are useful for patients and clinical providers. 
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Methods 

Neurobooth Hardware 
Given space constraints (and in order to maintain a quiet and private environment), MGH 
Neurobooth was built within a physical booth designed to be a small meeting space for 2–4 
people (Framery Q model, Framery Oy., Finland). The frame has acoustic insulation and 
ventilation, antimicrobial surfaces, and is wheelchair-accessible. An 80/20 aluminum rail 
structure was installed inside the booth to mount an adjustable computer monitor and a broad 
array of sensors. A sprinkler was installed in the booth ceiling to comply with hospital safety 
regulations and a privacy film was applied to the glass walls facing the clinic. Additional light 
panels were installed inside the booth to increase the luminance of recorded videos and an 
intercom system was installed to facilitate communication between the participant inside the 
booth and research staff outside of the booth. A chair with a reclining back and adjustable 
headrest was added to improve participant comfort and eye tracking data quality. However, the 
chair can be removed for those who prefer to complete their session in their wheelchair. Fig. 1 
illustrates the complete physical layout of the Neurobooth.   

The devices included in MGH Neurobooth support data capture across several behavioral 
domains (Table 2). Participants interacted with a button board to advance through task 
instructions and to provide responses during cognitive tasks. The computer mouse was used to 
capture arm movement and button clicks for a subset of tasks (i.e., MOT, Hevelius). Participant 
motion was captured using five wearable Mbient inertial sensors placed on the wrists, ankles, 
and lumbar region streaming triaxial acceleration and angular velocity. Three Intel RealSense 
D455 RGB-Depth cameras were located on the ceiling of the booth forming a triangle to enable 
estimation of body landmark positions in 3D space. High-quality eye tracking data were 
collected using an EyeLink Portable Duo placed below the monitor. An industrial-grade, high-
speed FLIR camera was positioned above the monitor to support capture of fast facial 
movements. The back-facing camera of an iPhone model 12 running a custom data capture 
application was positioned below the eye-tracker to support capture of facial movements and 
eye movements40,41. Both a high-quality Blue Yeti microphone and the iPhone captured audio 
(i.e., participant speech). 

Neurobooth Software 
A custom Python-based library, which we call the Neurobooth Operating System 
(NeuroboothOS), coordinates behavioral stimulus delivery and data collection. NeuroboothOS 
provides a graphical user interface (GUI) for the operator to initiate and terminate data 
collection. Delivery of task instructions and stimuli to the participant is accomplished using 
PsychoPy77, an open source Python toolbox. This design enables researchers to create and 
deploy behavioral tasks with relative ease. Tasks and their associated devices  are organized  
in collections and studies.Task variables along with device and sensor parameters are defined 
in a set of YAML configuration files so they can be readily adjusted. A script is provided to verify 
that the set of files defining a study is complete and consistent. Data collected from each device 
is synchronized using the lab streaming layer (LSL) library78. Logs for each session, task, and 
data file are generated in a PostgreSQL database. The same database contains participants’ 
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clinical, demographic, and patient-reported information automatically ingested from REDCap79, 
an electronic data capture (EDC) system. An interactive web-based tool called the Neurobooth 
Explorer allows time series data to be visualized in real time after the session and can export 
visualizations. The time-series data figures in this manuscript were exported from the 
Neurobooth Explorer. All software is available on the neurobooth GitHub repository, 
https://github.com/neurobooth/. 

Contextual Clinical Outcomes 
Clinical rating scales were performed by clinical providers as part of the routine clinical 
appointment. For participants with ALS, the ALS Functional Rating Scale-Revised (ALSFRS-
R)80 was performed. For participants with Alzheimer's disease, mild cognitive impairment and 
other memory disorders, the Montreal Cognitive Assessment (MOCA) was performed81. For 
participants with a form of parkinsonism, the MDS-Unified Parkinson's Disease Rating Scale 
(MDS-UPDRS)82 was performed. For participants with ataxia, the Brief Ataxia Rating Scale 
(BARS)83, the Scale for Assessment and Rating of Ataxia (SARA)84, and components of the 
Modified International Cooperative Ataxia Rating Scale (MICARS)83 (arm, speech, and 
oculomotor sections) were performed.  
 
We reviewed 42 patient-reported outcome measures (PROMS) used in neurodegenerative 
populations and selected a subset of 19 PROMS capturing information across the following 
domains: motor, speech, oculomotor, cognition, mood, participation in social activities, fatigue, 
sleep, quality of life (QoL), and environmental factors (Table 3).  For the Neuro-QoL PROMS85, 
the short forms were chosen wherever possible to help minimize survey burden. PROMS 
available in the public domain were prioritized. In addition to existing PROMs, our team also 
created a survey assessing the frequency of falls over the past 3, 6, and 12 months. 
Participants with Parkinson’s Disease and ataxias completed disease-specific outcome 
measures, such as PROM-Ataxia86 and the Dysarthria Impact Scale87. 
 

TABLE 3 ABOUT HERE 

Behavioral Tasks 

Cognitive Tasks 

The cognitive tasks were built in Python based upon the validated structure from 
TestMyBrain.org63. For the Digit Symbol Substitution Test (DSST)88, participants were shown six 
symbols arranged into three columns (Fig. 2). The columns were labeled “1”, “2”, and “3” such 
that each number was associated with two symbols. For each trial of DSST, a target symbol 
was shown to participants. Participants then attempted to choose the corresponding number 
using the button board. A new trial was immediately presented to participants once a button was 
pressed, with no indication of whether the selection was correct. Participants were given one 
minute to complete as many trials as possible. DSST assesses a large variety of cognitive 
domains including executive and visuoperceptual function, motor speed, attention, and 
associative learning.  
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For Multiple Object Tracking (MOT)89, participants were shown ten black dots (Fig. 2). Three to 
five of these dots were targets and the rest were distractors. The color of the target dots 
alternated between green and black for three seconds before reverting to black. All dots then 
simultaneously moved for five seconds. Once the dots were stationary, participants attempted to 
click the targets using the computer mouse in any order. Correct clicks were displayed as green 
and incorrect clicks were displayed as red. If the participant did not complete their clicks within 
one minute, then the trial was restarted. The full MOT task consisted of three blocks of six trials 
each (for a total of 18 trials). Each block corresponded to the number of targets (starting with 
three and ending with five) and successive trials within a block linearly increased the movement 
speed of the dots during the animation phase. (Dots moved at approximately 40 px/s in the first 
trial and 240 px/s in the last trial of each chunk.) The MOT task was significantly modified in 
May 2024, after the two-year period detailed in this manuscript. These modifications 1) ensured 
a more consistent stimulus delivery across sessions, 2) improved accessibility (i.e., larger fonts 
and color-blind-friendly colors), and 3) implemented early-stopping criteria for study participants 
who had notable difficulty performing the task based on long completion times in early trials. 
MOT assesses visual attention89,90.  

Oculomotor Tasks 

Prior to the oculomotor tasks, a five-point calibration task was performed to align the 
participant’s gaze with the screen coordinate system. At the beginning of each oculomotor task, 
participants were asked to maintain their head position against the back of the chair and to keep 
their head still and only move their eyes.  
 
In the horizontal smooth pursuit task, participants tracked a small circular target as it moved 
horizontally across the screen for 30 seconds. The circle’s velocity varied in a sinusoidal 
manner, with zero velocity near the screen edges and maximal velocity (33.3 degrees/s) at the 
screen center. The task was included to assess the gain and smoothness of eye movements 
while tracking a slowly moving target stimulus, which can be impaired in neurological 
conditions91–94. 
 
For the horizontal saccades task, participants tracked a circular target as it instantly appeared at 
the left, center, and right of the screen. The vertical saccades task was similar, with the target 
appearing at the bottom, center, and top of the screen. The circle was stationary between 
transitions for a short, randomized duration (uniformly distributed between 1–1.5 s). The 
horizontal and vertical saccades tasks assess multiple brain areas involved in the initiation and 
control of ballistic eye movements95.  
 
In the fixation without a target task, participants stared at the center of a uniformly gray screen 
for 10 seconds. In the gaze-holding task, participants fixated on a target that moved between 
five different screen positions (i.e., center, down, up, right, then left). The circle was stationary in 
each position for 10 seconds before jumping to the next position. The fixation and gaze holding 
tasks were included to capture oculomotor signs such as nystagmus, saccadic intrusions, and 
drift96.  
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Motor Tasks 

For the finger-to-nose task, participants were asked to extend their arm to about 90% of their 
reach to touch a circular target on the monitor and then return to their nose. This action was 
repeated for 15 seconds for each arm. The finger-to-nose task assesses upper extremity 
coordination, dysmetria, speed of movement, and tremor97.  
 
In the repetitive foot tapping task, participants were instructed to repetitively tap their toes on the 
ground while maintaining heel contact with the ground. This action was performed for 10 
seconds for each foot. For the rapid alternating hand movement task, participants were asked to 
raise their arm straight out in front of them and repetitively pronate and supinate their arm. This 
action was repeated for 15 seconds for each arm. These two tasks assess limb coordination 
and presence of bradykinesia98.   
 
For the sit-to-stand task, participants were asked to stand up fully from a seated position and 
then sit back down as quickly as possible with their arms crossed across their chest. 
Participants were able to use the chair’s armrests if needed. The action was repeated 5 times. 
The sit-to-stand task assesses balance and lower extremity strength99.  
 
In the Hevelius mouse clicking task58, participants were shown a single red dot on the screen 
and asked to click it using the mouse as quickly and as accurately as possible. After being 
clicked, the dot instantly moved to a new position on the screen. The task was divided into eight 
blocks, with each block presenting a sequence of nine dots. The size of the dot and the distance 
it moved on the screen remained the same within a block, but varied across blocks. It was 
previously observed that mouse trajectory, speed, and click characteristics were informative in 
quantifying ataxia and parkinsonism58–60. 

Speech Tasks 

For sustained phonation, participants were asked to say “ahh'' for 10 seconds. Since 
participants were instructed to continuously produce sound, this task was intended to measure 
variations in frequency and amplitude, breath patterns, and vocal fluctuations during initiation 
and termination of the target vowel100. For the diadochokinesis task, participants were asked to 
repeat “go go go”, “la la la”, “me me me”, and “Pa-Ta-Ka” syllables as quickly and as many 
times as possible in 10 seconds. Prior to the sustained phonation and diadochokinesis tasks, 
participants were asked to take a deep breath and to continue the task until told to stop. These 
tasks are designed to capture speaking rate and vocal irregularities that may be present in 
many neurologic conditions101.  
 
For the passage reading task, participants read aloud the Bamboo passage102,103, which is 
designed to include voiced consonants and phrase boundaries. Participants were asked to 
speak at their normal conversational volume and pace when reading the passage. Audio 
collected during the task can be used to assess speaking rate, phrase duration, and pauses104. 
Eye tracking allows assessment of eye movements during a naturalistic task and for 
assessment of eye-voice coordination74. 
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Data Availability 
Data can be requested by qualified researchers by visiting https://neurobooth.mgh.harvard.edu/. 
 

Software Availability 
Neurobooth software can be downloaded from our Github page: https://github.com/neurobooth/. 
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Figures 

Figure 1. The Neurobooth, located in the MGH neurology clinic.  
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Figure 2. Illustrations of Multiple Object Tracking (MOT) and the Digital Symbol Substitution
Test (DSST). (top) One trial of MOT with four targets and six distractors. The left panel displays
the trajectory of each circle, with the dot indicating the final position. The middle and right panels
display gaze and mouse trajectories from a control and participant with corticobasal syndrome,
respectively. (bottom) Heat maps showing the relative gaze duration during DSST. The red
square indicates the location of the target symbol. Lighter colors represent a longer time looking
at a given region. The left panel shows a control and the right panel shows a participant with
mild cognitive impairment. The vertical blue lines at the bottom represent the presentation of
symbols during the one minute task duration, with shaded blue regions indicating the response
time before the button press. 
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Figure 3. Illustrations of oculomotor tasks accompanied by example gaze time-series. Arrows
and numbers indicate the motion of the visual target and are not shown to participants. Only a
single visual target is displayed throughout each task. All control time-series were obtained from
a single data collection session (i.e., from a single participant). Horizontal and vertical gaze
positions are plotted on the y-axis with time represented on the x-axis. The y-axis values
representing horizontal gaze increase with eye movement to the far right of the screen, whereas
y-axis values representing vertical gaze increase with eye movement to the bottom of the
screen. 
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Figure 4. Illustrations of motor tasks. The finger-to-nose, alternating hand, foot tapping, and sit-
to-stand tasks are accompanied by example triaxial inertial time-series. For the foot tapping 
task, the ankle sensor was oriented differently for the two displayed time-series. For the 
Hevelius computer mouse task, the example data are represented in screen coordinates. 
Horizontal screen coordinates increase from left to right. Vertical screen coordinates increase 
from top to bottom. The target moved immediately after a valid mouse click. It was possible for 
the mouse to enter the target multiple times prior to a valid click. 
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Figure 5. Illustrations of the speech tasks - sustained phonation (top), diadochokinesis tasks
(middle), and passage reading (bottom). For diadochokinesis tasks, only a single line of
centered text is displayed per task. The illustrated diadochokinesis data are from the “Go-Go-
Go” task. For passage reading, the y-axis values representing horizontal gaze (blue curve)
increase with eye movement to the far right of the screen, whereas y-axis values representing
vertical gaze (red curve) increase with eye movement to the bottom of the screen. 

 
ks 
of 
-

e) 
ng 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 31, 2024. ; https://doi.org/10.1101/2024.12.28.24319527doi: medRxiv preprint 

https://doi.org/10.1101/2024.12.28.24319527
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

Tables 
Table 1. Participant demographics and clinical diagnoses. 
 
Abbreviations: ARSACS—Autosomal recessive spastic ataxia of Charlevoix-Saguenay; 
CANVAS—Cerebellar Ataxia, Neuropathy, and Vestibular Areflexia Syndrome 

Participant diagnosis N Age in decades Female % 

Control 82 2nd to 8th 70 

Alzheimer's disease  5 5th to 8th 60 

Amyotrophic lateral sclerosis 4 5th to 7th  25 

ARSACS 3 1st to 2nd 100 

Atypical parkinsonism 9 5th to 8th 56 

CANVAS 11 3rd to 7th 45 

Corticobasal syndrome 4 7th 75 

Fragile X-associated tremor/ataxia syndrome 4 5th to 7th 50 

Friedreich's ataxia  14 2nd to 7th 79 

Frontotemporal dementia 2 7th 100 

Hereditary spastic paraplegias 10 4th to 7th 50 

Huntington's disease  1 6th 0 

Lewy body dementia 3 6th to 8th 100 

Mild cognitive impairment 5 3rd to 8th 80 

Multiple system atrophy - cerebellar type 8 6th to 7th 88 

Multiple system atrophy - parkinsonian type 4 5th to 7th 25 

Other neurological diagnosis 36 3rd to 9th 53 

Other ataxia  61 2nd to 8th 34 

Parkinson's disease  132 4th to 8th 33 

Primary progressive aphasia 7 5th to 7th 29 

Progressive supranuclear palsy 14 6th to 8th 79 

Spinocerebellar ataxia 1 2 3rd to 6th 100 

Spinocerebellar ataxia 2 8 2nd to 7th 63 

Spinocerebellar ataxia 3 24 2nd to 7th 71 

Spinocerebellar ataxia 6† 13 5th to 8th 62 

Spinocerebellar ataxia 8 3 3rd to 5th 67 

Spinocerebellar ataxia 27B 1 5th 0 
†One subject with spinocerebellar ataxia 6 was concurrently diagnosed with spinocerebellar ataxia 8. 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 31, 2024. ; https://doi.org/10.1101/2024.12.28.24319527doi: medRxiv preprint 

https://doi.org/10.1101/2024.12.28.24319527
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

 

Table 2. Data collection devices in the initial Neurobooth deployment. Data were captured from 
all devices during most tasks, with exception of computer mouse data, which were only 
captured during tasks that used the mouse as an input device. Data were not collected from the 
eye tracker or iPhone during the motor tasks because the arm holding the eye tracker and 
iPhone was repositioned during these tasks to create room for task performance. 

Device name Data Modality Sampling rate (Hz) No. Devices 

Intel D455 RGB-Depth Video 60 3 

FLIR Camera RGB (Infrared) 196 1 

EyeLink Portable Duo Binocular Gaze 1000 1 

Mbient IMU 6-axis Inertial 100 5 

iPhone 12 RGB Video, Audio 150–240* 1 

Microphone Blue Yeti Audio 44,100 1 

Computer Mouse Mouse movement and clicks — 1 

Button Pad User Input — 1 

* The optimal iPhone sampling rate is 240 Hz. Though some videos achieve this rate, lower 
rates were observed in practice. The iPhone application has been updated multiple times to 
reduce dropped frames.  
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Table 3. Descriptions of each collected patient reported outcome measure (PROM). 
                       

PROM Items Brief Description 

PROM-Ataxia* 70 Assesses physical function, activities of daily living, and mental function in 
individuals with cerebellar ataxia 86. 

Dysarthria Impact 
Scale 

23 Assesses how speech affects everyday life 87 

Falls 
Questionnaire 

8 Assesses the number of falls and near falls over the past 3, 6 and 12 
months (Created for Neurobooth)  

Communicative 
Participation Item 
Bank- General  

10 Assesses how much participant’s condition affects how they communicate 
on an average day 105 

Edinburgh 
Handedness 
Inventory 

15 Asks whether the right or left hand is used for various everyday tasks 106 

Craig Hospital 
Inventory of 
Environmental 
Factors  

10 Assesses how various environmental factors act as barriers to 
participation as an active member of society 107 

PROMIS 10 10 Assesses physical, mental and social health 107,108 

Visual Activities 
Questionnaire  

13 Assesses vision-related quality of life and function in everyday activities 
109  

Patient Global 
Impressions scale 

1 Assesses patient impression of overall clinical change since their last 
participation 110  

Neuro-QoL (Quality of Life in Neurological Disorders) 

Upper Extremity 
Function (Fine 
Motor, ADL)  

8 Assesses the difficulty of performing fine motor tasks 85 

Lower Extremity 
Function (Mobility) 

8 Assesses mobility difficulties 85 

Cognition Function 8 Assesses the difficulty of thinking, reading, concentrating and planning 85 

Ability to 
Participate in 
Social Roles and 
Activities 

8 Assesses how often participants kept up with social responsibilities over 
the past week 85  

Anxiety 8 Assesses how often participants felt symptoms of anxiety over the past 
week 85  

Depression 8 Assesses how often participants felt symptoms of depression over the 
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past week 85  

Emotional and 
Behavioral 
Dyscontrol  

8 Assesses how often participants felt unable to control their emotions over 
the past week 85  

Positive Affect and 
Well-Being 

9 Assesses how often participants felt that their life was satisfying and 
hopeful “lately” 85  

Fatigue 8 Assesses how often participants felt tired completing a range of activities 
over the past week 85  

Sleep Disturbance  8 Assesses how often participants had trouble getting adequate sleep over 
the past week 85  

*PROM-Ataxia was collected in controls and individuals who are seen by a movement disorders 
and/or ataxia clinical provider. 
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