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One Sentence Summary: We used biophysical and regression models for predicting ECG 
features across sexes to address disparities in sex-specific cardiac drug responses 
 
Abstract:  
Sex differences in cardiac electrophysiology are a crucial factor affecting arrhythmia risk and 
treatment responses. It is well-documented that females are at a higher risk of drug-induced 
Torsade de Pointes and sudden cardiac death, largely due to longer QTc intervals compared to 
males. However, the underrepresentation of females in both basic and clinical research introduces 
biases that hinder our understanding of sex-specific arrhythmia mechanisms, risk metrics, disease 
progression, treatment strategies, and outcomes. To address this problem, we developed a 
quantitative tool that predicts ECG features in females based on data from males (and vice versa) 
by combining detailed biophysical models of human ventricular excitation-contraction coupling 
and statistical regression models. We constructed male and female ventricular tissue models 
incorporating transmural heterogeneity and sex-specific parameterizations and derived pseudo-
ECGs from these models. Multivariable lasso regression was employed to generate sets of 
regression coefficients (a cross-sex translator) that map male ECG features to female ECG 
features. The predictive ability of the translator was evaluated using an independent dataset that 
simulates the effects of various drugs and pharmacological agents at different concentrations on 
male and female models. Furthermore, we demonstrated a proof-of-concept clinical application 
using ECG data from age-matched subjects of both sexes under various drug regimens. We 
propose our cross-sex ECG translator as a novel digital health tool that can facilitate sex-specific 
cardiac safety assessments, ensuring that pharmacotherapy is safe and effective for both sexes, 
which is a major step forward in addressing disparities in cardiac treatment for females.  
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INTRODUCTION 
Intrinsic biological differences in cardiovascular structure and function between males and females 
directly impact the likelihood, severity, and type of cardiovascular disease (1, 2). Underlying sex-
related differences in ion-channel electrophysiology manifest at the scale of whole-heart 
electrocardiograms (ECG) (3, 4). Bazett first reported sex- and age-driven differences, noting that 
pre-menopausal females had prolonged QT intervals compared to age-matched male subjects (5), 
despite a smaller heart size than males. This is mainly attributed to a reduced gene expression for 
a wide variety of K+ channel subunits (including hERG) in female vs. male ventricles (6, 7). 
Female ECGs also exhibit shorter RR and QRS, and smaller T-wave amplitudes and ST angles 
than males (8).  

The longer corrected QT duration due to reduced repolarization reserve makes females 
more susceptible to drug-induced Long-QT syndrome (LQTS) and torsades de pointes (TdP), 
which can trigger ventricular fibrillation (VF) and sudden cardiac death (1, 4, 9–12) and is a 
leading cause of drug attrition in the drug development pipeline. Safety guidelines mandate the 
use of two main metrics to assess the likelihood of drug-induced TdP for any new compound: in 
vitro studies to quantify hERG channel block and in vivo ECG studies to measure QT interval 
prolongation. While the validity of these metrics of TdP risk is the subject of much debate (13), an 
additional challenge is that females are underrepresented in clinical trials, leading to potential sex 
bias in these screens. This could render new compounds potentially ineffective or even harmful in 
vulnerable (e.g., diseased or aged) female populations (11, 14–17). Indeed, the approval of most 
drugs based on clinical trials predominantly conducted in males has likely contributed to 
overmedication of females (18). Thus, there is therefore an urgent need for tools that quantitatively 
evaluate sex-differences and improve drug-induced arrhythmia risk prediction for both sexes. 

Computational modeling, grounded in experimental data, has proven powerful in 
dissecting key mechanisms underlying cardiac electrophysiology and arrhythmogenesis (19, 20), 
and invaluable in predicting drug cardiotoxicity (21, 22). By offering a framework that overcomes 
the limitations of species differences inherent in animal studies, computational modeling can 
provide an accurate representation of human cardiac physiology. Furthermore, simulations are 
cost-effective, scalable, and align with ethical standards by reducing reliance on animal testing. 
Incorporating sex differences into these models allows in-silico drug screening and prediction of 
electrophysiological features in a sex-specific manner (17, 23–25). Previous work from our team 
used data-driven models with biophysical simulations to translate (i.e., predict) action potential 
(AP) and Ca2+ transient (CaT) biomarkers in females given male data (and vice versa) (26). 
However, translation of ECG features is crucial for clinical application. To achieve this, we 
propose a multi-scale computational approach to translate ECG features across sexes, bridging 
cellular AP to the ECG. 

We simulated male and female pseudo-ECGs using populations of male and female 
ventricular one-dimensional cable models. Multivariable lasso regression was employed to 
generate sets of regression coefficients (a cross-sex translator) that map male ECG to female ECG 
features. The predictive capability of the translator was assessed using an independent dataset that 
simulated the effects of various drugs and pharmacological agents at different concentrations on 
male and female models. Additionally, we demonstrated a proof-of-concept clinical application 
using ECG data from age-matched male and female subjects under various drug regimens (27–
29). We propose that our cross-sex ECG translator could serve as a novel digital health tool for 
sex-specific cardiac safety assessments, promoting safe and effective pharmacotherapy for both 
sexes and helping to address existing treatment disparities. 
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RESULTS  
Development and cross validation of the male-to-female ECG translator 

 
Fig. 1. Development and validation of the cross-sex ECG translator. (A) Development workflow: Step 
1. Male and female cable models of ventricular tissues are built to simulate propagating action potentials. 
Step 2. Pseudo-ECGs are computed for the male and female populations to extract ECG features (QRS 
duration (QRS dur), QT interval (QT int), T-wave amplitude (T-wave amp), T-peak-to-end duration (T-
peak-end dur)). Step 3. Lasso regression is used to predict the female ECG features based on the male ECG 
features, yielding Bcross, a set of regression coefficients mapping male to female ECG features (vice versa 
is also possible). Step 4. Bcross is applied to predict ECG features in the output sex (“Translated female 
features”), given the values observed in the input sex (“Actual male features”), (B) Distribution of pseudo-
ECG features from populations of male and female tissue models (n = 969 for each sex), (C) Cross-
validation with an independent test set (n = 219 models for each sex). For each feature, the female values 
predicted by the translator are plotted against the actual (simulated) values. 
 
We constructed male and female one-dimensional cable models (Fig. 1A – Step 1) of ventricular 
transmural tissue by simulating strands of myocytes with the O’Hara-Rudy cellular model (30), 
updated to integrate experimental data on sex differences in ion channels and Ca2+ handling (6, 17, 
31) and their transmural variations (30, 32). Populations of 750 male and female cables were 
generated by random perturbation of baseline model parameters (33) and pseudo-ECGs were 
calculated (see Materials and Methods for details) (Fig. 1A - Step 2). For each model variant, we 
computed key ECG features: QRS duration (ORSdur), QT interval (QTint), T-wave amplitude (T-
wave amp), T-peak-to-end duration (T-peak-end dur) when pacing at a basic cycle length of 1,000 
ms (equivalent to a heart rate of 60 beats per minute). Notably, our models reproduce clinically 
observed sex differences, including longer QT interval and smaller T-wave amplitudes in females 
(8) (Fig. 1B). We then built the cross-sex translator by using lasso regression to yield a set of 
regression coefficients mapping male-to-female features (and vice versa) (Fig. 1A – Step 3). Given 
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a male ECG, the corresponding female ECG features can be predicted as a function of the male 
ECG features (and vice versa) (Fig. 1A - Step4). We validated the ability of the translator to predict 
simulated female ECG features from given simulated male ECG features using an independent test 
set (219 male and female cables), not used to derive the regression model, and revealed an R2 > 
0.94 for the four features when comparing actual vs. predicted values (Fig. 1C). 
Male-to-female translator application and validation with simulated drug responses 
To test the applicability of the ECG translator, we attempted to predict the concentration-
dependent drug responses in female ECG features from the measured effects on the male pseudo-
ECGs. We utilized a broad simulated dataset comprising 98 formulations of compounds (including 
anti-arrhythmic and other miscellaneous pharmacological agents)(17, 34–36). An example 
illustrating female ECG features that were predicted by the translator from simulated male ECG 
features in the presence of dofetilide, quinidine, ranolazine, and verapamil at their respective 
effective therapeutic plasma concentration (ETPC) are shown in Fig. 2A. The translator 
successfully predicted the simulated drug-induced effects in female ECG features when simulated 
male ECG features in response to the same drug were given as input, with an average <5% 
discrepancy between all four predicted and simulated female ECG features across all the 98 
formulations in simulated datasets (Fig. 2B). Translation errors for individual features across 1-4x 
ETPC were as follows: QRS dur (0.63 ± 1.28 %); QT int (0.10 ± 0.15 %);  T-wave amp (4.26 ± 
9.84 %); T-peak-end dur (1.75 ± 2.71 %). 
 

 
 
Fig. 2. Translator application and validation with simulated drug responses. (A) The translator was 
validated against simulated pseudo-ECG drug responses. As an example, simulations of male and female 
pseudo-ECG under the action of dofetilide, quinidine, ranolazine, and verapamil at their respective effective 
therapeutic plasma concentration (ETPC) are shown. (B) Violin plots depicting the relative male-to-female 
translation error calculated as abs(1 - translated value/actual value) for translation of each feature under the 
action of 98 drug formulations at 1-4× ETPC. Data is excluded from analysis for cables without propagating 
action potentials and without positive T-waves under drug block (1×: 6, 2×: 16, 3×: 21, 4×: 27). Note the 
logarithmic scale on y-axis for % errors. 
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Fig. 3. Translator application and validation with clinical ECG data comprising single drug 
responses. (A) The translator performance was tested for prediction of female ECG features based on male 
clinical ECGs using clinical dataset 1 (27); Row 1. QRS duration; Row 2. QTc interval; Row 3. T-peak-
end duration; Row 4. T-wave amplitude. Male features (pink) from clinical ECG data under drug 
administration over a 24-hour period (solid lines indicate the mean value, and shaded area indicates the 
SEM) are translated into female responses (black). The latter are compared with clinical female features 
under the same drugs (blue). (B) Translation error for the drugs in (A), calculated for the four features as 
abs(1-mean(translated value)/mean(actual value)) at each time point. Each column corresponds to a single 
drug administration as listed. Dataset 1(27) comprised participants aged 26.9 ±5.5 years (11 males, 11 
females). All feature values were placebo corrected. Note the logarithmic scale on y-axis for % errors. 
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Fig. 4. Translator application and validation with clinical data comprising drug combination 
responses. (A) The translator performance was tested for prediction of female ECG features based on male 
clinical ECGs using clinical dataset 2 (28); Row 1. QRS duration; Row 2. QTc interval; Row 3. T-peak-
end duration; Row 4. T-wave amplitude. Male features (pink) from clinical ECG data under drug 
administration over a 24-hour period (solid lines indicate the mean value, and shaded area indicate the 
SEM) are translated into female responses (black). The latter are compared with clinical female features 
under the same drugs (blue), (B) Translation error for the drugs in (A), calculated for the four features as 
abs(1-mean(translated value)/mean(actual value)) at each time point. Each column corresponds to a single 
drug administration as listed. Dataset 2 (28) comprised participants aged 26.1 ± 4.9 years (13 males, 9 
females). All feature values were placebo corrected. Note the logarithmic scale on y-axis for % errors. 
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Translator application and validation with clinical ECG data 
To demonstrate proof-of-concept application of the translator to clinical data, we further applied 
the translator to 24-hour clinical ECGs from two different cohorts comprising healthy age-matched 
subjects of both sexes receiving the same dose of various anti-arrhythmic drugs (Dataset 1: 
Johannesen et al., 2014 (27, 29)) and drug combinations (Dataset 2: Johannesen et al., 2016 (28, 
29)) (Fig. 3 and 4). The female features predicted by translating (shaded black in Fig. 3A and Fig. 
4A) the male data (shaded pink in Fig. 3A and Fig. 4A) matched closely the actual female data 
(shaded blue in Fig. 3A and Fig. 4A). The translator predicted drug-induced relative changes from 
the baseline in female ECG features from the corresponding male ECG data with an average 
translation error <6% across all four features for all timepoints in both Dataset 1 (Fig. 3B) and 
Dataset 2 (Fig. 4B). The translation errors for individual features comprising Datasets 1 and 2 were 
as follows: QRS dur (1.42 ± 1.19 %); QT int (0.97 ± 0.82 %); T-wave amp (5.24 ± 4.78 %); T-
peak-end dur (5.26 ± 4.82 %). Dofetilide was administered with different initial concentrations in 
the two studies, thus leading to different levels of QTc prolongation. Notably, the translator 
demonstrates reasonable performance across both datasets, achieving an average error for 
dofetilide of 6.92 ± 7.08% in Dataset 1 and 2.68 ± 2.58% in Dataset 2 across all four features. 
 
DISCUSSION  
Summary and key outcomes 
The underrepresentation of females in research remains a persistent challenge (15). This has led to 
gaps in our understanding of sex-specific biological differences and their impact on disease 
progression, treatment efficacy, and drug safety. As a result, females are often at higher risk of 
adverse drug reactions (37, 38) and suboptimal treatment outcomes due at least in part to the 
reliance on data predominantly derived from male subjects. To address this issue, we developed a 
quantitative tool combining biophysical modeling of human ventricular excitation-contraction 
coupling with statistical regression models to predict ECG features in females based on male data 
(and vice versa). Our team has previously demonstrated the success of multivariable linear 
regression in developing cross-species (39) and cross-sex translators of cellular action potential 
(AP) and calcium transients (CaT) biomarkers (26), which showed strong agreement between 
predicted and experimentally observed features. Building on this foundation, we employed lasso 
regression (40) for our cross-sex ECG translator. This method improves upon traditional regression 
techniques by eliminating redundant features and reducing feature co-dependency, thus yielding 
more accurate and interpretable models. We validated the tool using an independent dataset 
simulating the effects of various drugs and pharmacological agents at various concentrations on 
male and female models. Additionally, we showcased a proof-of-concept clinical application using 
ECG data from age-matched individuals of both sexes under different drug regimens. This study 
represents a significant technological innovation, introducing a much-needed health tool that 
predicts ECG features across sexes.  
 
Biological insights and applications in drug development and clinical settings 
Our findings highlight the potential of our novel cross-sex ECG translator, validated using clinical 
data from male and female subjects, to serve as a powerful tool for bridging the knowledge gap in 
quantitatively predicting sex-specific ECG responses to drugs. The translator offers a practical 
application in drug discovery and clinical settings, enabling precise predictions of ECG features 
across sexes. For example, the translator could identify cases where QT interval prolongation 
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remains within normal limits for males but may pose an arrhythmogenic risk in females, enabling 
these scenarios to be addressed with caution. A key strength of our approach is the integration of 
biophysical modeling with statistical learning techniques. This approach not only provides a 
mechanistic understanding of the physiological processes driving sex-specific ECG differences 
but also enables the discovery of emergent properties that can be extrapolated to new, previously 
untested conditions. For instance, biophysical simulations can be evaluated across different drug 
concentrations and traced back to identify parameters that influence outputs like biomarkers and 
arrhythmia susceptibility (33, 41). These capabilities are often limited when AI-based techniques 
are applied solely to clinical data, which may lack the underlying biological context and 
mechanistic insights that are essential for accurate predictions. As highlighted by previous studies, 
sex-specific simulations can uncover and predict differences in dose responses and arrhythmia 
susceptibility to pharmacological agents (17, 23–25). Conceptually, the translator also offers the 
ability to extract novel insights from existing clinical data. For example, by analyzing ECG feature 
changes at varying drug concentrations between sexes, it can provide valuable insights into dose-
dependent effects and help identify sex-specific differences in drug metabolism or ion channel 
sensitivity.  
 The translator could also enable identification of new sex-specific metrics for arrhythmia 
prediction, leveraging a range of ECG features, not just QT intervals, as done in a recent study 
aimed at predicting sex-specific QTc prolongation and drug-induced proarrhythmic risk using 
cardiac emulators (42). This would provide a more comprehensive tool for assessing cardiac risk 
in both males and females, contributing to more personalized and precise healthcare. The cross-
sex ECG translator could enhance the accuracy of cardiac safety evaluations for females, 
addressing the historical underrepresentation of females in clinical research and helping to mitigate 
sex-based disparities in medicine. We also envision the use of the translator as a valuable teaching 
tool, which could train clinicians to recognize the impact of drugs on ECGs in a sex-specific 
manner and enhance their ability to assess cardiac responses in males and females. Importantly, 
our work underscores the critical need for systematic consideration of sex as a biological variable 
in cardiovascular research.  
 
Limitations and Future Directions 
Technical challenges and enhancements 
During our drug simulations, we encountered challenges such as propagation failure due to 
limitations in the O’Hara-Rudy (30) sodium current (INa) formulation. In some cases, the INa 
formulation may overestimate the drug effects and significantly disrupt excitation propagation, 
leading to inverted T-waves, which might not necessarily reflect clinical outcomes. To address 
these limitations, our future work will focus on incorporating alternative INa formulations and 
validation of the translator using other ventricular models, including the Grandi-Bers (43) and 
ToR-ORd (32) models. Additionally, our drug simulations currently rely on a simplified pore-
block model that doesn’t account for state- or use-dependent blocks. If sex-dependent drug 
metabolism influences drug responses, we will integrate this complexity into our modeling 
framework to enhance the performance of our translator. 
 The current translator uses a 1D strand model for pseudo-ECG generation, offering 
computational efficiency and reasonable accuracy when compared to clinical data. However, this 
approach lacks the anatomical detail of 3D whole-heart models. Future work will evaluate the 
translator’s performance against 3D ventricular models (44) that incorporate apicobasal and 
transmural heterogeneity to improve predictive precision, particularly for complex conditions or 
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drug responses. Another avenue for future work involves the systematic comparison of our 
translator’s performance against other AI-based tools designed for ECG analysis, such as deep 
learning models.  
Heterogeneous patient cohorts 
We evaluated the cross-sex ECG translator using a cohort of healthy young adults. Our findings 
highlight that male and female ECG features exhibit strong correlations under normal 
physiological conditions, as captured by the cross-sex regression model. This suggests shared 
patterns of relative changes in ECG features across sexes, which are maintained in young adults 
under normal conditions. However, these relationships may shift in aging and diseased states, 
where additional features might become significant, and may also require the adoption of non-
linear or polynomial regression models. The translator’s applicability could be expanded to 
account for age, disease, and fluctuations in sex hormones by incorporating ECG data from a 
broader, more diverse set of clinical databases. This will involve simulating age- and disease-
specific phenotypes within the biophysical model to create more robust, age- and disease-sensitive 
translators.  
Sex-differences in pharmacokinetics 
Our current translator development does not take into account potential sex-differences in 
pharmacokinetics, which can significantly influence drug absorption, distribution, metabolism, 
and elimination, ultimately affecting drug efficacy and safety across sexes (45, 46). This is a 
critical consideration, as identical drug dosages can lead to varying effective concentrations at the 
target site, resulting in differences in therapeutic outcomes and adverse effects. Addressing this 
issue is essential for improving the accuracy of clinical cardiac safety assessments, which should 
prioritize the influence of sex-based pharmacokinetics and pharmacodynamics. Our analysis 
revealed sex differences in plasma drug concentrations for quinidine and verapamil in the clinical 
studies we used (Fig. S1-S2), despite all subjects receiving identical doses. However, the drugs 
tested are potent enough that their ionic current block was only modestly affected by these 
variations. In the case of dofetilide from clinical dataset 1, while the relative QT prolongation is 
similar in male and female when simulating the same drug concentration, simulating the maximum 
drug concentration shows a 60% increase in male QTc vs. a 71% increase in female (Table S1-
S2). In most cases, the translation model used here, which assumes similar perturbations of ion 
channels in males and females, remains valid. Nevertheless, accounting for pharmacokinetic 
differences could enhance the utility of the model in clinical applications, ultimately leading to 
better-informed, sex-specific dosing guidelines and safer therapeutic strategies. 
 
MATERIALS AND METHODS 

Male and female human ventricular models integrating experimentally identified sex and 
transmural differences  
Previously implemented sex differences in protein expression of ion channels (6) in the O’Hara-
Rudy model (30), served as the basis for our simulations. Compared to males, females exhibited 
reduced expression of K+ channel subunits such as HERG, minK, Kv1.4, KChIP2, as well as 
reduced expression of connexin 43 (6). In addition to K+ channel expression, work by our group 
has shown several Ca2+ handling proteins that regulate intracellular diastolic Ca2+ and CaT decay, 
may play a role in the predisposition of females to TdP (17). Here, we applied and updated these 
established sex-specific parametrizations of human ventricular myocytes incorporating transmural 
heterogeneity (6, 17, 30, 31). All adjustments (summarized in Table 1) were applied as scaling 
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factors to ionic currents, fluxes, and transporters, except for IKs. For IKs, additional modifications 
included changes in the voltage dependence of steady-state activation (xs1ss) and (xs2ss) and their 
time constants (τxs1 and τxs2), as detailed in Equations 1-4 (31). Fig. 5 shows the simulated male 
and female baseline models for the endocardial and epicardial cell types, incorporating the 
parameterization listed in Table 1. 
 
Table 1. Sex-based differences in the human ventricle. Scaling factors are relative to the male endocardial 
model. M – male; F – female; endo – endocardial cell; epi – epicardial cell. 

Parameter Definition F vs 
M 

Epi vs 
Endo 

F endo scaling 
factor 

M epi scaling 
factor 

F epi scaling 
factor 

Gtos Maximal conductance of the 
slow component of the 
transient outward K+ current 

¯ ¯ 0.64 0.6 0.26 

GKr Maximal conductance of the 
rapid delayed rectifier K+ 
current 

¯  0.80 1.86 1.49 

GKs Maximal conductance of the 
slow delayed rectifier K+ 
current 

¯  0.83 1.04 0.87 

GK1 Maximal conductance of the 
inward rectifier K+ current 

¯ ¯ 0.86 0.98 0.74 

GNaCa Maximal conductance of the 
Na+/Ca2+ exchange current 

  1.15 1.1 1.27 

GpCa Maximal conductance of the 
sarcolemmal Ca²⁺ pump 
current 

 = (F) 

¯ (M) 

1.6 0.88 1.6 

CMDNmax Maximal buffering capacity of 
calmodulin 

  1.21 1.07 1.41 

Cx43 (Ri) Intracellular resistance in the 
1D cable (parameter values 
adjusted from Cx43 
expression) 

¯ ¯ 0.68 0.94 0.61 

GNaL Maximal conductance of the 
late Na+ current 

= ¯ 1 0.6 0.6 

Gto Maximal conductance of the 
transient outward K+ current 

=  1 2 2 

PCa, PCaNa, 
PCaK 

Permeability to Ca2+, Na+, K+ 

through the L-type Ca2+ 
channel 

=  = 1.2 1.2 

PNaK Permeability of the Na+/K+ 
ATPase current 

= ¯ 1 1 0.94 

GKb Maximal conductance of the 
K+ background current 

= ¯ 1 0.6 0.6 

JupNP Non-phosphorylated Ca2+ 
uptake flux, via SERCA pump 

=  1 1.42 1.42 

JupCAMK CAMK phosphorylated Ca2+ 
uptake flux, via SERCA pump 

=  1 1.42 1.42 
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where scaling = 1 (M endo); 0.83 (F endo); 1.04 (M epi); 0.87 (F epi) 
 

 
Fig. 5. Simulated sex and transmural differences listed in Table 1 in the O’Hara-Rudy single cell 
model. Top: Transmembrane voltage (Vm); Bottom: Calcium transient (CaT) 
 
One-dimensional cable models and pseudo-ECG calculation 
The male cable comprised 205 cells and the female cable comprised 190 connected end to end by 
intracellular resistance. Female cable length was scaled to 90% of the male length to reflect smaller 
ventricular wall thickness in females vs males (23). In both male and female cable models, 50% 
of the cable contained endocardial cells and  the other 50% epicardial cells, with a linear gradient 
applied to GKr to simulate a gradual decrease in action potential duration (APD) from the 
endocardium to the epicardium, as previously simulated (31). The first 5 cells of the cable were 
stimulated from the endocardial end. The first 20 and last 20 cells were excluded for pseudo-ECG 
computation to avoid edge effects. 
The pseudo-ECGs were computed by calculating the extracellular unipolar potentials Φe for the 
male and female population of cables according to Equation 5 (47, 48).  
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8 = 	 [(! − !$)% +	(+ − +$)%	+	(, − ,$)%]	!/% 
 
Where Vm is the transmembrane potential, ∇Vm is the spatial gradient of Vm, a is the radius of the 
fiber, σi is the intracellular conductivity, σe is the extracellular conductivity, and r is the distance 
from a source point (x, y, z) to a field point (x’, y’, z’). Φe was computed at a virtual electrode 
located 2.0 cm away from the epicardial end of the cable. All pseudo-ECGs were normalized to 
the QRS amplitude of the baseline male pseudo-ECG. 
 
ECG feature calculation 
For each pseudo-ECG, we calculated key ECG features, including QRS duration, QT interval, T-
peak-to-end duration, and T-wave amplitude, using a custom software (Fig 6.). The ‘Q’ point was 
designated as the time at which the cable was stimulated from the endocardial end. The ‘R’ point 
was identified as the time when the maximum value of extracellular potential (Φe) occurred. The 
‘S’ point was determined as the time when Φe first crossed a value of 0.01 following the R peak. 
T-wave amplitude was measured as the maximum value of Φe following the S point. The end of 
the T wave was identified by finding the intersection of the line with the maximum rate of decay 
following the T-wave peak and the horizontal line at Φe = 0. QRS duration was calculated as the 
time interval between the Q and S points. The QT interval was calculated as the time interval from 
the Q point to the end of the T wave. T-peak-to-end duration was measured as the interval between 
the time of T-wave amplitude and the end of the T wave. 
 

 
Fig. 6. Calculation of pseudo-ECG features 

 
Population modeling and translator development 
An initial population of 1,000 male and 1,000 female cable models was generated by random 
perturbation of model parameters (Table 2) using a log-normal distribution with a standard 
deviation of 0.1. From this population, 750 male and 750 female cables were used as the training 
dataset to develop the cross-sex translator “Bcross”  (see Fig 1. for schematic) employing lasso 
regression (40). The inbuilt MATLAB function ‘lasso’ was used with 10-fold cross-validation. 
Using 750 models for training yielded the same regression coefficients as using a larger number 
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of models, so we chose not to increase the initial population size. From the initial populations, 219 
male and female cables (not used to develop Bcross) were used for validation and 31 models were 
excluded from analysis due to propagation failure and/or inverted T-waves. 
 
Table 2.  Model parameters randomly perturbed to introduce variability during population generation 

Parameter Definition 

GNa Maximal conductance of the fast Na+ current 

GNaL Maximal conductance of the late Na+ current 

Gto Maximal conductance of the transient outward K+ current 

PCa, PCaNa, PCaK Permeability to Ca2+, Na+, K+ through the L-type Ca2+ channel 

GKr Maximal conductance of the rapid delayed rectifier K+ current 

GKs Maximal conductance of the slow delayed rectifier K+ current 

GK1 Maximal conductance of the inward rectifier K+ current 

GNaCa Maximal conductance of the Na+/Ca2+ exchange current 

PNaK Permeability of the Na+/K+ ATPase current 

GKb Maximal conductance of the K+ background current 

PNab Permeability of the Na+ background current 

PCab Permeability of the Ca2+ background current 

GpCa Maximal conductance of the sarcolemmal Ca²⁺ pump current 

vSERCA Maximal transport rate of the sarcoplasmic reticulum (SR) Ca2+ ATPase 

vRyR Maximal transport rate of the SR Ca2+ release via ryanodine receptors (RyRs) 

vleak Maximal transport rate of the SR Ca2+ leak via RyRs 

Ri Intracellular resistance in the 1D cable (parameter values adjusted from Cx43 expression) 

 
 
Drug simulations 
Drug effects were simulated with male and female models to validate the applicability of the ECG 
translator to predict the concentration-dependent drug responses in female ECG features given the 
measured effects on the male pseudo-ECGs. We utilized a broad simulated dataset comprising 98 
compounds (including anti-arrhythmic and other miscellaneous pharmacological agents) (17, 34–
36). Each drug was simulated using a pore block model based on the available half-maximal 
inhibitory concentration (IC50) values and Hill coefficients for various ion channels. We simulated 
various drug concentrations, ranging from 1 to 4 times their effective therapeutic plasma 
concentration (ETPC), at 1 Hz pacing. 
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Clinical ECG data processing 
Dataset 1 and Dataset 2 were obtained from PhysioNet (29), where any feature value for each 
subject was reported in triplicate. We calculated the average of these triplicate values for each 
male and female subjects. QT values were rate-corrected using the formula: 

>?) = >? + @(1 − AA) 
where k is the slope of the best-fit line for the relationship between QT and RR and QTc=QT at 
RR = 1 s. Note that QRS duration, T-peak-end duration, and T-wave amplitude were not rate-
corrected. Placebo-corrected changes from baseline were applied to all feature values. For 
instance, the relative change in QTc at time ‘t’ from baseline ‘t0’was calculated as: 

-./0!12.	345,-./(!) = 8
9345,-./(!) −	345,-./(!0)< 	−	9345012)34(!) −	3450125)34(!0)<		

345,-./(!0)
= × 100 

 
Code availability 
All codes used to perform simulations and data analysis were generated in MATLAB (MathWorks, 
Natick, MA, USA), version R2023b and Python3. Population-level simulations were performed 
with a computing cluster with Intel Xeon CPU E5-2690 v4 at 2.60 GHz 28 CPUs (56 threads) + 
132 GB, and a standard laptop was used for data analysis. All source codes (and related 
documentation) and all simulated data used in this study are available for download at 
https://github.com/drgrandilab/ 
 
List of Supplementary Materials 
Fig. S1 to S2  
Table. S1 to S2   
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