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Abstract

In studies of individuals of primarily European genetic ancestry, common and low-

frequency variants and rare coding variants have been found to be associated with the

risk of bipolar disorder (BD) and schizophrenia (SZ). However, less is known for

individuals of other genetic ancestries or the role of rare non-coding variants in BD and

SZ risk. We performed whole genome sequencing of African American individuals:

1,598 with BD, 3,295 with SZ, and 2,651 unaffected controls (InPSYght study). We

increased power by incorporating 14,812 jointly called psychiatrically unscreened

ancestry-matched controls from the Trans-Omics for Precision Medicine (TOPMed)

Program for a total of 17,463 controls. To identify variants and sets of variants

associated with BD and/or SZ, we performed single-variant tests, gene-based tests for

singleton protein truncating variants, and rare and low-frequency variant

annotation-based tests with conservation and universal chromatin states and sliding

windows. We found suggestive evidence of BD association with single-variants on

chromosome 18 and of lower BD risk associated with rare and low-frequency variants

on chromosome 11 in a region with multiple BD GWAS loci, using a sliding window

approach. We also found that chromatin and conservation state tests can be used to

detect differential calling of variants in controls sequenced at different centers and to

assess the effectiveness of sequencing metric covariate adjustments. Our findings

reinforce the need for continued whole genome sequencing in additional samples of

African American individuals and more comprehensive functional annotation of

non-coding variants.
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Introduction

Severe mental illnesses, including bipolar disorder (BD) and schizophrenia (SZ), are

debilitating disorders affecting millions of people worldwide. BD and SZ encompass a

wide range of shared symptoms including recurrent episodes of psychosis, large mood

swings, depression, and cognitive impairment. Both disorders are significantly

associated with risk for suicide and increased all-cause mortality rate1. Heritability

estimates from family studies range from 60%-85% for BD2 and 60%-80% for SZ3.

Notably, there is considerable overlap in the underlying genetics of BD and SZ4, and

genetic correlations are estimated to be as high as 0.68 at the common variant level5.

Uncovering the genetic factors contributing to these disorders could lead to a deeper

understanding of disease etiology and improved treatment options.

Hundreds of independent susceptibility loci for BD and SZ have been identified

through large-scale genome-wide association studies (GWAS) by focusing on common

and low-frequency alleles 6–14. SZ case-control GWAS of European and East Asian

ancestry individuals (Psychiatric Genomics Consortium, 76,755 individuals with SZ and

243,649 controls) identified 287 distinct loci, implicating genes associated with

neurodevelopmental disorders and with brain-specific expression13. A BD GWAS of

European ancestry (41,917 BD cases and 371,549 controls) identified 64 distinct loci,

and significant enrichment of association signals within genes belonging to neuronal

and synaptic pathways and targets for existing BD medications4. Of the BD-associated

variants, 17 were also associated with SZ. For both the BD and SZ GWAS, measured

common variants are estimated to account for a modest portion of disease heritability
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(18.6% for BD4and 24% for SZ15).

Whole-exome sequencing (WES) detects coding variants across the allele

frequency spectrum. The Schizophrenia Exome Sequencing Meta-Analysis (SCHEMA)

consortium, produced a SZ case-control WES study (SCHEMA) of multi-ancestry

individuals (24,248 SZ cases and 97,322 controls), which identified enrichment of

ultra-rare coding variants in ten genes in individuals with SZ16; two of the genes were

also implicated by common-variant GWAS13. A WES BD case-control study (BipEx) of

European ancestry individuals (13,933 BD cases and 14,422 controls) found that,

compared to controls, individuals with BD were enriched for ultra-rare protein truncating

variants in constrained genes (probability of being loss-of-function intolerant (pLI) ≥

0.9). When the BipEx and SCHEMA results were combined, AKAP11 was identified as

a risk gene17. These results identified ultra rare coding variants as contributing to BD

and SZ risk and suggest overlap between BD and SZ risk at both the rare and common

variant level.

Compared to common and exonic variants, less is known about the role of rare

non-coding variants in SZ and BD. WGS allows detection of coding and non-coding

variants across the allele frequency spectrum. Studies using WGS to investigate SZ or

BD have generally been limited for non-coding variant analysis by sample sizes of no

more than a few hundred individuals, often in family-based designs18–24. One SZ WGS

case-control study of Swedish samples (1162 SZ cases and 936 controls) found

association between SZ and structural variants at topologically associated domain

boundaries but did not find significant differential burden of non-coding single
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nucleotide variants (SNVs) and insertion/deletion polymorphisms (indels) between SZ

cases and controls across a variety of biological groupings25.

To date, genomic studies of psychiatric disorders, and many complex human

diseases and traits, have overwhelmingly been composed of individuals of European

genetic ancestry26,27. Although there has been progress in increasing the representation

of ancestral backgrounds of individuals included in GWAS studies, notably in East

Asians, the available data do not comprehensively represent individuals in the US or

the world28. This impedes discovery of genes and mechanisms that might be uncovered

from the broader spectrum variation across different ancestries. The use of European

ancestry BD polygenic risk score (PRS) to predict disease risk across ancestries also

has the potential to create health inequities. For example, PRS from European ancestry

GWAS predict a much smaller proportion of disease in East Asian and African

American ancestry samples than in European ancestry samples4. Increasingly, efforts

are underway to assess the influence of genetic variation on complex traits in

individuals of non-European ancestry 29–31. Genetic studies of mental health disorders

that include WGS for individuals of diverse genetic ancestries will allow us to better

address the disparities in diagnosis and treatment.

We examined the role of SNVs and short indels in BD and SZ susceptibility in

African American individuals in a sample of 7544 individuals (with 1598 BD cases, 3295

SZ cases, and 2651 controls without SZ or BD) and an additional 14,812

phenotypically-unscreened ancestry-matched individuals from the NHLBI TOPMed

program as external controls31. Overall, we found suggestive evidence of single-variant
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BD association on chromosome 18. We observed that chromatin and conservation

state burden tests were a sensitive way to assess the comparability of

sequencing/calling between two WGS sample sets. We also found suggestive evidence

of association of a chromosome 11 region sliding window located among multiple

previously reported BD GWAS loci4.

Subjects and Methods

Figure 1 contains an overview of the study design, samples and analytical approaches.

InPSYght study sample

We performed deep whole-genome sequencing in a United States-based case-control

study (the InPSYght study) of African American individuals as part of the Whole

Genome Sequence for Psychiatric Disorders (WGSPD) consortium32. We use the term

African American to denote individuals who self identified as African American on study

forms; this term (which may have been one of a limited number of choices to describe

African Ancestry) can include individuals who, among others, are descendants of

enslaved individuals or are more recent immigrants to the US from African and other

countries. The InPSYght study is composed of participants from the Genomic

Psychiatry Cohort (GPC)33,34, Consortium on the Genetics of SZ (COGS)35, the Bipolar

Genome Study (BIGS)36, Lithium treatment moderate dose use study (LiTMUS)37 and

Systematic Treatment Enhancement Program for Bipolar Disorder (STEP-BD) studies38.

All DNA samples were obtained from the NIMH Repository and Genomics Resource
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(Table S1). From these studies, we selected individuals with self-reported

African/African American ancestry. We used ADMIXTURE39 to estimate the percent

African genetic ancestry in each individual using study sample genotype array data and

the 1000 Genomes40 ancestry super-populations: (Admixed Americans (AMR), African

(AFR), European (EUR), South Asian (SAS), and East Asian (EAS)) as reference

populations. We retained individuals with estimated percent global African genetic

ancestry >25%. All individuals designated as cases fulfilled the DSM-IV criteria for SZ or

BD. InPSYght controls (all from the GPC study) were included if they had no personal or

family history of SZ or BD and if they did not have unipolar depression (from screening

questions). Details of the recruitment strategies and instruments used for diagnosis are

provided in the referenced publications for each cohort. All participants provided

informed consent.

TOPMed external controls

To increase statistical power to detect variants associated with BD and SZ, we selected

as external controls previously whole genome sequenced self-identified African

American individuals from the NHLBI Trans-Omics for Precision Medicine (TOPMed)

project (hereafter referred to as TOPMed controls). TOPMed studies (case-control or

family-based studies) are focused on heart, lung, blood and sleep disorders and

inclusion was not predicated on information about mental health 31. We considered for

inclusion individuals from 11 studies which agreed to the use of their samples as

controls (Table S2). We considered for inclusion individuals with general research use
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(GRU) consent or consent for health/medical/biomedical purposes (HMB). Further

inclusion/exclusion criteria are described below.

Whole-genome sequencing of InPSYght and TOPMed individuals

InPSYght: Individuals were whole-genome sequenced (WGS; mean +/- SD depth 26.8

+/-5.5) in seven batches at the Broad Institute on an Illumina HiSeq X10 instrument. The

first WGS batch (n=231 samples) was performed with PCR-based library preparation;

the remaining batches were completed PCR free. All sequencing was paired end with

151 nucleotide read length. Individuals with SZ, with BD, and control individuals were

included in each sequencing batch, except the PCR-based batch which did not include

individuals with BD (Table S3). Case and internal control samples were intermixed

within each batch to help avoid sub-batch effects.

TOPMed: Individuals were whole-genome sequenced at five sequencing centers as

previously described31 (Table S2), using paired-end sequencing and read length of 150

base pairs. The 14,812 samples used as controls had a mean sequencing depth of 36.8

+/-4.7.

Joint InPSYght and TOPMed variant discovery, genotype calling, and quality control

We used jointly called genotypes on human genome build version GRCh38 for bi-allelic

SNVs and short indels from TOPMed Freeze 931 using the GotCloud/vt pipeline39. We

called genotypes for each individual on the autosomes and chromosome X on the

across-individuals union of all variant sites. Genotypes for variants on the non-psuedo
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autosomal (nonPAR) region of the X chromosome were coded as 0 or 2 alleles for

males, whereas those in the two pseudo autosomal regions (PAR1 and PAR2,

respectively) were coded 0, 1, or 2 alleles combining X and Y for males. We filtered

variants based on outputs from a support vector machine (SVM) classifier based on

inferred pedigree of related and duplicated individuals to calculate Mendelian

consistency statistics and other features31,40.

Initial exclusions of individuals from analysis

InPSYght: We excluded individuals with: sex mismatches (self-reported sex

disagreed with genetic sex) (n=20), non-XX or XY sex karyotypes (n=17), estimated

DNA contamination >5% using verifyBamID241 (n=4), or for whom <98% of sites were at

a sequencing depth of ≥10 (n=14). See Table S4.

TOPMed: We excluded individuals with: sex mismatches, non-XX or XY sex

karyotypes, or that had estimated DNA contamination > 5%31.

Construction of principal components for sample inclusion and analysis

To compute principal components (PCs) of genetic ancestry, we removed variants in

high long-range LD regions42 and then pruned variants in PLINK/1.943 using

--indep-pairwise flag and the following parameters: 500000 5 0.2. We computed PCs

using the pca flag within PLINK43 and restricted variant selection to those present in the

Human Genome Diversity Project (HGDP) reference panel44. These criteria resulted in

160,517 common (MAF>5% in the InPSYght case/control + TOPMed control dataset)
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autosomal bi-allelic SNVs (from the WGS data). We first retained InPSYght individuals

that visually clustered in the first three PCs. Then, we retained TOPMed controls that

visually clustered in the space occupied by the InPSYght individuals along the first three

PCs (Figure S1 A-C).

Identification of duplicated and related individuals

InPSYght and TOPMed: We estimated pairwise kinship among all individuals

(InPSYght and TOPMed controls) using KING45. We excluded one person per pair of

monozygotic/duplicate genotyped individuals (17 duplicates within InPSYght, 140

duplicates within TOPMed, and 52 within InPSYght/TOPMed). For InPSYght/TOPMed

pairs, the InPSYght sample was retained. To obtain unrelated individuals for variant

aggregation tests we randomly retained an individual from related pairs or groups

(defined by individuals being related with at least one other person in the group) with

kinship > 0.0409 (third degree relationship or higher) resulting in 4489 cases (3006 SZ

and 1483 BD), 2374 InPSYght controls, and 8509 TOPMed controls.

Genetic ancestry estimation in InPSYght using WGS data

We subsequently estimated global genetic ancestries for InPSYght samples using WGS

data. We used the supervised learning approach implemented in the software

ADMIXTURE46 trained on the 1000 Genomes Project phase 347 ancestry

super-populations: Admixed Americans (AMR), African (AFR), European (EUR), South
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Asian (SAS), and East Asian (EAS). To estimate sample ancestry, we used the same

SNV’s as for the PC analysis.

We further inferred chromosomal-level ancestry using individuals of European

and African origins from the HGDP reference panel. HGDP was chosen here in an

attempt to characterize known high-levels of genetic diversity across African

populations48. From the HGDP reference, we used 156 European individuals as a single

group and as separate groups we used between 8 and 27 individuals per population

from the following eight African populations: Bantu from South Africa, Bantu from

Kenya, Biaka Pygmy, Mandenka, Mbuti Pygmy, Mozabite, San, and Yoruba49.

Genetic ancestry estimation in TOPMed using WGS data

Estimated genetic ancestry of TOPMed samples has been previously described31. In

summary, first, local ancestry was inferred using RFMix v250 with the following option:

--node-size=5. For reference haplotypes used in local ancestry inference, we obtained

the Human Genome Diversity Panel (HGDP)51 and processed the data according to

Wang et al. (2014)52, end up with 938 individuals and 639,958 autosomal SNVs. We

then condensed the 53 populations in HGDP into 7 super-populations: (1) Sub-Saharan

Africa (n=104), (2) Central/South Asia (n=200), (3) East Asia (n=229), (4) Europe

(n=154), (5) Native America (n=63), (6) Oceania (n=28), (7) Middle East (n=160). After

running RFMix, we summed up inferred local ancestry across all genetic windows of

each individual to calculate global ancestry proportions, corresponding to the seven

super-populations. Almost all selected TOPMed controls (n = 14,804, 99.9%) had >25%
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African estimated global ancestry (range: 26% to 100%) except 8 (0.05%) selected

controls; range of estimated African ancestry: 8% to 24%).

Power calculations to detect single-variant associations

We calculated the odds ratio (OR) that would yield 80% power to detect variants

associated with BD, SZ, or SZ + BD, using InPSYght + TOPMed samples as controls.

We assumed a disease prevalence of 1% for BD and 1% for SZ and 2% for SZ + BD.

We conservatively used the estimates of the number of unrelated cases (n=1500 BD

and n=3000 SZ) and controls (n=11,000) present in the case/control comparison group

of interest in our calculations. We assumed risk alleles frequencies of 0.01 and 0.05, a

multiplicative disease model on the OR scale, population-based controls, and

genome-wide significance level of 5x10-9 53.

Genome-wide single-variant case-control association analysis

We tested for association of SZ and/or BD with each SNV or indel (minor allele count

(MAC) >20 in the tested individuals) using SAIGE (version 0.42), which employs a

mixed model to account for related individuals and uses saddlepoint approximation to

account for case-control imbalance in estimation of significance54. We used the

reference genome allele as the reference allele in calculation of Odds Ratios (OR). We

performed a total of six case-control association analyses (Figure 1). We used as cases

the SZ only, BD only, or combined SZ or BD InPSYght samples. We used as controls

either only the InPSYght controls or the InPSYght + TOPMed controls. We chose to
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combine the SZ and BD cases based on previous evidence of substantial genetic

correlation between the two disorders (based on common variants in

European-ancestry populations)55. We included as covariates genetic sex and the first

ten genetic PCs. Using only the selected TOPMed and InPSYght individuals, we made

10 genetic PCs for analysis (as described in the section above) (Figure S1 D-F). We

also included the sequencing batch as a covariate for InPSYght sample only analyses.

To assess potential differences between the two sets of controls (InPSYght and

TOPMed controls), we performed association analysis of InPSYght controls versus

TOPMed controls. We controlled for multiple testing within an analysis group using p < 5

x 10-9 for genome-wide significance; we used p < 5 x 10-9 / 7 comparisons = 7.1 x 10-10

for a conservative genome-wide significance.

Protein Truncating Variants Singletons-Based Burden Tests

We performed burden tests for protein truncating SNV or indels (PTV) singletons

at both the gene level and gene-set level. We restricted our analysis to KING-estimated

unrelated samples (less than third degree relationships, see above) consisting of 4489

InPSYght BD and SZ cases, 2374 InPSYght controls and 8509 TOPMed controls. We

defined singleton variants based on the unrelated samples to avoid excluding variants

that occurred multiple times in a single family. We annotated 61,732 singleton variants

as PTV using the following Ensembl Variant Effect Predictor categories: frameshift, stop

gained, splice acceptor, or splice donor. We performed gene-level burden tests of SZ +

BD cases versus InPSYght + TOPMed controls on the aggregated singleton PTVs

 . CC-BY 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 29, 2024. ; https://doi.org/10.1101/2024.12.27.24319111doi: medRxiv preprint 

https://doi.org/10.1101/2024.12.27.24319111
http://creativecommons.org/licenses/by/4.0/


16

within each gene, testing for association of PTV count with case status using

RVTESTS56. To maximize power, we restricted testing to the genes with > 10 PTV

singletons (1045 of 22,178 genes) and only tested SZ + BD cases versus InPSYght +

TOPMed controls given the limited number of PTVs available per gene for testing. We

included as covariates the first ten genetic PCs, sex, and an individual’s total number of

singleton alleles. We applied a Bonferroni-corrected significance threshold of 0.05/1045

[of genes with >= 10 PTV singletons]= 4.8 x10-5.

In addition, among the 10 previously reported SZ associated genes from the

SCHEMA consortium study16, we tested the 6 genes with at least one PTV singleton in

our study; all six genes had < 10 PTV singletons. We note that the SCHEMA consortium

study includes the InPSYght SZ and control samples; thus, this is not an independent

test, but a test to see the contribution of the African American samples.

We performed gene set level tests for the enrichment of PTV singletons within

sets of genes previously associated with SZ. Given the higher singleton counts in

gene-set tests compared to individual genes, in addition to testing SZ + BD versus

InPSYght + TOPMed controls as for individual genes, we also tested SZ versus

InPSYght + TOPMed controls. We tested three gene sets previously associated with SZ

in more than one study. Three gene sets were associated with SZ in more than one

study: 1423 postsynaptic density genes57,58 and 784 FMR1 protein associated (formerly

named FMRP) genes59,60 and 3063 constrained (pLI > 0.90) genes60. In addition, we

tested a gene set we constructed containing the ten SCHEMA SZ associated genes16,

which as noted above has some overlapping samples with the samples for this study.
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For each gene-set test, for each person we summed the PTV counts over all genes in

the gene set and used RVTESTS56 to test for association with case status as described

for single gene tests. We used a single analysis Bonnferoni significance threshold of

0.05/3=0.017; in analysis where a result passed the single analysis threshold we further

evaluated the result using more stringent threshold 0.05/(3*2 comparisons)=0.0085 to

account for multiple analyses.

Construction of sequencing metadata principal components (metadata PCs)

To control for potential sequencing batch effects within and across InPSYght and

TOPMed, we constructed PCs based on a shared set of sample-level sequencing

quality control metrics, including per-sample average depths and sample contamination

levels (Table S5). We used the first four of these sequencing metadata PCs in the

chromatin and conservation states analysis.

Test for case-control and InPSYght control-TOPMed control enrichment of rare and

low-frequency variants in chromatin states and conservation states

We tested if cases and controls exhibit differential enrichment of rare and low-frequency

SNVs (MAF < 0.05) for any class of genomic region defined based on chromatin or

conservation states. Specifically, for the chromatin states, we used the universal

ChromHMM61 100-chromatin state annotation of the human genome, which captures

combinatorial and spatial patterns of chromatin marks over 1000 epigenomic datasets
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from more than 100 cell and tissue types. The version of the annotations we used had

been previously lifted over to human hg38 assembly from hg1961. For the conservation

states, we used a ConsHMM62 100-conservation state annotation of the human genome

defined directly in hg38, which captures combinatorial and spatial patterns of individual

nucleotides aligning to and matching the human reference genome within a 100-way

vertebrate sequence alignment62,63.

For the same set of unrelated samples as in the gene-based tests, we used

SNVs with MAF < 0.05, excluding variants overlapping ENCODE excluded regions64.

We annotated each variant with the ChromHMM and ConsHMM annotations described

above. For each of the six case/control and InPSYght control/TOPMed control

comparisons described in the single-variant test section, we used logistic regression to

test for association between the non-reference allele count (predictor) and case/control

or control study status (outcome). We upweighted rarer variants with the beta function

beta(MAF, 1, 25) (mirroring the default choice of WGScan65). We included as covariates,

the first ten genetic PCs, sex, sequencing batch (for tests involving only InPSYght

samples), and the weighted total count of rare and low-frequency variants for each

sample as covariates. We repeated the analysis including the first four sequencing

metadata PCs as covariates. We controlled for multiple testing with a Bonferroni

correction for 200 tested states with significance p-value threshold calculated as

0.05/200 =0.00025; we used a more stringent p-value threshold 0.05/(200*7

comparisons) =3.6 x 10-5 to account for multiple analyses.
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Test for InPSYght control-TOPMed control enrichment of rare and low-frequency

variants in various genomic repeat categories

To investigate the potential effects of between InPSYght and TOPMed study sequencing

technical differences on the number of non-reference alleles detected in genomic repeat

regions, we annotated each analyzed variant for its presence in a repeat region. We

defined repeat regions using (1) repeat regions identified by RepeatMasker 3.0.1

obtained from the UCSC genome browser66 and (2) simple repeats defined by Tandem

Repeats Finder67. The repeat regions were tested as a class and were further divided

into 21 repeat categories, for a total of 22 categories. We tested for differential

enrichment of SNVs in each of the repeat categories, without inclusion of the

sequencing metadata PCs as described for the ChromHMM and ConsHMM state tests.

We controlled for multiple testing with a Bonferroni correction for 22 tested repeat

categories with significance p-value threshold calculated as 0.05/22=0.0023; we used a

more stringent p-value threshold of 0.05/(22*7 comparisons)= 3.3 x 10-4 to account for

multiple analyses.

Genome-wide rare and low-frequency and rare variant sliding window burden tests for

case-control and InPSYght control-TOPMed control comparisons

To identify local enrichments of disease-associated rare and low-frequency alleles we

performed sliding window burden tests using WGScan65 in the same six

unrelated-samples case/control sets and one unrelated control/control sample set as in

the chromatin and conservation states analysis. We also used the same variants as in
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the chromatin and conservation states analysis. Following the default parameters of

WGScan, we tested variants in window sizes of 5, 10, 15, 20, 25, and 50 kb (including

coding and non-coding regions), and upweighting rarer variants with beta function

beta(MAF, 1, 25) weights. We included the same set of covariates as in the chromatin

and conservation states analysis (with and without the first four sequencing metadata

PCs). We used WGScan’s permutational approach with default parameters (including

5000 permutation replicates) to estimate the effective number of tests (n) for each

comparison group65. We controlled for multiple testing with a Bonferroni-type correction

with significance thresholds calculated as 0.05/n (2.15 x10-8 to 2.19 x 10-8); we used a

more stringent p-value threshold 0.05 / ni = 3.1x10-9 to account for multiple analyses
1

𝑖

∑

sets (i), where n = 16,207,362 is the total number of effective tests across all
1

𝑖

∑

comparisons.

Secondary analysis for the most strongly associated window across all case-control test

combinations

We conducted secondary analyses for the most strongly associated sliding window

across all six case-control test combinations: the chr11:64,859,972-64,869,939

association observed in InPSYght BD versus InPSYght controls. We removed variants

in the repeat regions (defined above) and performed a WGScan-based burden test of

InPSYght BD versus InPSYght controls on this window using the approach described

above. We also tested the InPSYght BD cases versus InPSYght controls single variant
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association in the non-repeat region of chr11:64,859,972-64,869,939 using two-sided

Fisher's exact test implemented in PLINK 1.943 (as many variants had MAC lower than

the SAIGE threshold (MAC<20)). We then performed two additional WGScan-based

burden tests for this chr11:64,859,972-64,869,939 region: variants with nominally

significant Fisher’s exact p-values (p-value < 0.05) only and variants in the window that

were not nominally significant.

Results

Genome-wide single-variant case-control association analysis

The InPSYght study sample consists of 7544 African American individuals (estimated

African ancestry > 25%): 1598 with BD, 3295 with SZ, and 2651 without known BD or

SZ or unipolar depression (Table S1). 42% of the participants were female and

participants had an average age of 42.5 +/- 12.7 years (Table S3). We generated WGS

data for InPSYght samples at an average depth of 26.8 +/-5.5. We estimated the

ancestral sources of African ancestry in the samples using the Human Genome

Diversity Project (HGDP) reference panel and found that almost all InPSYght individuals

were genetically most similar to the West African populations represented by Yoruba

and Mandenka samples (Figure S2).

To increase power to detect BD- and SZ-variant associations, we included, as

controls, 14,812 African American individuals from the TOPMed study (of which 99.9%

had >25% African Ancestry (average sequencing depth 36.8+/-4.7). The TOPMed

samples came from studies focused on disease of heart, lung, blood and sleep
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disorders and inclusion was not predicated on information about mental health (Table

S2). To minimize differences between InPSYght and TOPMed samples used in our

analyses, we jointly called the samples and we selected TOPMed samples to have a

similar genetic PC composition as the InPSYght samples (Figure S1, Methods). The

selected TOPMed samples were 62% female. In the jointly called InPSYght and

TOPMed external control dataset, we identified 226,434,324 variants (210,210,658

SNVs and 16,223,666 short indels) on the autosomes and chromosome X, of which

220,310,579 variants have MAF < 0.05 (204,467,345 SNVs and 15,843,234 short

indels).

To identify SNV and short indels associated with BD and SZ, we performed

GWAS single-variant tests of association (MAC>20 in the tested group). We adjusted for

the first 10 genetic PCs, sex, and sequencing batch (only in InPSYght sample analysis)

and accounted for relatedness using a mixed model. First, to determine whether

differences in genetic ancestry or sequencing between InPSYght and TOPMed samples

might cause artifactual associations in the BD and SZ association analysis, we

performed a GWAS of InPSYght controls versus TOPMed controls. There was no

evidence of inflation of genomic control (λgc=1.02). There was one common

genome-wide significant variant, an indel on chromosome 13 (rs11350613) (OR

(95%CI)= 0.79 (0.74, 0.85), p-value = 1.2 x 10-10, MAF of 0.63 versus 0.68 in InPSYght

controls versus TOPMed controls, respectively) (Figures S3). However, variant

rs11350613 is not in LD with other variants in our data, and it just barely passed the

SVM-based QC filter in our study (-0.497, threshold for retention SVM > -0.5) and failed

 . CC-BY 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 29, 2024. ; https://doi.org/10.1101/2024.12.27.24319111doi: medRxiv preprint 

https://doi.org/10.1101/2024.12.27.24319111
http://creativecommons.org/licenses/by/4.0/


23

QC in the subsequent TOPMed 10 data freeze

(https://bravo.sph.umich.edu/variant.html?chrom=13&pos=79615934&ref=C&alt=CT).

Next, we estimated the power to detect case/control associations for each case group

versus the InPSYght + TOPMed control group. We used p < 5 x 10-9 for genome-wide

significance and p < 5 x 10-9 / 7 = 7.1 x 10-10 for a conservative multiple groups testing

genome-wide significance to account for the seven groups of samples being tested. For

tests of BD, SZ and SZ + BD association with InPSYght + TOPMed controls we have

approximately 80% power for p <5 x 10-9 and p< 7.1 x 10-10 to detect ORs of 3.2, 2.4

and 2.1, and 3.4, 2.5 and 2.3 respectively, for minor allele frequency (MAF) of 0.01 and

for ORs of 1.76, 1.53 and 1.43, and 1.78, 1.55 and 1.44, respectively for MAF of 0.05,

respectively. We performed single-variant association analyses of BD, SZ or SZ + BD

versus InPSYght + TOPMed controls or versus InPSYght controls (Manhattan and QQ

plots Table S6, Figures S3-S9). Estimation of population stratification and deviation of

test statistics observed from that expected (λGC) ranged from 1.00 to 1.02 for the various

case-control combinations tested, consistent with minimal stratification bias and p-value

inflation (Table 1). We observed one genome-wide significant, but not multiple group

testing corrected genome-wide significant (between p < 5 x 10-9 and p < 5 x 10-9 /7

comparisons = 7.1 x 10-10), locus on chromosome 18 (two SNVs and one indel) in the

BD versus InPSYght + TOPMed control analysis (Figures S6): lead SNV

chr18:49738979:G:T, OR (95%CI)=30.7 (1.35 x 10-9), p-value= 1.3 x 10-9, MAF of

0.0069 (BD) versus 0.0011 (InPSYght + TOPMed controls . The three variants are

within 600 bp of each other and are in strong LD (r2 > 0.9) (Figure 2). The locus zoom
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plots display the 1000G AFR LD and there appears to be a variant in r2 > 0.80 with our

associated variants; however in our data, this variant has r2=0.65 with the most strongly

associated variants and p-value=0.0014. We observed less significant association

results in the smaller BD versus InPSYght control analysis (chr18:49738979:G:T, OR

(95% CI)=8.51 (3.85-18.8), p-value = 1.22 x 10-7, MAF of 0.0069 (BD) versus 0.00056

(InPSYght controls) (Table S7). These variants had no obvious QC issues. The nearest

genes in the region are ACAA2, LIPG, and MYO5B.

We found that in chromatin and conservation state tests (below), sequencing

metric-based PCs may help control for sample sequencing differences. We repeated

our analysis of this region including four sequencing metric metadata PCs. We found

slightly attenuated non-genome-wide significant results (chr18:49738979:G:T, OR (95%

CI)=15.0 (5.78-39.1), p-value 2.7 x 10-8).

Gene based and gene set tests

The SCHEMA consortium exome-sequencing meta-analysis of 24,248 SZ cases and

97,322 controls of predominantly European ancestry individuals tested functional variant

annotation groupings for association with SZ; they found extremely rare PTVs had the

strongest SZ associations16. The SCHEMA analysis contained InPSYght SZ and control

individuals, but did not separately report the results for InPSYght African American

individuals. To specifically assess gene-based PTV associations in African American

individuals, we used 4489 InPSYght SZ + BD cases and 10,883 InPSYght + TOPMed

controls (all unrelated individuals) to test for PTV burden in 1045 genes with singleton
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PTV count > 10 (see Methods). We included the BD cases to increase the number of

alleles per gene given similarities in the underlying genetic architecture55. We did not

detect evidence of inflation of association statistics (λGC= 0.92) and found no SZ+BD

associated genes (Table 1, Figure S10). Of SCHEMA’s ten most strongly associated

SZ genes: four genes had no singleton PTVs in the InPSYght + TOPMed sample and

six had singleton PTV <10; all had p>0.05 (Table S8). Considering SCHEMA’s top ten

genes as a single gene set, we observed directionally consistent, though

non-significant, enrichments of PTVs in SZ (OR=1.65, p=0.42) and SZ + BD cases

(OR=2.07, p=0.15) compared to controls.

We tested three previously identified SZ-associated gene sets for PTV gene set

enrichment in SZ or SZ+BD versus InPSYght + TOPMed controls. For the most

strongly enriched SCHEMA16 gene set - 3063 constrained (pLI > 0.90) genes16,60 - we

found significant association for both SZ (OR=1.11, p=8.2x10-3) and SZ + BD (OR=1.13,

p=2.9x10-3) (samples contained within SCHEMA). For two SZ-associated gene sets

identified in multiple papers - 1423 post-synaptic density genes57,58 and 784 FMR1

protein associated (formerly named FMRP) genes59,60 - we found directionally consistent

OR’s but no significant associations (Table 2).

Case-control enrichment of rare and low-frequency SNVs in chromatin states and

conservation states

We next investigated whether chromatin or conservation state-based sets of rare and

low-frequency SNVs (MAF < 0.05) are differentially enriched between the InPSYght
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and TOPMed controls, and between SZ and/or BD cases and InPSYght and/or

TOPMed controls (Figure 1, unrelated individuals). Our goal with this analysis was to

test a diverse set of systematically defined genomic regions that could potentially

capture both technical artifacts or biological associations. For this we annotated the

SNVs using a set of 100-ChromHMM universal chromatin states61 and a set of

100-ConsHMM conservation states62,63, for a total of 200 states (Methods). For each

state we performed a logistic regression to test if two groups have a differential variant

burden, with upweighting of variants with lower MAF (Methods).

We first tested for state differences in variant burden in InPSYght controls versus

TOPMed controls and found that the p-value distribution was substantially inflated

compared to the expected distribution (lambda GC =1.51, Figures 3AB, Table 1).

Likewise, in case-control analyses that included TOPMed controls, we found substantial

p-value inflation (lambda GC =1.28-1.70, Table 1, Figures 3CD, Figure S11). One state

(ConsHMM state 75) had lower variant burden in BD cases compared to InPSYght +

TOPMed controls (OR=0.71, p=9.9x10-5, significant at a per case-control group level).

To test whether these findings could be due to differences in technical

sequencing factors between InPSYght and TOPMed we constructed a set of

sequencing metadata PCs from sequencing quality control metrics (Methods) and

included them as covariates. These sequencing metadata PCs summarize various

quality control metrics, including various sequencing depth-related metrics that almost

exclusively drove the PCs (Table S5). After inclusion of sequencing metadata PCs, the

TOPMed control versus InPSYght controls state-based burden test had a non-inflated
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lambda GC =1.02 and the TOPMed control-containing case/control analyses had lower

lambda GCs (1.10-1.24) with no visible inflation at more significant p-values (Table 1,

Figure 3BD, Figure S11). Across all the case-control comparisons no state reached a

Bonferroni-based significance threshold of 0.05/200 chromatin states = 2.5 x 10-4 (the

number of total states tested between the two models) after the inclusion of metadata

PCs (Figure S12). Thus, we did not find evidence for enrichment in BD and/or SZ cases

of rare and low-frequency variants in particular chromatin or conservation states.

Control-control enrichment of rare and low-frequency variants for repeat classes

We next sought to better understand why the inflated lambda GC values for chromatin

and conservation states in the control-control enrichment analysis had non-inflated

lambda GC when including sequencing metadata PCs. Given repeat regions often

present technical challenges in sequencing, we hypothesized that repeat regions as a

whole or of particular classes might show specific differences in enrichment by control

study. This hypothesis would also be consistent with strong enrichments shown for

various categories of genomic repeat elements in specific ChromHMM61 and

ConsHMM62 states. To test this hypothesis, we annotated rare and low-frequency SNVs

with a total of 21 different categories of repeat regions defined by RepeatMasker and

Tandem Repeats Finder67. Using the same test as for state-based analysis, we asked if

the TOPMed and InPSYght controls were differentially enriched for SNV over all repeats

and in specific repeat categories. We did not see significant enrichment of SNV in the

overall repeat category (OR=2.13, p=4.1 x 10-2, overlapping 53% of variants on
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average). However, we found significant enrichment of rare and low-frequency variants

in TOPMed controls compared to InPSYght controls in the RepeatMasker-defined SINE

(OR=2.04, p=3.0 x 10-9, overlapping 16% of variants on average) and simple repeat

regions (OR=1.31, p=3.2 x 10-6, overlapping 1% of variants on average) (Figure 4AB).

After including sequencing metadata PCs as additional covariates, only simple repeat

regions remain significant (at a single analysis set level), with a greatly reduced

significance level (OR=1.35, p=2.0 x 10-3) (Figure 4CD). Overall, these results suggest

that TOPMed and InPSYght cohorts have different distributions of variants in specific

repeat categories and could be associated with artifactual associations in burden-type

analyses. Such difference can be partially controlled for with the inclusion of sequencing

metadata PCs.

Genome-wide rare and low-frequency variant sliding window burden tests for BD and

SZ samples versus controls

To identify contiguous genomic regions that might harbor an excess of rare and

low-frequency SNVs that predispose to or protect from BD and SZ, we conducted

genome-wide 5-50kb sliding window analyses within the TOPMed and InPSYght control

groups and six case-control groups (Figure 1) using the WGScan framework65. Within

each genomic window we performed allele frequency weighted burden test, adjusting

for covariates used in the chromatin and conservation state analysis (with and without

the metadata PCs).
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To identify windows that might be affected by differences in sequencing between

the TOPMed and InPSYght study we first compared InPSYght controls and TOPMed

controls (Figure 5). The lambda GC =1.01 was consistent with no inflation of the test

statistics (Table 1). However, we identified a 50kb region on chromosome 5

(chr5:58,500,010 - 58,550,007) with 12 windows with genome-wide significant

associations with the strongest association being chr5:58,510,332 - 58,515,331 (p=1.29

x 10-9, significant when accounting for multiple analysis sets (Figure 5B). This region

showed an elevated burden of rare and low-frequency SNVs for InPSYght controls

(mean weighted burden=156) compared to TOPMed controls (mean weighted

burden=145). To test the robustness of this association we repeated the analysis

without including the sequencing metadata PCs as covariates, and found that none of

the windows in this region remained significant (minimum p=2.16 x 10-3) (Figure 5ACD),

leaving open the question of if this was a chance association or if the metadata PC’s

induced a false positive association in this region.

In the six case-control analyses we observed no inflation of the test statistics

(lambda GC = (0.98-1.01)) with the inclusion of metadata PCs (Table 1). We did not

identify any window where the burden of rare and low-frequency SNVs was significantly

associated with BD and/or SZ. The significant chromosome 5 region from the

control-control analysis did not show association signal in any of the case-control

analyses (p>=0.01 for every case-control analysis).

Interestingly, when we compared the sliding window results to BD and SZ GWAS

results, we noticed that the most significant window across all case-control tests was
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located in a 6Mb region of chromosome 11 containing multiple independent PGC

common variant BD associations (Table S9)4. This 10kb window overlaps the EHD1

gene (chr11:64,859,972-64,869,939; GRCh38 (p=4.06 x 10-8 for InPSYght BD versus

InPSYght controls and has a higher burden in controls than in cases). This window is

the tenth most significant window for the InPSYght BD versus combined InPSYght and

TOPMed controls analysis (p=1.37 x 10-6).

We assessed whether removing non-repetitive regions might strengthen the

association signal because we could more accurately genotype non-repeat variants. In

the non-repetitive region analysis of InPSYght BD versus InPSYght controls including

sequencing metadata PCs, this window reached genome-wide significance (p=1.12 x

10-9) and was the most strongly associated window across all case-control comparisons;

we found similar results when the analysis was run without metadata PCs (p=1.09 x

10-9). We identified a specific subset of control-enriched variants belonging to distinct

haplotypes (Figure S13). Across cell and tissue types, this 10kb window has an

average of 44.5% of basepairs in the TxReg chromatin state (defined by a high

presence of transcription, enhancer, and promoter chromatin marks) from a chromatin

state model providing per-cell and tissue annotations68; only 0.02% of 10kb windows in

the genome had a higher percent of basepairs annotated by this state suggesting high

regulatory potential (Figure S14; see Supplemental Text for further analysis). These

analyses suggest a potential convergence of BD-related associations in this region that

awaits replication in larger samples.

 . CC-BY 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 29, 2024. ; https://doi.org/10.1101/2024.12.27.24319111doi: medRxiv preprint 

https://doi.org/10.1101/2024.12.27.24319111
http://creativecommons.org/licenses/by/4.0/


31

Discussion

We investigated the genomic basis of SZ and BD across the allele frequency spectrum,

for coding and non-coding variants in a cohort of African American individuals. We

identified three low-frequency BD-associated variants (two SNVs and one indel) on

chromosome 18. These variants are 200 kb from a BD association identified in a GWAS

study of 1461 BD cases (Bipolar 1 disorder) and 2008 controls38; larger studies have not

identified associations in this region4,12. In addition to the single-variant results, in a

secondary BD analysis excluding genomic repeat regions we identified a significantly

associated window on chromosome 11. The associated window is located in a 6 MB

cluster of five common variant GWAS associations for BD4. This region has a

significantly lower burden of rare and low-frequency and rare variants in BD cases

compared to InPSYght controls. Given the number of GWAS and sliding window tests

we performed (albeit with overlapping sets of cases and controls) these findings would

likely not survive a more stringent correction for the effective number of tests performed

in our study. Thus, we consider these chromosome 18 and 11 results as potentially

associated loci that would need to be assessed in larger WGS studies including those

with African American individuals.

Although we worked to minimize genotype calling differences by calling InPSYght

and TOPMed samples together, one potential limitation of our study is that the TOPMed

controls were more deeply sequenced and were sequenced separately from InPSYght

cases and controls. Across our primary analyses, the only tests that appeared to be

sensitive to potential differences in sequencing were the ConsHMM conservation states
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and of universal ChromHMM chromatin states tests (based on an inflated lambda GC).

These tests combine large numbers of rare and low-frequency variants from regions

that may be more or less difficult to sequence or prone to sequencing artifacts. These

states are known to have different levels of repetitive regions61,62, and we found that

particular classes of repeats, SINE and simple repeat region, were enriched for

significant differences between the InPSYght and TOPMed controls. These findings

suggest that sensitivity analyses should be performed for tests that aggregate variants

across any class of genomic regions. For example, gene set analysis of non-coding

variants may be susceptible to false positives given that different repeat classes are

enriched near biologically distinct sets of genes; SINE are enriched in housekeeping

genes69.

In our initial analyses of genomic regions, we attempted to control for sequencing

differences and variant density, in a manner analogous to that of tests of rare singletons,

by inclusion of the total weighted rare and low-frequency allele count as a covariate.

This covariate was not effective in controlling the false positive rate in the ConsHMM

conservation and ChromHMM chromatin states tests. We found, however, that inclusion

of sequencing metadata PCs, reduced or even eliminated the lambda GC inflation. This

suggests that for tests that aggregate rare and low-frequency variants (and potentially

tests that aggregate singletons), inclusion of more extensive sequence metrics may be

necessary to control the false positive rate.

In contrast to their ability to control for p-value inflation in the InPSYght versus

TOPMed control chromatin and conservation state tests, we observed that the inclusion
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of the sequencing metadata PCs appeared to induce a false positive association in the

sliding window control-control (TOPMed versus InPSYght) analysis. When we included

sequencing metadata PCs as covariates, we identified a genome-wide significant region

on chromosome 5 that was 6 orders of magnitude more significant than without

sequence data metadata PCs. These findings suggest that significant associations

should be subject to sensitivity analyses with and without adjustment for

sequencing-related covariates. The findings also highlight the challenges associated

with controlling for batch/sequencing effect differences and variant quality in WGS

studies70.

There are additional limitations in our current study and analysis. First, we have a

very small effective sample size relative to genotype array-based GWAS studies. We

expect larger WGS case-control samples will be essential to identification of rarer

non-coding variants.

Second, the TOPMed controls were not screened for psychiatric disorders, and

thus the presence of individuals with BD or SZ in the control group could have

decreased our power to detect BD and SZ associations. We expect misclassification in

the control group to have a minimal effect71 because 1) the combined prevalence of BD

and SZ is 2-4% in the general population72, and 2) individuals with severe mental illness

are less likely to participate than individuals without severe mental illness in

non-psychiatric disorder-based studies due to exclusion criteria and/or a decreased

likelihood of enrollment73,74. As improved methods for analyzing rare non-coding

variation are developed65,71, and the field comes to a clearer consensus on which
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analytical strategies and annotations are most effective for WGS analysis, more disease

relevant information will be extracted from WGS data.

In summary, WGS allowed us to test variants for association with SZ and/or BD

across the allele frequency spectrum in both the coding and non-coding regions, in

particular rare non-coding variants which are missed by GWAS or exome sequencing

studies. Our study highlights the need to perform sensitivity analysis when conducting

WGS analyses, particularly for aggregation tests of rare and low-frequency non-coding

variants that use data from multiple studies, and the need for larger WGS studies of

African American individuals. We expect our data and additional African American WGS

studies will contribute to the growing understanding of rare non-coding variants and

complex psychiatric diseases in individuals with different ancestries.
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Figure Legends

Figure 1. Study overview (A) Number of total and of unrelated study participants for each case

or control group; (B) Seven analysis groups: control/control and case/control; (C) Four analysis

types (Total or Unrelated samples used in analysis); PTV: protein truncating variant

Figure 2. Regional view of chromosome 18 locus showing evidence of association in the

InPSYght BD versus InPSYght+TOPMed controls. Horizontal line shows genome-wide

significance threshold of 5 x 10-9.

Figure 3. Chromatin and conservation state burden test results for InPSYght cases versus

InPSYght controls (A, B) and InPSYght cases versus InPSYght and TOPMed controls (C, D),

with each point representing a ChromHMM or a ConsHMM state. Dashed lines show

Bonferroni-based p-value thresholds (p=0.05/200). Diagonal lines show the unit slope. (A, C)

QQ-plots with genomic inflation factors (λ) before and after inclusion of sequencing metadata

PCs covariates. (B,D) Signed (by direction of enrichment coefficient) -log10 p-values before and

after inclusion of sequencing metadata PCs covariates. Sign direction: Case enrichment values

are positive, control enrichment values are negative.

Figure 4. Test of repeat categories for enrichment of rare and low-frequency variants in

TOPMed controls versus InPSYght controls, without (A, B) or with (C, D) sequencing metadata

PCs covariates. “DNA?” represents elements with uncertain category classification to the DNA

repeat element category. Horizontal dashed lines show Bonferroni-based p-value thresholds (p

= 0.05/22). (A), (C): volcano plots with log odds ratio on the x-axis and -log10 p-values on the
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y-axis. (B), (D): Mean % of variants overlapping each repeat category on the x-axis (weighted by

the minor allele frequencies, Methods), and -log10 p-values on the y-axis.

Figure 5.WGScan genome-wide sliding window burden test for rare and low-frequency variants

for InPSYght controls versus TOPMed controls. Horizontal lines show genome-wide p-value

significance thresholds (p=2.18 x 10-8). Diagonal line shows the unit slope. (A, B) Manhattan

plots of sliding window p-values without sequencing metadata PCs (A) and with sequencing

metadata PCs (B). (C) QQ-plot for the window p-values, before and after inclusion of

sequencing metadata PCs covariates. (D) Comparison between sliding window p-values before

and after inclusion of sequencing metadata PCs covariates, showing windows in the chr5 region

58,500,010-58,550,007 (red).
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Tables

Table 1. Lambda GC for each analysis type (S) represents at least one genome-wide (p
<5x10-9) association. *Comparison was not tested in this study. Base refers to the association
test with base covariates (see Methods) without the inclusion of Metadata PCs. BD = Bipolar
disorder; SZ = Schizophrenia

Lambda GC results
((S) denotes a significant association)

Sample group 1 Sample group 2

Single
variant
GWAS

Gene
exon

burden

Chromatin/
Conservation

burden
Sliding window

burden

Base Base Base
+

Metadat
a PCs

Base
+

Metadata
PCs

InPSYght
controls

TOPMed
controls

1.02
(S)

* 1.51 1.02 1.00 1.01
(S)

InPSYght BD +
SZ

InPSYght +
TOPMed
controls

1.01 0.92 1.54 1.24 1.02 1.01

InPSYght controls 1.00 * 0.98 0.98 0.98 0.98

InPSYght BD InPSYght +
TOPMed
controls

1.02
(S)

* 1.70
(S)

1.21 1.00 0.99

InPSYght controls 1.00 * 1.13 1.07 0.98 0.98

InPSYght SZ InPSYght +
TOPMed
controls

1.00 * 1.28 1.10 1.02 1.01

InPSYght controls 1.00 * 0.92 0.93 0.99 0.98
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Table 2. InPSYght singleton PTV burden test results for previously published schizophrenia
gene sets. #Overlap in study sample with InPSYght; *Gene set was not tested in this study.

Study
(Disorder)

InPSYght
(BD&SZ)

InPSYght
(SZ)

Genovese
et al58

(SZ)

SCHEMA16

(SZ)

Case N
Control N

4489
10,883

3006
10,883

4877
6203

24,248
97,322

Ancestry
African

American
African

American European Multi-ethnic

Gene Set #
Genes

OR
(P value)

OR
(P value)

OR
(P value)

OR
(P value)

Constraine
d Genes

(pLI > 0.90)

3063

1.13
(0.0030)

1.13
(0.0082)

1.17
(1.7x 10-8)

1.26
(7.6x 10-35)

PSD Genes 1423 1.09
(0.052)

1.11
(0.039)

* 1.20
(1.0x10-6)

FMRP
Genes

784 1.10
(0.058)

1.10
(0.099)

1.23
(8.2x 10-9)

1.25
(2.2x 10-17)
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