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Abstract 16 

The nosocomial transmission of respiratory pathogens is an ongoing healthcare 17 

challenge, with consequences for the health of vulnerable individuals.  Outbreaks in 18 

hospitals can require the closure of bays or entire wards, reducing hospital capacity 19 

and having a financial impact upon healthcare providers.  Here we evaluate a novel 20 

strategy of pre-exposure prophylaxis as a means to reduce the nosocomial 21 

transmission of SARS-CoV-2.  We model the effect of ursodeoxycholic acid (UDCA) 22 

upon levels of ACE2 expression, SARS-CoV-2 viral entry, and ultimately the 23 

probability of an infection.  We then implement this model within simulations 24 

describing the spread of SARS-CoV-2 infections within a hospital context, simulating 25 
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an intervention in which UDCA is given to patients on a ward for 10 days following 26 

the detection of a case of SARS-CoV-2 on that ward.  Under default model 27 

parameters we infer a potential 16.5% reduction (95% C. I. 14% - 20%) in the 28 

nosocomial transmission of SARS-CoV-2 to patients, with increased importation of 29 

cases into the hospital increasing the effectiveness of the intervention.  Our study 30 

provides preliminary evidence of the value of pre-exposure prophylaxis with UDCA 31 

as a strategy to reduce nosocomial SARS-CoV-2 transmission. 32 

 33 

Introduction 34 

 35 

The SARS-CoV-2 virus has had a major impact upon human health1,2.  As such, a 36 

key priority has been the identification of public health interventions which either 37 

prevent or reduce the impact of infection. 38 

 39 

Vaccines have been shown to reduce the chances of infection leading to 40 

hospitalisation or death3, albeit that the immunity gained from vaccination wanes 41 

over time4, while virus evolution creates a need to continually re-evaluate vaccine 42 

effectiveness5.  Other lines of defence against SARS-CoV-2 include antiviral drugs, 43 

such as pavloxid6, remdesivir7 and molnupiravir8.  The US Food and Drug 44 

Administration has issued an emergency use authorisation for a monoclonal 45 

antibody therapy for pre-exposure prophylaxis9.  These interventions have their own 46 

limitations, with for example a five-day course of molnupiravir being associated with 47 

a lower SARS-CoV-2 viral load five days after treatment, but a higher viral load after 48 

14 days10.  Non-pharmaceutical interventions, such as handwashing, masking, and 49 

social distancing, have helped to prevent infection11.   50 

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 29, 2024. ; https://doi.org/10.1101/2024.12.27.24319372doi: medRxiv preprint 

https://doi.org/10.1101/2024.12.27.24319372
http://creativecommons.org/licenses/by/4.0/


 51 

Hospitals and care homes have been the focus of particular attention in the 52 

monitoring and prevention of SARS-CoV-2 transmission.  Even as the consequences 53 

of COVID have attenuated for the general population12, the concentration of 54 

potentially vulnerable individuals in these environments creates an enhanced need 55 

for action.  One study early in the pandemic estimated that close to 15% of SARS-56 

CoV-2 cases in hospital were the result of hospital-acquired infection13.  Accordingly, 57 

studies have evaluated the use of mask-wearing by health care workers and patients 58 

in hospitals14,15.  The installation of air cleaning units on a hospital ward was shown 59 

to reduce the concentration of airborne particulates of a size commensurate with 60 

airborne viral transmission16.  Air cleaning has been associated with a 22% reduction 61 

in nosocomial transmission (95% CI 47% to -14%)17. 62 

 63 

A mathematical study identified pre-exposure prophylaxis (PrEP) as being potentially 64 

the most effective complement to vaccination in preventing SARS-CoV-2 infection18.  65 

Mathematical modelling provides a valuable insight into potential therapeutic 66 

approaches in advance of committing financial and clinical resources to a real-world 67 

trial.  However, PrEP approaches to combatting SARS-CoV-2 are not simply 68 

theoretical constructs.  A Mendelian randomisation study of potentially druggable 69 

proteins identified the genes ACE2 and IFNAR2 as priority targets for intervention19.  70 

The former is a cell receptor which critically must be bound by SARS-CoV-2 Spike 71 

protein prior to cellular entry20, while the latter participates in the host innate immune 72 

response21 against the virus.  ACE2 expression has been associated with more 73 

severe clinical outcomes of SARS-CoV-2 infection22. 74 

 75 
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The discovery that the farnesoid X receptor (FXR) regulates ACE2 expression 76 

provided a novel approach to controlling SARS-CoV-2 infection23.  Ursodeoxycholic 77 

acid (UDCA) is a well-tolerated and off-patent drug which downregulates FXR, 78 

leading to a reduction in ACE2 expression.  A cohort study identified a significant 79 

reduction in the odds of developing SARS-CoV-2 infection among patients with 80 

cirrhosis who were treated with UDCA24, finding also a reduced risk of disease 81 

severity among treated individuals.  Although another study found no significant 82 

reduction in the risk of hospitalisation for COVID among treated individuals25, the 83 

basic result has been replicated in independent studies26,27, with high adherence to 84 

UDCA treatment28, and an increased dose of UDCA29 being associated with reduced 85 

rates of infection.  A contrary result was reported in a smaller cohort of patients30. 86 

 87 

While clinical studies have compared individuals treated with UDCA to those not 88 

receiving the drug, there may exist a broader scope to use the drug in a responsive 89 

fashion, for example as pre-exposure prophylaxis given an anticipated period of 90 

greater risk of SARS-CoV-2 infection.   91 

 92 

In this study we use a mathematical model to evaluate the potential for UDCA to 93 

reduce nosocomial transmission.  Our model encompasses the multiple scales on 94 

which the drug affects transmission, including the time-dependent effect of UDCA 95 

upon ACE2 expression, the relationship between ACE2 expression and SARS-CoV-2 96 

viral entry into cells, and the distribution of levels of exposure occurring during a 97 

potential transmission event.  Briefly, our model describes the effect of UDCA in 98 

terms of a change in the distribution of effective levels of viral exposure.  SARS-CoV-99 

2 exposures vary according to a range of individual and environmental factors31, 100 
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such as the distance from an infected host.  We characterise exposure in units of the 101 

number of viruses expected to initiate infection, using published data describing 102 

transmission bottlenecks32 and secondary attack rates33 for SARS-CoV-2 to derive 103 

an exposure distribution (Figure 1A).  Treatment with UDCA reduces ACE2 104 

expression (Figure 1B), and therefore the proportion of viruses to which a person is 105 

exposed that initiate infection.  This occurs in a time-dependent manner after the 106 

beginning of treatment, and is represented in our model in terms of a modification to 107 

the exposure distribution (Figure 1C).  Our model describes a situation in which 108 

UDCA treatment reduces the probability that an exposure will lead to infection, 109 

lowering the odds ratio of infection (Figure 1D).   110 

 111 

This mathematical approach enables the in silico evaluation of potential strategies 112 

for using UDCA to reduce SARS-Cov-2 infection; we here evaluate the potential 113 

effect of UDCA being administered to patients on a ward following the detection of a 114 

case of SARS-CoV-2.  Details of the derivation of our basic model are shown in 115 

Supplementary Figures S1 to S3. 116 

 117 

Results 118 

 119 

Hospital-based transmission 120 

 121 

We integrated our model of UDCA treatment and SARS-CoV-2 infection within a 122 

larger model describing nosocomial transmission in a hospital environment.  123 

Simulations were run to describe an environment in which UDCA was not used, with 124 

the effect of treatment being represented by retrospective changes made to each 125 
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simulation.  Data from an outbreak extracted from one simulation shows how UDCA 126 

had the potential to cut short chains of transmission events (Figure 2A).  In this case, 127 

an infected individual, with ID number 953, was introduced onto a ward, leading to a 128 

large outbreak involving both patients and healthcare workers.  We simulated an 129 

intervention in which, upon the detection of a case of SARS-CoV-2 on a ward, all 130 

patients on that ward, plus any arriving onto that ward during the intervention, were 131 

treated for 10 days with UDCA.  Changes in individual probabilities of being infected 132 

upon the intervention are shown in Figure 2B.  Here, the ward onto which patient 953 133 

was introduced was already marked as an intervention ward, so that patients in 134 

contact with patient 953, and those further down the network, were already treated 135 

with UDCA.  In our simulation this reduced the probability of those patients being 136 

infected, further reducing the probabilities of individuals further down the 137 

transmission chain from being infected.  Healthcare workers in the network were not 138 

treated, but acquired a lower risk of infection via a reduction in exposure to infected 139 

patients.  Across multiple transmissions within the network the probability of an 140 

individual being infected can be greatly reduced; for example the intervention results 141 

in the individual 4665 having only a 7.5% chance of being infected.  Within this 142 

network the numbers of secondary infections were reduced from 7 patients and 8 143 

HCWs to a mean of 1.9 patients and 4.6 HCWs (Figure 2C/D). 144 

 145 

Applied to a set of simulated data, describing nosocomial transmission in 60 146 

hospitals over a window of 610 days, our simulated intervention reduced cases of 147 

nosocomial transmission among patients by 16.5% (95% C. I. 14% - 20%) (Figure 148 

3A).  As modelled, the intervention reduced nosocomial infection of HCWs by close 149 

to 4% (Figure 3B).  These figures are lower than obtained for the example network of 150 
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Figure 2, which was an outlier in terms of its large size.  Across hospital simulations, 151 

the most common instance of nosocomial transmission involved one person infecting 152 

another, with no further transmission.  The mean transmission network involved 3.1 153 

individuals, or equivalently 2.1 cases of nosocomial transmission (Supplementary 154 

Figure 3). 155 

 156 

Our results were sensitive to the parameters of our model.  For example, changing 157 

the window of intervention following the detection of a case led to changes in the 158 

reduction of nosocomial transmission among patients, from 16.5% at the default 10-159 

day window of intervention to 10.3% for a 6-day window of intervention, or to 22.6% 160 

for a 14-day window of intervention (Figure 3C).  Changing the length of the 161 

intervention window led to proportional changes in the number of ward-days for 162 

which the intervention was in place.  Where under default parameters, the 163 

intervention was in place for a mean of 7440 ward-days, this statistic ranged 164 

between 5270 ward-days given a 6-day intervention to 9610 ward-days given a 14-165 

day intervention (Figure 3D). 166 

 167 

The effect of the intervention was also sensitive to the simulated level of community 168 

infection, which in our model determines the rate of importation of SARS-CoV-2 169 

patients into a hospital.  Halving the importation rate compared to the default led to 170 

an estimated 11% reduction in nosocomial cases in patients, while doubling the rate 171 

of importation relative to default led to an estimated 24% reduction in nosocomial 172 

cases (Figure 4A, B).  Although a higher importation rate led to more cases of SARS-173 

CoV-2 in hospital, and an increased number of cases of nosocomial transmission, 174 

the distribution of the sizes of transmission networks was not substantially altered 175 
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(Figure S4).  Rather, the difference in outcome arises from an indirect effect of the 176 

number of cases: A greater number of cases in hospital meant that more 177 

transmission networks occurred on wards that had previously been marked out for 178 

intervention.  UDCA has a time-dependent effect on ACE2 expression levels.  In a 179 

hospital where SARS-CoV-2 outbreaks are sparse, there are few wards on which the 180 

intervention is in place.  Given a new outbreak there is a delay arising from the time 181 

taken to detect a new outbreak, and then the time taken for UDCA treatment to have 182 

full effect, before the full impact of the drug is experienced.  By contrast, where 183 

outbreaks are common, the probability of a new outbreak arising on a ward in which 184 

the intervention is already in place is increased.  In such a case the delay is reduced, 185 

with UDCA potentially providing its maximal benefit from the first day of the outbreak.  186 

We note that, at the modelled high rate of importation, a situation is reached in 187 

which, at peak, nearly all hospital wards are included in the intervention (Figure 4C, 188 

D).  At this point any new cases of nosocomial transmission occurring in the hospital 189 

involve already-treated patients, maximising the effect of the intervention.  190 

 191 

Discussion 192 

 193 

We have here considered the use of a potential candidate for use as pre-exposure 194 

prophylaxis against SARS-CoV-2 infection.  Our approach combines mathematical 195 

models of changes in ACE2 expression, the consequences of those changes for 196 

virus entry into cells, and the likely levels of exposure to the virus encountered by 197 

individuals; combined these models produce a result consistent with observational 198 

studies.  Applying our model to simulated data describing a hospital setting, our 199 

approach suggests that a proposed intervention using the drug might lead to a 200 
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reduction of around 17% in nosocomial transmission to patients.  Our work provides 201 

an indicative and preliminary assessment of the potential for UDCA as to be used for 202 

pre-exposure prophylaxis to combat nosocomial transmission. 203 

 204 

Our modelling provides some insight into the potential value of pre-exposure 205 

prophylaxis in a real-world setting.  Where modelling has suggested the use of pre-206 

exposure prophylaxis as an effective tool to prevent SARS-CoV-2 infection, the 207 

implicit need for action to be taken prior to an exposure limits its value.  In modelling 208 

a hospital outbreak we have chosen a setting in which the potential risk of infection is 209 

unusually high, in which cases of infection are being actively monitored, and in which 210 

treatment could be administered by competent medical professionals.  In this setting, 211 

the time-dependent effect of treatment was predicted to have an effect.  A proportion 212 

of the effectiveness of the intervention is explained by the reduction in transmission 213 

events withing outbreaks that occur on an intervention ward but are unrelated to the 214 

outbreak which triggered the intervention.   215 

 216 

In this sense, our work highlights a distinction between preparatory and responsive 217 

approaches to reducing infectious disease transmission.  Preparatory approaches, 218 

such as improving ventilation, mask-wearing, and hand hygiene, create an 219 

environment in which transmission is intrinsically less likely.  Responsive 220 

approaches, which are implemented following the detection of an outbreak, are 221 

limited by imperfect surveillance, and in the case of UDCA, by transmission events 222 

having occurred prior to the intervention taking effect.  Our calculated reduction in 223 

transmission of 17% compares to a recent study suggesting a 22% reduction in 224 

transmission with the use of improved ventilation17, but may be optimistic.  The levels 225 
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of community importation into the hospital may be lower than reflected in the 226 

assumptions underlying the simulation, such that the effectiveness of the intervention 227 

we model would be reduced. 228 

 229 

Our model has some implications regarding SARS-CoV-2 transmission, for example 230 

that people with higher baseline levels of ACE2 expression are more likely to be 231 

infected with SARS-CoV-2.  Where someone’s baseline ACE2 expression level is 232 

high, more of the viruses they are exposed to are likely to gain entry into cells and 233 

initiate infection.  Our model also implies that a high baseline ACE2 expression level 234 

will reduce the efficacy of UDCA in preventing infection.  UDCA reduces the number 235 

of viruses entering cells, but to prevent infection this number must be reduced to 236 

zero.  The reduction to zero is less likely when the initial number, due to high ACE2 237 

expression, is large.  Figure S5 describes expected reductions in transmission for 238 

high and low baseline levels of ACE2 expression. 239 

 240 

 241 

Our modelling approach is built upon multiple assumptions.  For example, our model 242 

of exposure to SARS-Cov-2 was constructed using data describing transmission in a 243 

domestic, rather than a hospital setting.  The simulated hospital environment, while 244 

representing the state of the art, also contains multiple simplifications.  For example, 245 

a healthcare worker who avoided being infected due to the indirect effect of UDCA 246 

would retain a risk of being infected at some later date via the local community.  Our 247 

simulated approach neglected this risk: Once prevented from being infected on one 248 

occasion, HCWs stayed uninfected for the remainder of the simulation.  As such our 249 

result about preventing infection in healthcare workers is open to some uncertainty.  250 
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Our model assumes that the distribution of ACE2 levels in the hospital population 251 

mirror those of the general population.  Further, simulations of hospitals simplify 252 

elements such as the movement of patients and staff between wards which likely 253 

impact upon transmission.  Differences between hospital environments, such as 254 

those of hospital architecture, are not captured by our model.  However our simple 255 

mathematical model describing the effect of UDCA upon SARS-CoV-2 transmission 256 

gave a result consistent with that described in a cohort study.  Previously, John et al 257 

found an adjusted odds ratio for risk of symptomatic COVID infection of 0.54 258 

(confidence interval 0.39 – 0.73) among individuals with cirrhosis who were treated 259 

with UDCA23.  Considering an individual who had been treated for at least 3 days 260 

prior to exposure to SARS-CoV-2, our model suggested that continuous treatment 261 

with UDCA would reduce the incidence of COVID infection by 56%, equivalent to an 262 

adjusted odds ratio of 0.44. 263 

 264 

The intervention we propose is described in a simplified fashion.  Although long-term 265 

therapy with UDCA is well-tolerated34, aspects such as negative drug-drug 266 

interactions may prevent the giving of the drug in a universal manner to a cohort of 267 

patients.  We have here considered the use of UDCA for pre-exposure prophylaxis in 268 

a situation where full clinical supervision is possible.  A realistic intervention might 269 

use the drug only in subsets of cases where SARS-CoV-2 infection would have 270 

particularly severe consequences, such as in a care home or with more vulnerable 271 

patients.  The authors do not recommend the use of UDCA in any situation except 272 

under the explicit guidance of a qualified physician.  273 

 274 

Methods 275 
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 276 

We built a model to estimate the effect of treatment with UDCA upon SARS-CoV-2 277 

transmission.  Our model has three parts, the first modelling the effect of UDCA upon 278 

ACE2 expression in an individual, the second modelling the effect of changing ACE2 279 

expression upon virus entry into cells, and the third modelling the likely distribution of 280 

exposure to SARS-CoV-2 viruses, given knowledge of transmission bottlenecks from 281 

cases of SARS-CoV-2 infection. 282 

 283 

Changes in ACE2 expression given treatment with UDCA 284 

 285 

Given data from a set of individuals describing variation in ACE2 levels after 286 

commencing treatment with UDCA23, we used a time-dependent gamma distribution 287 

to represent the effects of the drug.  In this equation x describes ACE2 expression 288 

level.  The Mathematica software package was used to identify optimal parameters a 289 

and b within this model. 290 

 291 

 
𝐺(𝑎, 𝑏, 𝑡, 𝑥) = 𝑃(𝐴𝐶𝐸2 = 𝑥|𝑎, 𝑏, 𝑡) =

𝑥!(#)%&𝑏(𝑡)%!(#)𝑒%'/)(#)

Γ2𝑎(𝑡)3
 

( 1 ) 

 292 

 293 

G(a,b,t) was here characterised using data describing three discrete time intervals, 294 

for t=0 days, t Î {1, 2} days, and t ³ 3 days.  Raw data are shown in Figure S1; the 295 

inferred distributions are shown in Figure 1B. 296 

 297 

 298 
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Modelling of the relationship between ACE2 expression and viral infection 299 

 300 

Data describing ACE2 expression and SARS-CoV-2 infection levels from different 301 

cell types within a lung explant was used for modelling purposes23.  Under a model 302 

of receptor association, the relationship between ACE2 receptor availability and virus 303 

entry are expected to follow the Hill equation35.  To explore whether, at the 304 

physiological concentrations of ACE2 represented by our data, a linear model would 305 

be a reasonable approximation to this, we fitted both linear and sigmoidal curves to 306 

the data.  Where the level of ACE2 expression is given by [ACE2], our models were 307 

 308 

Linear model: 309 

 310 

 𝑉 = 𝑎[𝐴𝐶𝐸2] ( 2 ) 

 311 

 312 

Hill equation: 313 

 314 

 𝑉 =
𝑚[𝐴𝐶𝐸2]!

𝑐 + [𝐴𝐶𝐸2]! 
( 3 ) 

 315 

Models were fitted to the data using the NonlinearModelFit routine within the 316 

Mathematica software package, inferring different parameters for the lung and 317 

bronchaeal data; these data were not directly comparable due to different cell 318 

compositions of the different samples. Model fits were compared using the Bayesian 319 

Information Criterion (BIC)36.  The difference between the BIC values for the models, 320 
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of 2.81 units in favour of the Hill equation model, was interpreted as positive support 321 

for this model but not strong support, following Raferty et al37.  Data used in this 322 

modelling, and model fits, are shown in Figure S2. 323 

 324 

Inference of a distribution of levels of exposure to virus 325 

 326 

We generated a model of the number of viruses expected to initiate infection during 327 

SARS-CoV-2 transmission.  Given a level of exposure to viruses E, we modelled the 328 

transmission bottleneck size Nb (i.e. the number of viruses initiating an infection38) as 329 

being Poisson distributed with parameter E. 330 

 331 

 
𝑃(𝑁) = 𝑛|𝐸) =

𝐸*𝑒%+

𝑛!  
( 4 ) 

 332 

 333 

We assumed that exposure can be described by a Gamma distribution, such that E 334 

obeys the formula 335 

 336 

 
𝑃(𝐸 = 𝑥|𝛼, 𝛽) =

𝑥,%&𝛽%,𝑒%'/-

Γ(𝛼)  
( 5 ) 

 337 

 338 

Where G(a) describes the gamma function 339 

 340 

 
Γ(𝛼) = ? 𝑡,%&𝑒%#𝑑𝑡

.

/
 

( 6 ) 
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 341 

 342 

We next inferred parameters a and b for this model using data from two publications 343 

describing household SARS-CoV-2 transmission.  A study of SARS-CoV-2 344 

transmission in households inferred bottleneck sizes for 20 cases of infection32.  We 345 

took these sizes as being indicative of viral transmission events.  Next, we used the 346 

result from a meta-analysis of household transmission studies, of a secondary attack 347 

rate for SARS-CoV-2 of 18.9%33, to estimate that for each 20 cases of infection, 348 

there were an additional 83 cases of exposure not leading to infection.  We thus 349 

compiled a dataset of 103 outcomes of exposure, 20 of which matched the 350 

bottlenecks inferred by Lythgoe et al, and 83 of which involved zero viruses.  Data 351 

describing inferred bottlenecks for these 20 cases is shown in Figure S3. 352 

 353 

For a given set of parameters a and b, we represented the gamma distribution by a 354 

discrete set of 999 equally spaced quantiles Ei(a, b).  We then calculated the mean 355 

likelihood of observing each bottleneck nj in the dataset, summing these over the 356 

different bottleneck sizes. 357 

 358 

 
log 𝐿2𝛼, 𝛽|E𝑛0F3 =G

1
999Glog𝑃 J𝑁) = 𝑛0|𝐸1(𝛼, 𝛽)K

222

13&

&/4

03&

 
( 7 ) 

 359 

 360 

Values of a and b which maximised this likelihood were found using the Mathematica 361 

software package.  We inferred the values a = 0.1558 and b = 2.797. 362 

 363 
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Combined model of viral transmission in the presence or absence of treatment with 364 

UDCA 365 

 366 

Under the assumption of a linear relationship between ACE2 expression and viral 367 

infection, we derived a model of viral transmission in treated and untreated 368 

individuals in a heterogeneous population.   In our model, a person p receives a 369 

stochastic exposure e to viruses characterised by a random draw from the Gamma 370 

distribution E(a, b).   371 

 372 

 𝑒~𝐸(𝛼, 𝛽) ( 8 ) 

 373 

 374 

This exposure was scaled in a linear fashion by the individual-specific term I(r, t), 375 

which describes the relative ACE2 expression of the person.  Here the parameter r 376 

was uniformly sampled from the interval (0,1); for example r=0.12 would imply that 377 

I(r, t)=x was equal to the 12th centile of the distribution G(a, b, t, x).  In this manner, 378 

the effective exposure of a person p who had undergone t days of treatment with 379 

UDCA, was described as 380 

 381 

 
𝐸5 =

𝐼(𝑟, 𝑡)
𝐼(𝑟, 0)PPPPPPP 𝑒 

( 9 ) 

 382 

 383 
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where the denominator represents the mean level of ACE2 expression for an 384 

untreated individual.  The number of viruses initiating infection in this person was 385 

then given by the Poisson random variable 386 

 387 

 
𝑃2𝑁) = 𝑛|𝐸53 =

𝐸5*𝑒%+!

𝑛!  
( 10 ) 

 388 

 389 

In this model, infection occurred if Nb was greater or equal to 1, and did not occur if 390 

Nb was equal to zero.  Basic statistics of infection were calculated across 391 

distributions of ACE2 expression for treated and untreated individuals, integrating 392 

over a representative range of levels of exposure. 393 

 394 

Simulation of hospital transmission events 395 

 396 

We used a published individual-based model of nosocomial transmission to simulate 397 

SARS-CoV-2 in hospitals, including the importation of cases from the community, the 398 

occasional spread of infection between patients and health care workers (HCWs) in 399 

hospitals, and the detection or non-detection of these cases39.  Within this modelling 400 

framework simulations were conducted describing high, realistic, and low levels of 401 

importation of cases into hospitals.  ‘Realistic’ levels were derived from now-casted 402 

community levels of infection for the East of England, spanning a window of 600 403 

days during the SARS-CoV-2 pandemic40.  High and low levels represented 2-fold 404 

and 0.5 fold changes to these values.  For each level of importation, twenty sets of 405 

parameters representing rates of transmission to and from healthcare workers and 406 

patients were generated, consistent with evidence from a study of transmission in 407 
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hospitals41.  Three statistical replicates were generated for each set of parameters, 408 

making a total of 180 simulations.   409 

 410 

For each simulation, transmission networks were identified, comprising sets of 411 

patients and HCWs who infected each other in hospital, alongside the dates of these 412 

transmission events.  We modelled an intervention in which, upon the detection of a 413 

case of SARS-CoV-2, all patients on the ward in which the case was detected were 414 

given a 10-day course of treatment with UDCA.  Where new patients arrived on the 415 

ward within 10 days of the commencement of the intervention, these patients were 416 

also started on a 10-day course of UDCA treatment.  We then retrospectively altered 417 

the identified transmission networks.  Transmission events in these networks were 418 

assigned a probability of occurrence equal to one.  These probabilities were then 419 

altered according to UDCA treatment, with a treated patient having a reduced 420 

probability of being infected.  Alterations in probabilities were then evaluated in a 421 

compound manner.  For example, if in a simulation person A infected person B, who 422 

infected person C, treating person B would reduce the probability of person C being 423 

infected, even if C was untreated.  The expected reduction in the number of cases of 424 

SARS-CoV-2 nosocomial infection was therefore calculated.   425 

 426 

Our model of nosocomial transmission accounted for the variation in baseline 427 

susceptibility to SARS-CoV-2 infection implied by our model of infection and 428 

treatment.  To achieve this we generated a distribution of the baseline ACE2 429 

expression of an individual conditional upon their having been infected with SARS-430 

CoV-2.   This distribution differs from the gamma distribution fitted to the untreated 431 
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ACE2 expression levels: The fact of having been infected increases the probability of 432 

an individual having a high level of baseline ACE2 expression. 433 

 434 

To calculate the conditional distribution of ACE2 we calculated quantiles of the 435 

distributions of baseline ACE2 expression G(a, b, 0, x), and of the exposure 436 

distribution E(a, b)(y), calculating the products of these values.  We then identified 437 

probabilities of infection for each datapoint, normalising these to sum to one 438 

 439 

𝑃(𝑥, 𝑦) =
1 − 𝑒%6(!,),/,')+(,,-)(8)

∑ 1 − 𝑒%6(!,),/,')+(,,-)(8)',8
 440 

 441 

These values were then normalised to sum to one across all x and y, before 442 

summing across exposures y to calculate a probability distribution from which values 443 

of ACE2 expression could be sampled.  In evaluating nosocomial transmission, 444 

individuals who were infected in the initial simulation were assigned baseline levels 445 

of ACE2 expression from this discrete distribution before evaluating the individual-446 

specific effect of UDCA upon their probability of having been infected.  The discrete 447 

distribution and the inferred probability density function are shown in Supplementary 448 

Figure S6. 449 

 450 

Availability of code 451 

 452 

Code used for processing simulation data is available at 453 

https://github.com/cjri/HospitalSimulationAnalysis 454 

 455 
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Figures 569 

 570 

 571 

 572 

Figure 1: Basic model details.   A. Distribution of SARS-CoV-2 exposure used in 573 

our model.    An exposure of 1 means that an individual is infected by a Poisson 574 

random variable with parameter 1.  If this random variable is equal to or greater than 575 

1, the individual is infected, rather than not infected.  B. Derived distribution of ACE2 576 

expression levels in treated and untreated individuals.  C. Effective exposure 577 

distributions for treated and untreated individuals.  People who are taking UDCA are 578 

less likely to be infected by larger numbers of viruses.  D. Adjusted odds ratios of 579 

infection calculated across a population of individuals with a distribution of ACE2 580 

levels.  581 
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 583 

 584 

Figure 2: Application of UDCA treatment to a transmission network  A. Case of 585 

nosocomial transmission within a hospital simulation.  Horizonal lines show times 586 

when individuals were in the hospital, coloured blue for patients or red for HCWs.  587 

Black dots indicate dates on which individuals were infected, while squares indicate 588 

dates on which cases of infection were detected, where detection occurred.  B. 589 

Representation of one realisation of the impact of UDCA treatment upon the 590 

transmission network.  The ward upon which the outbreak began was an intervention 591 

ward at the time of patient 953 being introduced onto the ward.  UDCA treatment 592 
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reduced the probabilities of patients being infected with SARS-CoV-2, and by 593 

implication reducing the probabilities of their further transmitting the virus.  The 594 

reductions in individual probabilities caused by UDCA are stochastic, representing 595 

random samplings of the baseline ACE2 levels of expression of individuals.  C. 596 

Numbers of secondary cases of SARS-CoV-2 infection in patients and HCWs in the 597 

network in the absence of an intervention.  D. Numbers of secondary cases given 598 

treatment with UDCA.   599 

  600 
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 601 

 602 

Figure 3. Reduction in transmission caused by the simulated use of UDCA.  A. 603 

Reductions in nosocomial transmissions to patients, measured across five stochastic 604 

replicates of each of 60 hospital simulations.  B. Reductions in nosocomial 605 

transmission events to healthcare workers, measured across five stochastic 606 

replicates of each of 60 hospital simulations.  C. Variation in the reduction in 607 

nosocomial transmissions to patients, varying the length of the intervention, given 608 

the detection of a case upon a ward.  D. Total length of interventions in a hospital 609 

according to the length of an individual intervention, measured in ward-days, across 610 

the 624 days of the simulation. 611 

  612 

6 8 10 12 14

5000

6000

7000

8000

9000

10000

Length of intervention (days)

To
ta
l(
w
ar
d-
da
ys

)

0.02 0.03 0.04 0.05 0.06
0

5

10

15

20

25

30

Reduction in transmission to HCWs

N
um
be
ro
fs
im
ul
at
io
ns

Realistic importation rate

0.14 0.16 0.18 0.20
0

10

20

30

40

Reduction in transmission to patients

N
um
be
ro
fs
im
ul
at
io
ns

Realistic importation rate

6 8 10 12 14
0.00

0.05

0.10

0.15

0.20

0.25

Length of intervention(days)

M
ea
n
re
du
ct
io
n
in
ca
se
s

A B

C D

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 29, 2024. ; https://doi.org/10.1101/2024.12.27.24319372doi: medRxiv preprint 

https://doi.org/10.1101/2024.12.27.24319372
http://creativecommons.org/licenses/by/4.0/


 613 

 614 

Figure 4: Effect of variation in the rate of importation of SARS-CoV-2 cases to 615 

the hospital.  A. Reductions in nosocomial transmissions to patients, calculated 616 

under a low importation rate.  The vertical black dashed line shows the mean of this 617 

statistic under a realistic importation rate, modelling importations in the UK between 618 

2020 and 2021.  B. Reductions in nosocomial transmissions to patients, calculated 619 

under a low importation rate.  The vertical black dashed line shows the mean of this 620 

statistic under a realistic importation rate.  C. Fraction of wards in which the 621 

intervention was taking place, plotted by time.  The black line shows the mean 622 

calculated across 60 simulations with a low importation rate.  The gray shaded 623 

region shows the range across simulations.  D. Fraction of wards in which the 624 

intervention was taking place, plotted by time.  The black line shows the mean 625 

0 100 200 300 400 500 600
0.0

0.2

0.4

0.6

0.8

1.0

Day

Fr
ac
tio
n
in
te
rv
en
tio
n
w
ar
ds

Low importation rate

0 100 200 300 400 500 600
0.0

0.2

0.4

0.6

0.8

1.0

Day

Fr
ac
tio
n
in
te
rv
en
tio
n
w
ar
ds

High importation rate

0.06 0.08 0.10 0.12 0.14 0.16 0.18
0

5

10

15

20

25

30

35

Reduction in transmission to patients

N
um
be
ro
fs
im
ul
at
io
ns

Low importation rate

0.16 0.18 0.20 0.22 0.24 0.26 0.28
0

10

20

30

40

50

60

Reduction in transmission to patients

N
um
be
ro
fs
im
ul
at
io
ns

High importation rateA B

C D

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 29, 2024. ; https://doi.org/10.1101/2024.12.27.24319372doi: medRxiv preprint 

https://doi.org/10.1101/2024.12.27.24319372
http://creativecommons.org/licenses/by/4.0/


calculated across 60 simulations with a high importation rate.  The gray shaded 626 

region shows the range across simulations. 627 

 628 

  629 

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 29, 2024. ; https://doi.org/10.1101/2024.12.27.24319372doi: medRxiv preprint 

https://doi.org/10.1101/2024.12.27.24319372
http://creativecommons.org/licenses/by/4.0/


 630 

Supplementary Figures 631 

 632 

 633 

Figure S1. Data describing changes in ACE2 expression following the use of 634 

UDCA.  qPCR measurements of the levels of ACE2 in nasal epithelial cells collected 635 

with nasopharyngeal swabs from six individuals who received 15 mg per kg per day 636 

of UDCA for five days, previously described by Brevini et al23. Shading indicates 637 

windows of time into which samples were divided for model fitting.  A gamma 638 

distribution was fitted to the data within each window. 639 
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 641 

 642 

Figure S2: Model fits to qPCR data describing levels of ACE2 expression and 643 

SARS-CoV-2 infection in a human explant.  Data describing samples collected 644 

from the lung and bronchi were originally described by Brevini et al23.  Model fits 645 

describe sigmoidal (red) and linear (blue) relationships between ACE2 and SARS-646 

CoV-2 expression values.  Under the Bayesian Information Criterion, there was 647 

positive evidence, though not strong evidence, favouring the sigmoidal model, which 648 

follows the Hill equation.  For the purpose of modelling a simple linear approximation 649 

was made. 650 
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 653 

 654 

Figure S3: Data describing SARS-CoV-2 transmission bottlenecks, from an 655 

earlier publication32.  Data describe the number of SARS-CoV-2 viruses initiating 656 

infection in 20 cases of household transmission.  In our study these data were 657 

augmented with cases describing non-infection, that is with transmission bottleneck 658 

zero, reflecting a published secondary attack rate for SARS-CoV-2 in a domestic 659 

context33.  Our basic exposure model, described in Figure 1A, was then fitted to the 660 

augmented data.  661 
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 662 

 663 

Figure S4: Network size numbers and distribution for different simulated 664 

importation rates.  A cluster size of 2 indicates one person infecting another, with 665 

no further transmission. 666 
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 668 

 669 

 670 

Figure S5: Expected distributions of SARS-CoV-2 transmission bottlenecks.  671 

Inferred values are shown for among individuals at the 10th and 90th centiles of ACE2 672 

expression, in untreated individuals, and in individuals treated for more than three 673 

days with UDCA.  In both cases UDCA reduces expected bottleneck sizes, but with a 674 

more dramatic reduction in the probability of transmission (i.e. bottleneck size ³ 1) 675 

among individuals with low ACE2 expression. 676 
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 680 

 681 

Figure S6: Distribution of baseline ACE2 expression conditional upon an 682 

individual having been infected.  A. Probabilities of discrete values of baseline 683 

ACE2 expression.  B. Probability density function implied by the discrete distribution. 684 
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