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ABSTRACT  

 

Background: Ambient artificial intelligence offers promise for improving documentation 

efficiency and reducing provider burden through clinical note generation. However, challenges 

persist in workflow integration, compliance, and widespread adoption. This study leveraged a 

Learning Health System (LHS) framework to align research and operations using a hybrid 

effectiveness-implementation protocol, embedded as pragmatic trial operations within the 

electronic health record (EHR). 

Methods: An alpha phase was conducted to pilot technical integration, refine workflows, and 

determine sample size in planning for a beta phase designed as a pragmatic randomized 

controlled trial with the Stanford Professional Fulfillment Index (PFI) as primary outcome. 

During alpha, bi-directional governance was established between IS operations and LHS team 

with multidisciplinary workgroups for analytics, technical, documentation, and user experience. 

Ambient AI was embedded into the EHR using Fast Healthcare Interoperability Resources 

(FHIR), with real-time data dashboards tracking utilization and documentation accuracy for 

operations and research. Performance metrics were monitored serially using a difference-in-

differences (DiD) analysis to detect drift caused by software workflow changes. 

Results: The alpha phase, designed as Type 1 Hybrid, informed a 24-week beta phase stepped-

wedge trial with 90% power to detect changes in PFI. Across the alpha phase, the weighted 

median of average provider Ambient AI utilization was 65.4% following Plan-Do-Study-Act 

cycles addressing organizational feasibility and task-dependent adoption. Diagnosis code 

accuracy dropped from 79% to 35% (p < 0.01) during alpha but recovered with a new note 

template and provider training. DiD did not detect significant drifts in work outside of work or 
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time in notes two weeks before and after the new note template. Beta phase enrollment achieved 

its targeted 66 providers across eight specialties, initiating on schedule. 

Conclusions and Relevance: We provide a novel playbook for integrating Generative AI 

platforms in healthcare, combining pragmatic trial operations, human-centered design, and real-

time monitoring to advance evidence-based implementation. 

 

ClinicalTrials.gov ID: NCT06517082 
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INTRODUCTION  

The rapid commercialization of generative artificial intelligence (GenAI) tools has outpaced the 

development of research methods and regulatory oversight to evaluate comprehensive benefits 

and consequences, creating a critical knowledge gap.1 This challenge is exacerbated by the fact 

that health system operations and research organizations often function in silos, creating barriers 

to evidence-informed implementation of new care pathways.2 Addressing these barriers requires 

aligning operational and research priorities through structured governance and workflow-aligned 

evaluation frameworks. Prior studies show that implementing new tools like GenAI without 

tailoring for human factors and organizational contexts often results in underutilization and 

operational inefficiencies.1,3 A Learning Health System (LHS) framework is well-suited to this 

challenge, providing the structure to bridge the gap between innovation and effective 

implementation by enabling continuous improvement through iterative, data-driven cycles of 

evidence generation and use.4  

 

We present a pragmatic randomized controlled trial protocol within a LHS framework to 

evaluate Ambient AI, a GenAI tool designed to assist with clinical documentation. Clinical 

documentation in electronic health records (EHR) remains a significant contributor to provider 

burnout, frequently requiring after-hours “pajama time” to complete.5,6 Ambient AI aims to 

reduce this burden, but successful implementation requires achieving workflow integration, 

ensuring data privacy compliance, and maintaining documentation accuracy. Prior evaluations of 

Ambient AI have been limited by observational designs, with inconsistent results and limited 

system interoperability.7–9  To address these limitations, we designed a pragmatic type 1 hybrid 

randomized controlled trial within a LHS framework, embedding the Ambient AI system in the 

All rights reserved. No reuse allowed without permission. 
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for thisthis version posted December 29, 2024. ; https://doi.org/10.1101/2024.12.27.24319685doi: medRxiv preprint 

https://doi.org/10.1101/2024.12.27.24319685


7 
 

EHR. The protocol incorporated governance structures,10 iterative Plan-Do-Study-Act cycles,11  

and frameworks such as the Systems Engineering Initiative for Patient Safety to ensure 

scalability, organizational alignment, and human factors considerations.10,12,13 

 

Informed by software development principles, the project charter employed alpha and beta 

testing phases to assess system safety, usability, and clinical impact. The alpha phase served as a 

controlled environment to refine workflows, address compliance requirements, and establish 

monitoring processes. Building on these insights, we outline the beta phase clinical trial protocol, 

structured as a Pragmatic Trial Operations (PTOps) playbook. This novel approach aligned 

research and operational priorities, integrating activities to create a scalable model for health 

system-wide deployment. The PTOps playbook advances governance, evidence-based 

evaluation, and a highly integrated adoption of Ambient AI in clinical practice. 

 

METHODS 

Pragmatic Trial Operations (PTOps) Playbook:  

The Information Systems (IS) operations project charter and the pragmatic trial protocol were 

developed using LHS best practices. The PTOps playbook consisted of five core components: 

governance, user experience, technical, documentation sustainment (i.e., coding compliance), 

and analytics. The alpha phase aligned with a type 1 hybrid design, while the beta phase 

implemented a multisite, closed-cohort stepped-wedge pragmatic randomized clinical trial 

(PRCT) to evaluate Ambient AI's impact on provider well-being. The protocol followed SPIRIT-

AI guidelines,14 and the checklist and full protocol are provided in Supplemental.  
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Setting and Environment 

Ambient AI (©Abridge AI, Inc) was integrated into the EHR (©Epic Systems, Inc) under a 

Software as a Service (SaaS) agreement at the University of Wisconsin Hospitals and Clinics 

(UW Health). Ambient AI use was part of a quality improvement initiative, with patients 

providing informed consent during routine care, while providers participating in the PRCT 

consented to the research component. Since Ambient AI licenses were purchased for clinical use 

regardless of the trial, the study qualified for expedited review under 45 CFR 46.110 by the UW 

Institutional Review Board (UW IRB #2024-1028), posing no more than minimal risk. A 

stepped-wedge design was selected due to the impracticality of rolling out the intervention to all 

providers simultaneously. This staggered implementation ensured all licenses were eventually 

deployed, aligning with the operational goals of the quality improvement initiative (Figure 1B). 

The design also allowed for random concurrent exposure to isolate Ambient AI’s effects from 

secular trends while maintaining guaranteed access for all providers as part of the clinical 

operations strategy.15,16 

 

PTOps Playbook Part A: Shared Governance  

An architectural framework17 represented key dimensions (goals, technical, social, ethics, and 

scientific) to support our LHS ecosystem in which selected projects are implementation-focused, 

stakeholder engaged, and ready for dissemination. For Ambient AI, a bi-directional governance 

structure integrated executive sponsors with a Multi-Disciplinary Implementation Team 

comprising leaders from clinical operations, IS, health information management, AI risk and 

compliance, and LHS programs. Specialized workgroups addressed analytics, technical, 

documentation sustainment, and user experience (Figure 1A). The governance committee met 
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biweekly to resolve protocol deviations, assess risks and benefits, allocate resources, monitor 

safety, and address unanticipated changes in the implementation timeline. 

 
Figure 1. Governance across Alpha and Beta Phases with Pragmatic Trial Operations 
 

 
AL = Ambient AI Learning; SoC =  Standard of Care, also known as usual care. In pragmatic trial operations, if the implementation proves to be 
ineffective from the clinical trial then de-implementation and repeat of the LHS framework can be employed before moving to general 
implementation. 
 
 

PTOps Playbook Part B: User Experience 

Alpha Phase: User experience was informed by the Exploration, Preparation, Implementation, 

and Sustainment (EPIS)18 and modified Systems Engineering Initiative for Patient Safety 
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(SEIPS)13 frameworks. The EPIS framework highlighted the interplay of contextual factors, 

including outer context (organizational readiness), inner context (provider characteristics), 

innovation (Ambient AI), and bridging factors (communication and coordination). The SEIPS 

model, with its People, Environment, Tools, and Tasks (PETT) Scan,19 offered a practical 

approach for mapping work processes and identifying potential barriers and facilitators to 

mitigate cognitive load (Supplemental).  

 

Beta Phase: Department leaders distributed surveys to identify eligible providers to facilitate 

efficient recruitment and enrollment for the PRCT. Training materials and workflows were 

iteratively refined based on provider feedback from the rapid Plan-Do-Study-Act cycles during 

the alpha phase.  

 

PTOps Playbook Part C: Technical Strategies 

Alpha Phase: EHR-embedding of Ambient AI utilized Epic’s Private Application Programming 

Interface (APIs) and Fast Healthcare Interoperability Resources (FHIR) R4 APIs to transfer AI-

generated notes and session metadata into the EHR. Providers obtained verbal consent from 

patients and used the Epic Haiku mobile application to start the recording (Figure 2). The 

technical workgroup coordinated access, and deployment aligned with the PRCT randomization 

schedule. Daily reviews addressed consent compliance and system performance. 

 

Beta Phase: PRCT inclusion criteria were providers seeing at least 20 patients per week, who 

had completed the required training, and who used Epic Haiku. Providers with planned leave, 

unsupported mobile devices, or reluctance to discontinue the use of existing medical scribes were 
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excluded. The study statistician generated randomization allocation lists for all waves prior to the 

initiation of the PRCT. To align with the PRCT, operational staff coordinated with the research 

team to contact providers, schedule training, and oversee technical onboarding.  

 

Figure 2. Abridge Ambient software integration with Epic electronic health record system. 

 
 

PTOps Playbook Part D: Documentation Sustainment 

Alpha Phase: Certified coders and informaticists monitored diagnostic codes and manually 

reviewed signed provider documentation for adherence to coding standards and regulatory 

requirements, including diagnoses mentioned in the AI-generated note that were not in the 

structured data, visit diagnosis list, or lacked specificity. Due to unanticipated decreases in 

diagnostic coding accuracy, two strategies were employed: (1) development of a new reporting 

template; and (2) automated extraction. The latter method used billing codes in the EHR to 

automatically extract International Classification of Diseases (ICD)-10 codes using a large 

language model (LLM) developed by UW. The LLM was designed with four prompt engineering 
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strategies: minimizing perplexity,20 in-context examples, chain-of-thought, and self-

consistency.21 The prompt is shown in Supplemental.22 

 

Beta Phase: The LLM system was validated using OpenAI’s Generative Pre-Trained 

Transformer 4 omni (GPT-4o), operating within a secure, HIPAA-compliant Azure cloud 

environment. EHR data sent to GPT-4o adhered to HIPAA regulations, ensuring patient 

confidentiality. To evaluate the LLM's accuracy, the Jaccard index was employed to measure the 

similarity between ICD-10 codes extracted from AI-generated notes by the LLM and those 

manually finalized by certified hospital coders. A Jaccard score of 1 indicated perfect alignment 

between LLM-extracted codes and coder-reviewed codes. Weekly monitoring by the LLM 

system flagged cases for review by the coders. 

 

PTOps Playbook Part E: Outcomes-oriented Analytics 

Alpha Phase: Early collaboration with the Chief Wellness Officer facilitated the adoption of the 

Professional Fulfillment Index (PFI)23, a validated tool routinely used at UW Health to measure 

provider well-being. Historical PFI survey data from 1,091 providers at UW Health in 2023 

informed the PRCT’s power and sample size calculations. The LHS team estimated a within-

period intracluster correlation coefficient (ICC) of 0.032 for overall PFI scores and 0.034 for its 

burnout subcomponent. Provider autocorrelation was estimated at 0.65, and the clinically 

meaningful effect size was set at Cohen’s d of 0.44. Based on these parameters, the LHS team 

provided precise recommendations on the minimum sample size. Randomization of 66 providers 

was planned into three waves to achieve 90% power to detect a meaningful difference in PFI.   
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A real-time data dashboard (©1993-2024 QlikTech International AB) integrated data from the 

EHR and Abridge software to monitor process and efficiency measures of provider activity 

(Figure 3).24 Dashboard metrics included provider feedback, utilization rates, patient consent 

compliance, and documentation efficiency. This last metric was quantified by work outside of 

work (WoW) and time spent on notes (both normalized to the 8-hour workday) as well as 

closures before next encounter by end of day, and patient follow ups.24 Since licenses were 

issued at the provider level, the weighted medians of average daily provider-level metrics were 

measured to capture central tendencies and variability.25 Weights were created by a provider’s 

relative number of in-clinic days compared to the total number of days. REDCap26 surveys were 

designed to collect the PFI and provider-reported outcomes (Supplemental Clinical Trial 

Protocol).  

 

Figure 3. Components of real-time data dashboard in operations 
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The data displayed are alpha users only and not part of the clinical trial beta phase. These are for demonstration purposes only. 

 

Beta Phase: The Beta phase was designed as a 24-week, individually randomized, stepped-

wedge trial (Figure 1B). Providers were randomized 1:1:1 into three waves using stratified 

permuted-block randomization, ensuring balance across clinical specialties. Each wave 

transitions from practice-as-usual to the intervention at 6-week intervals to provide sufficient 

time for the Ambient AI’s effect to manifest with intent-to-treat principles. The statistical 

analysis will include random effects for individual providers and time interactions, along with 

fixed effects for time periods to adjust for secular trends.  

 

The novelty of Ambient AI technology and absence of predefined adverse event categories for 

software changes necessitated innovative monitoring strategies. A difference-in-differences 

(DiD) analysis was implemented with a rolling two-week time window to identify unexpected 

drifts in performance. The primary metrics monitored were utilization, WoW, and time in notes. 

For each metric, trends for the AI-generated encounters over a two-week period were compared 

to trends for the non-AI encounters. Analyses employed linear mixed-effects models with 

random intercepts for individual providers and fixed effects for time, accounting for 

autocorrelation across two-week intervals. Statistical significance was defined as a Bonferroni-

corrected p-value ≤ 0.05, adjusted for the total number of tests performed. Significant drifts 

triggered root cause analyses and discussions with operational leaders. The top 2% of WoW and 

time in notes observations were excluded from analysis as artifacts that were deemed clinically 

implausible. 
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RESULTS 

The governance structure successfully aligned operational and research priorities, integrating the 

Ambient AI trial within the health system processes while positioning ambient listening for 

widespread adoption if proven effective. Endorsement was received from leadership and AI 

oversight committees (Figure 1A). 

 

The alpha phase started on June 24, 2024 until the initiation of the beta phase clinical trial on 

October 10, 2024. A total of 20 providers with 8,527 clinic encounters were evaluated during the 

alpha phase. The providers were distributed across five specialties, 12 clinic locations, and 50% 

were female. A control chart was developed using alpha phase user data to establish the 

utilization threshold for Ambient AI with a lower control limit of three standard deviations from 

the mean set at 48%, guiding license allocation and tracking fidelity.   

 

During the alpha phase, ten providers (50%) participated in interviews with the LHS team, 

sharing both positive and constructive feedback about their experiences with Ambient AI. 

Positive comments included statements such as, “I feel like I was walking before, and now this is 

like a bullet train, and a scribe would be something like a stagecoach”. However, challenges 

were also highlighted, such as, “I have had some patients decline citing privacy concerns even 

after discussing how it works and that it’s compliant.” Key themes emerged from the interviews: 

(1) organizational characteristics, including clinic-level physical environments and team 

dynamics, influenced Ambient AI utilization; (2) provider and patient readiness, as well as 

documentation preferences, contributed to variability in adoption; and (3) the suitability of 

Ambient AI platforms to offload providers depended on service settings and clinical tasks. To 
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address these barriers, interviewers used the SEIPS PETT Scan framework to map the identified 

facilitators and barriers across different parts of the health system that resulted in 

recommendations to improve fidelity (Table 1). Rapid Plan-Do-Study-Act cycles were 

employed to address issues such as inconsistent use of note templates and gaps in obtaining 

patient consent. These iterative modifications included updating training materials, enhancing 

technical support, and refining workflows. Across the alpha phase, the weighted median of 

provider-averaged daily Ambient AI utilization was 65.4% (IQR 50.6% - 84.0%). 

 

Table 1. Key Themes mapped to SEIPS PETT Scan with Examples of Barriers and Facilitator to Inform 
Implementation(B= Barriers F = Facilitators) 

 Theme People Environments Tools Tasks 
1. Organizational 
characteristics  

-Time pressureB 
-Documentation pressure/stressBF 
  

-Diverse physical 
settingsB 
-Centralized 
implementation teamF 
-Standardized workflowsF 

-Internet/server connectivity 
issuesB 

-Technical assistanceBF 

2. Provider and 
patient readiness 
(individual 
characteristics) 

-Understanding, willingness, and 
learning curveB 
-Provider documentation 
preferencesB 
- Excited about new technologyF 

-Preferences for specific 
clinicsB 
-App burdenB 

-Quirk tolerance for toolBF - More connection and eye-
contact with patientsF 

3. Type of service 
setting and clinical 
task needs 

-Acceptability/usability of tool and 
generated noteBF 

-Templates for state 
specific requirementsB 

-Templates for specialties & 
types of visitsB 
-Technology quirks/glitchesB 
-Integration with EHRF 

-Not able to do certain 
tasks (pending orders, pre-
visit summaries)B 
-Compliance issuesB 

Suggested Implementation Strategies and Adaptations (EPIS phase) 
•    Audit and provide feedback (IS) 
•    Booster training sessions (PIS) 
•    Centralized and local technical assistance (PIS) 
•    Clear guidance (PIS) 
•    Communicate data to external stakeholders, providers, and patients to demonstrate ongoing benefit (IS) 
•    Information for patients (PIS) 
•    Positive messaging and testimonials about value (EPIS) 
•    Stage implementation scale-up (PI) 
•    Tools for quality monitoring (PIS) 
•    Training materials and FAQ sheets for providers (PIS) 
•    Training and reminders for compliance (IS) 

 
 

Between June 24, 2024 and July 8, 2024, Ambient AI utilization increased by an average of 

57.2% (p<0.01), which aligns with the release of the licenses to alpha providers.  
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Manual review of 797 visit encounters across 17 providers identified discrepancies in diagnosis 

codes between provider ICD-10 coding and Ambient AI-generated coding. With the transition 

from diagnosis-linked manual charting to AI-generated prose for the assessment and plan, 

accuracy of ICD-10 diagnosis codes decreased from 79% pre-Ambient AI to 35% post-Ambient 

AI (p<0.01) with example notes shown in Supplemental. Following the implementation of a 

new note template on July 20th, designed to align documentation with institutional coding 

practices, most notably by placing the visit diagnosis into the attestation section, documentation 

accuracy improved and returned to pre-Ambient AI levels. As part of a novel monitoring strategy 

to detect significant drifts in provider metrics, no substantial drift was observed across a two-

week rolling window. Using difference-in-differences analysis to compare encounters with AI-

generated notes to usual care controls, results showed an average decrease in Ambient AI 

utilization of 6.84 percentage points (SD=5.95), an average increase in work outside of work by 

0.33 hours (SD=0.78), and an average increase in time spent in notes by 0.43 hours (SD=0.25) 

(Figure 4). 
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Figure 4. Differences-in-differences across 2-week window for Ambient AI initiation and new standard note 
implementation  
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During the alpha phase, coders logged a total of 598.33 hours manually reviewing diagnosis 

documentation accuracy. Recognizing the unsustainability of manual review for the larger cohort 

of providers in the beta phase, an automated coding review system leveraging a LLM assistant 

was developed. Validation of 200 clinic notes with ICD-10 diagnosis codes manually reviewed 

by certified hospital coders demonstrated that the LLM assistant achieved a mean Jaccard score 

of 0.54 (95% CI: 0.50–0.58). Following validation, coders conducted iterative reviews to 

establish an operational Jaccard score threshold between provider-assigned and LLM-generated 

ICD-10 codes. This threshold served as an initial screen to flag clinic notes for follow-up, 

effectively prioritizing high-risk cases and reducing the manual review workload. 

 

A pre-recruitment process minimized disruption to clinical workflows by enabling providers to 

self-identify interest in Ambient AI.  Eligibility was based on trial criteria. Following IRB 

approval in August 2024, a waitlist streamlined recruitment, allowing the clinical trial to proceed 

without delays. By October 2024, recruitment of the planned 66 providers across eight 

specialties was completed, spanning sites in Wisconsin and Illinois. The 24-week trial began on 

schedule. Post-implementation, the data dashboard transitioned to operational ownership, 

ensuring operational stewardship. 

 

DISCUSSION 

This study demonstrates how aligning research and operational priorities within a LHS 

framework can accelerate the implementation and evaluation of rapidly iterating GenAI 

technology. A key to success was the governance structure, which supported iterative 
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improvement cycles focused on translating performance to data, data to knowledge, and 

knowledge to actionable outcomes.4 These cycles established an infrastructure that balanced the 

needs of clinical operations efficiency with research rigor, fostering a scalable and sustainable 

model for evaluating a dynamic GenAI platform. 

 

The alpha phase identified barriers through rapid PDSA cycles, addressing issues such as 

workflow variability and inconsistent documentation. Unlike previous studies on Ambient AI,7,8 

we built and assessed an Ambient AI platform that was fully embedded within the EHR, 

allowing for the evaluation of pragmatic workflow issues. Tailored training materials, workflow 

adjustments, lower control limits for software utilization, and audit mechanisms were developed 

to mitigate these challenges, achieving high fidelity by alpha phase conclusion. These efforts set 

a strong foundation for the beta phase and aligned with three key characteristics of socio-

technical infrastructure:27 (1) engaging multi-stakeholder learning communities; (2) rigorously 

exploring uncertainty during the alpha phase; and (3) fostering sustainability through iterative 

PDSA cycles.  Tailored resources, including FAQs, EHR note templates, training videos, and a 

dedicated help desk ensured alignment between research objectives and operational processes. 

 

Informatics innovations included automating ICD code review with LLMs and integrating real-

time data feeds from the EHR into an operational dashboard. These tools fused research with 

operations, reduced reliance on manual data collection and supported a scalable evaluation 

model. The automated LLM-based ICD code review served as a first-pass filter, reducing the 

burden on coders tasked with manually reviewing all notes. Another key innovation was 

adapting trial designs to the dynamic nature of GenAI systems. Unlike static interventions in 
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traditional trials, GenAI platforms continue to have updates that may lead to significant drifts in 

performance. The lack of industry predefined adverse event categories for what constitutes major 

or minor software changes necessitated our own monitoring strategy to detect unexpected drifts 

during deployment. The DiD analysis, conducted in short, 2-week intervals, was derived to help 

fill potential gaps in routine monitoring strategies to address the  dynamic nature of AI adoption. 

 

Embedding research rigor into operational decision-making was another strength of this study. 

Validated metrics like the PFI, aligned with Chief Wellness Officer goals, ensured outcomes 

were appropriately powered to detect meaningful impact for the clinical trial. This approach 

avoided reliance on loosely defined metrics, such as time savings, and fostered evidence-based 

decision-making for the executive sponsors to determine number of initial licenses and duration 

of evaluation period. Operationalization of the PRCT was strengthened by a multidisciplinary 

governance structure that managed technical integration, documentation compliance, and 

analytics. Centralized communication and shared responsibilities facilitated project management, 

integrating research into clinical workflows with minimal burden on the frontlines. 

 

The dual-purpose data dashboard, developed during the alpha phase and transitioned to 

operational ownership, exemplified the integration of research and operations. It tracked vital 

metrics such as Ambient AI utilization, documentation efficiency, drift, and consent compliance 

while simultaneously supporting research analyses. Functioning as an analog to a Data Safety 

and Monitoring Board, the dashboard addressed both the immediate needs of the trial and the 

long-term goals of monitoring and scalability. Our implementation of governance provided 

oversight from institutional AI committees.10 Additionally, an operational-research Git 
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repository was established to enhance reproducibility and facilitate compliance with National 

Institutes of Health data-sharing requirements [GitLab repository available upon acceptance]. 

The governance model is an important component of the playbook for navigating the safety 

concerns with GenAI implementation. 

 

This study highlights the potential of LHS frameworks to embed PRCTs into an operational 

timeline, prepare for widespread adoption, and evaluate outcomes with research-grade analytics. 

By redesigning trial stages of planning, recruitment, outcome ascertainment, and dissemination, 

this approach accelerates the evaluation of healthcare technologies while maintaining alignment 

with clinical practice. Importantly, we demonstrated that rigorous, research-grade evaluation can 

coexist with operational efficiency, addressing concerns from operational leaders about potential 

delays. As GenAI technologies continue to evolve, this study provides a playbook for bridging 

the gap between innovation and real-world application, supporting the safe, effective, and 

sustainable adoption of AI in clinical care. 
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