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Abstract 

Parkinson’s disease patients with motor complications are often considered for deep brain 

stimulation (DBS) surgery. DBS candidate selection involves an assessment known as the 

levodopa challenge test (LCT). The LCT aims to predict DBS outcomes by measuring symptom 

improvement accompanying changes in levodopa dosage. While used in the patient selection 

process, inconsistent LCT predictions have been widely documented, verified here with Pearson’s 

correlation 𝑟 = 0.12. Estimating symptom improvement to separate DBS responders and non-

responders remains an unmet need. Quantitative susceptibility mapping (QSM) is routinely 

acquired for pre-surgical planning and depicts the iron distribution in substantia nigra and 

subthalamic nuclei. Iron deposition in these nuclei has correlated with disease progression and 

motor symptom severity. A novel QSM radiomic approach is presented using a regression model 

and features extracted from the pre-surgical targeting acquisition. Noise compensation in training 

labels improves outcome prediction in regression and classification models. The model predicts 

improvement in the unified Parkinson’s disease rating scale (UPDRS-III) (𝑟 = 0.75). Predictive 

feature maps in deep gray nuclei offer contrast between responders and non-responders. The 

QSM radiomic approach has potential to improve DBS candidate selection by accurately 

estimating symptom improvement, eliminating difficult medication manipulation, and avoiding 

time-consuming evaluations to reduce patient and clinician burden. 
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1. Introduction 

Deep brain stimulation (DBS) is a surgery to recalibrate neural circuitry in movement and 

psychiatric disorders including essential tremor, dystonia, and obsessive-compulsive disorder1. 

DBS in the subthalamic nucleus (STN) is a widespread treatment for advanced Parkinson’s 

disease (PD) motor symptoms2. Selection of candidates for DBS involves assessing 

responsiveness to levodopa through the levodopa challenge test (LCT). The LCT has shown 

limitations in estimating improvements, yielding results with large uncertainty3,4 and is 

burdensome to patients and clinicians as it requires multiple assessments and medication 

withdrawal. Developing a consistent and convenient method for predicting DBS outcomes in PD 

is an important unmet clinical need. The purpose of this work is to demonstrate the potential of 

presurgical quantitative susceptibility maps (QSM) to improve patient selection. 

From the phase image of multi-echo gradient echo sequences (mGRE), reconstructed 

QSMs5 provide superior contrast in deep gray nuclei during pre-surgical planning6-8. QSM is also 

useful in monitoring disease progression9. Recently, deep gray nuclei QSM radiomic features 

have been shown to improve PD diagnosis 10,11, and correlation with both PD motor symptoms12,13  

and DBS binary outcomes14.  

Radiomic features represent quantitative information in an image beyond what is 

discernable to the eye15. Such features are generally defined as first-order histogram-based 

features describing voxel values, second-order features representing joint probability distributions 

of voxel values, and region of interest (ROI) shape features16. Features act as biomarkers across 

imaging modalities and encode phenotype differences in a variety of pathologies. 

The goal of the QSM radiomics model is to preoperatively predict post-surgical UPDRS-

III improvement, referred to as “ground truth” or “label” data. As the UPDRS-III metric is measured 

on an interval scale, a linear regression with the least absolute shrinkage operator (Lasso) 

penalization technique is proposed using QSM radiomic features to predict DBS outcomes. 

Specifically, the outcome of interest is the ratio of postoperative to preoperative UPDRS-III scores, 

known as the UPDRS-III improvement. The UPDRS-III rating contains variability despite good 

agreement, described in supervised learning as “noise” ubiquitous in human measurements17. 

“Label noise” degrades regression models and supervised learning generally and label noise 

compensation has been shown to improve model performance18. Accordingly, a QSM radiomics 

Lasso model with noise compensation for DBS outcome prediction is presented. 
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2. Methods 

2.1 Patient Cohort 

This retrospective study was approved by the institutional ethics committee. Informed 

consent was obtained for forty patients undergoing bilateral STN-DBS. Patients were selected by 

the department of neurosurgery based on 1) primary PD with good response to levodopa; 2) 

decreased drug efficacy or motor complications; 3) adverse drug reactions; 4) tremors 

uncontrolled by drugs. Exclusion criteria were: 1) psychiatric disorders; 2) dementia; 3) diffuse 

cerebral ischemic lesions on MRI; 4) comorbidities interfering with surgery. The patient 

demographics were age 63.3 ± 7.45 𝑦𝑒𝑎𝑟𝑠, sex ratio of 22 males to 18 females, disease duration 

8.45 ± 2.87 𝑦𝑒𝑎𝑟𝑠, and levodopa equivalent daily dosage (LEDD) of 323.78 ± 253.58 𝑚𝑔/𝑑𝑎𝑦. For 

this cohort, the off medication UPDRS-III score was 59.63 ± 20.01, the on medication UPDRS-III 

score was 23.65 ± 17.76 and the on medication, off stimulation UPDRS-III score was 25.00 ±

13.46. The LEDD percent reduction following surgery was 54% ± 31%. The absolute UPDRS-III 

post-operative improvement was 35 ± 17. 

 

2.2 Data Acquisition 

QSMs from mGRE data were reconstructed with MEDI-L1
19. Pre-surgical UPDRS-III 

scores 𝑢 on and off-medication from LCT and post-surgical UPDRS-III scores on-stimulation and 

off-medication were collected20 and the UPDRS-III improvement was computed: 

𝑦 =
𝑢𝑝𝑟𝑒𝑠𝑢𝑟𝑔𝑖𝑐𝑎𝑙,𝑜𝑛−𝑚𝑒𝑑𝑖𝑐𝑎𝑡𝑖𝑜𝑛 − 𝑢𝑝𝑜𝑠𝑡𝑠𝑢𝑟𝑔𝑖𝑐𝑎𝑙,𝑜𝑛−𝑠𝑡𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛,𝑜𝑓𝑓−𝑚𝑒𝑑𝑖𝑐𝑎𝑡𝑖𝑜𝑛

𝑢𝑝𝑟𝑒𝑠𝑢𝑟𝑔𝑖𝑐𝑎𝑙,𝑜𝑛−𝑚𝑒𝑑𝑖𝑐𝑎𝑡𝑖𝑜𝑛 
 (1) 

 

The substantia nigra (SN) and STN were segmented with radiologist supervision. Collected 

sample size was 40, with 3 cases excluded by motion artifacts. The proposed pipeline is 

discussed in section 2.3 Preprocessing and illustrated in Figure 1. 

 

2.3 Preprocessing 

Figure 1 depicts the proposed pipeline with QSM and ROI inputs. Features were extracted 

from each ROI (joint entropy feature map shown) and passed to a Lasso model after 

normalization, label augmentation, and recursive feature selection. A total of 93 features were 

extracted over 17 image types available in PyRadiomics21. Additionally, 14 shape features were 

extracted on the original image for a total of 1595 features per ROI. 
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2.4 Model 

A linear regression with Lasso penalization technique implemented with SciKit-Learn 

was performed to predict UPDRS-III improvement outcome using 1595 features per ROI22. 

𝑤∗ = argmin
1

2𝑁
‖𝑦 − 𝑋Φ𝑤‖2

2 + 𝜆‖𝑤‖1 (2) 

 

Here, UPDRS-III improvement outcomes 𝑦 are predicted using optimal weights 𝑤∗ and test 

features 𝑋̂Φ, 𝜆 is a regularization parameter, and 𝑁 = 37 denotes the number of patients. Given 

the dataset size, a leave-one-out approach for subject-specific models23 was used with each 

patient withheld and remaining 𝑁 − 1 patients were used for training.  

 

2.5 Noise Compensated Data Augmentation 

The Lasso training dataset can be augmented using computed label noise statistics. In 

this work, a Gaussian distribution was fit to the 𝑁 − 1 original UPDRS-III improvements as 

𝑦𝑡
0~ 𝒩(𝜇𝑁−1, 𝜎𝑁−1), with mean 𝜇𝑁−1 and standard deviation 𝜎𝑁−1. For each model with original 

features 𝑋𝑡
0, noise instances 𝜖𝑞 were drawn from the Gaussian distribution 𝒩(0, 𝑧𝜎𝑁−1), with 𝑧 =

1.96, and added to samples in the dataset 𝑦𝑡
0: 

{𝑋𝑡
𝑄, 𝑦𝑡

𝑄} = {𝑋𝑡
0, … , 𝑋𝑡

0, 𝑦𝑡
0, 𝑦𝑡

0 + [

𝜖1

⋮
𝜖1

] , 𝑦𝑡
0 + [

𝜖2

⋮
𝜖2

] , … , 𝑦𝑡
0 + [

𝜖𝑄

⋮
𝜖𝑄

]} (3) 

 

This newly augmented dataset of size (𝑄 + 1)(𝑁 − 1) with labels 𝑦𝑡
𝑄

= 𝒀 + 𝝐 =

[

𝑦0

⋮
𝑦𝑁−1

𝑦0

⋮
𝑦𝑁−1

⋯
⋱
⋯

𝑦0

⋮
𝑦𝑁−1

] + [
0
⋮
0

𝜖1

⋮
𝜖1

⋯
⋱
⋯

𝜖𝑄

⋮
𝜖𝑄

]. Notice the original labels are preserved in the first column. 

Here, the use of this augmentation was referred to as “label noise compensation.” For 

comparison, Lasso was trained with other data augmentation strategies including bootstrap, wild 

bootstrap24, and synthetic minority oversampling with Gaussian noise (SMOGN)25. 

 

2.6 Training 

Nested cross-validation was used to train and test models for each subject. In the outer 

loop, the model was trained with 𝑁 − 1 subjects and tested with one subject. For the inner loop, 

𝑘-fold cross-validation was performed.  

Recursive feature selection was used to reduce the optimal number of normalized features 

𝑚∗ from all ROI features 𝓅 = 6380, with step size Δ𝑚 = 1000 features, for input to Lasso. 
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Splits 𝑘 = {2,3,4,5}, selected features 𝑚, and regularization 𝜆 were chosen by minimizing 

training error. The minority class (𝑦𝑡𝑟𝑎𝑖𝑛 < 0.3) was resampled for stratified cross-validation.  

The dataset was augmented (𝑄 = 10) with label noise. Least angle regression solver 

weights (machine epsilon regularization 𝜖𝑐 = 0.1) were initialized at 0. The model was retrained 

over the entire (𝑁 − 1) dataset using 𝑚∗ features, split 𝑘∗, and regularization 𝜆∗ from the inner 

loop. Training was repeated with standard and noise compensated classifiers. 

For each patient, the prediction 𝑦̂ was a linear combination of features and weights,  𝑦̂ =

𝑋̂Φ𝑤∗. 

 

2.7 Evaluation 

Performance of LCT and Lasso regressors was evaluated using linear regression 

(Pearson correlation 𝑟, slope ℳ, intercept 𝑏, significance 𝑝) between the observed UPDRS-III 

improvement and predicted UPDRS-III improvement. Model accuracy was measured by 

correlation between the observed and predicted outcome. To assess augmentations over different 

initial noise states, models were evaluated under 10 additional seeds.  

Classifiers and regressors were evaluated with receiver operating characteristic (ROC) 

curves and analogous regression error characteristic (REC) curves, respectively. The frequency 

of features with nonzero weights were compared for models. The predictive power of a feature is 

measured by the number of nonzero weights 𝑤∗ across 𝑁 patient-specific models. Feature maps 

were compared in section 3.2 Predictive Features for non-responders (𝑦 < 0.3) and strong 

responders (𝑦 > 0.85), a threshold selected to balance with the number of non-responders. 

 

3. Results 

3.1 Model Performance 

Figure 2 illustrates model UPDRS-III improvement predictions. LCT estimates failed to 

correlate (𝑟 = 0.12, 𝑝 = 0.48, Figure 2a) with true outcome measured by Equation 1. QSM 

radiomic predictions correlated with improvements (𝑟𝑚𝑎𝑥 = 0.75, 𝑝 < 0.001) for noise 

compensated Lasso, Lasso, bootstrap Lasso, wild bootstrap Lasso, and SMOGN (Figures 2b-2f). 

The noise compensated Lasso model correctly classified all outcomes: “response” with 

improvement 𝑦 ≥ 0.3 in the first quadrant or “non-response” in the third quadrant in Figure 1b.  

Noise compensation also increases classifier ROC-AUC from 0.86 to 0.99 (Figure 3a). The 

regressor REC measures accuracy (vertical axis) of a regression estimator at allowable error 
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bound (horizontal axis) described by the absolute deviation |𝑦 − 𝑋Φ𝑤|. Regressor REC-AUC was 

0.82 for radiomics models and  0.73 for LCT (Figure 3b).  Note the radiomics models outperform 

the mean reference estimator, unlike LCT. 

When noise compensated, wild bootstrap, and SMOGN results were fit over the 

additional noise states, the median result over all fits was found and the regression correlation 

coefficient approached approximately 𝑟 ≈ 0.70 for each augmentation strategy. The multi-noise 

state model performances were (𝑟 = 0.73, ℳ = 1.15, 𝑏 =  −0.1, 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 0.97 for noise 

compensated Lasso, (𝑟 = 0.70, ℳ = 1.12, 𝑏 =  −0.07, 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 0.97) for SMOGN Lasso, and 

(𝑟 = 0.68, ℳ = 0.94, 𝑏 = 0.03, 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 0.95) for wild bootstrap Lasso. All correlations were 

highly significant (𝑝 < 0.0001). 

3.2 Predictive features 

The most predictive features for the considered ROIs were found on the QSM Coiflet 

wavelet decomposition of the STN and the gray level dependence matrix (GLDM) from the SN 

QSM (Figure 4). Specific features were SN large dependence high gray level emphasis (a 

measure of coarseness) and STN gray level size zone matrix (GLSZM) entropy shown in Figure 

5 for strong responders (𝑦 >  0.85) and non-responders (𝑦 <  0.3). SN coarseness was higher 

in non-responders (0.92) versus responders (0.65). Responder STN wavelet entropy was higher 

(0.61) versus non-responders (0.52). However, neither difference was significant (𝛼 = 0.05).  
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4. Discussion 

4.1 Summary 

All models that used QSM radiomics predict DBS UPDRS-III improvements better than 

LCT. Particularly, label noise compensated models using QSM radiomics performed the highest 

prediction accuracy. This QSM radiomic prediction is consistent with previous findings of ROI 

analyses including textual features on PD symptom burden13,26. This study is significant in that a 

numerical prediction of UPDRS-III improvement is offered from routinely acquired QSM used for 

presurgical targeting. 

 

4.2 Prior Works 

There are large uncertainties in LCT predictions20,27. LCT fails to predict levodopa-resistant 

symptoms such as tremor improvement28 and certain dyskinesias29. Additional inaccuracies in 

LCT result from dose dependence30 and disease duration3 while inducing burdensome withdrawal 

symptoms28.  

Magnetoencephalography31 and transcranial direct current stimulation (tDCS)32 both 

demonstrated correlation with DBS improvement, yet neither is routinely acquired in pre-surgical 

planning. MRI-based brain morphology and functional connectomes have been used to predict 

DBS motor outcome with limited accuracy33-37. QSM from routinely acquired MRI provides 

predictive features from deep gray nuclei iron distributions. SN texture features reflect 

degeneration of nigral neurons, reducing dopamine receptor stimulation where iron is a cofactor 

in dopamine synthesis38. Loss of GABAergic inhibition in the STN results in iron deposition 

encoded by texture features. Dysregulation of SN and STN iron disrupts locomotor activation and 

inhibition39, and subsequent motor symptoms measured by UPDRS-III. 

Of the compared augmentations, wild bootstrap is the most similar method to noise 

compensation. Though it improves non-responder estimates, modeling label variability in noise 

compensation is more effective. The Lasso model provides a significant and accurate prediction 

of DBS improvements using routinely acquired QSM under typical levodopa regimen. 

 

4.3 Model Interpretation 

The prediction is a weighted sum of relevant radiomic features in UPDRS-III 

improvements. Frequency of nonzero weights across patient-specific models indicate features 

important in outcome prediction. Comparison of responder and non-responder feature maps 

demonstrate distinction in both the STN and SN. As iron deposition in the SN is associated with 
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PD progression40, predictive feature SN coarseness, or prevalence of high susceptibility regions, 

suggests elevated iron, advanced tissue damage, or less viable circuitry. This finding is supported 

by DBS patient selection guidance that considers “very late stages” of PD to be an impediment to 

symptom improvement41. Given the reports of SN iron accumulation and disease progression in 

PD42, the association between the SN coarseness feature and non-responders may support this 

guidance. Also, loss of QSM STN gradient, captured in predictive wavelet entropy features21, 

correlates with loss of motor function26, which is consistent with the wavelet decomposition 

features identified in previous work14. These findings affirm both the observation that 

inhomogeneity of the STN iron distribution and elevated susceptibility in the SN iron distribution 

may be predictive of motor symptom severity and patient responsiveness to DBS. Yet, these 

features alone are insignificant between responders and non-responders, underscoring the need 

for multivariable models such as Lasso for patient selection. 

 

4.4 Limitations 

This work has several limitations. As a feasibility study, further validation is required. DBS 

eligibility requires LCT improvement, generating bias in the dataset against patients without LCT 

improvement who benefit from DBS and precluding healthy subjects entirely. Additionally, the 

sample size is small compared to the number of features. Finally, the Gaussian distribution is 

chosen for label noise modeling but may oversimplify the UPDRS-III interval scale. 

 

5. Conclusion 

In summary, QSM can provide predictive radiomic features to improve DBS patient 

selection and better outcome prediction over LCT, in addition to assisting in presurgical targeting. 

Alongside motor symptoms, non-motor predictions may be further explored (apathy scales, linked 

to microstructure43 and depression inventories). The patient population in this work featured STN-

DBS, but the ventral intermediate nucleus and globus pallidus pars interna are also well-visualized 

on QSM for pre-surgical targeting and should be considered in future studies44. Beyond deep gray 

nuclei, whole brain ROIs may be included45. Label noise distributions should be investigated to 

reflect multiple raters present in the clinical setting. 
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10. Figures 

Figure 1. Proposed pipeline with inputs QSM and ROIs. Features were extracted from 

the input QSM 𝜒 over each ROI (joint entropy feature map shown) and passed to a Lasso 

regression model after normalization, label noise compensation augmentation, and recursive 

feature selection. A total of 93 features were extracted over 17 image types available in 

PyRadiomics. Additionally, 14 shape features were extracted on the original image for a total 

of 1595 features per ROI. 
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Figure 2. Predicted (horizontal axis) UPDRS-III improvement and true outcomes (vertical axis) 

using predictors: a) LCT, b) Noise Compensated Lasso (proposed), c) Standard Lasso, d) 

Bootstrap Lasso, e) Wild Bootstrap Lasso, f) SMOGN Lasso. Blue points indicate a responsive 

surgical outcome (responder) while red points indicate a non-responsive surgical outcome (non-

responder). Note the noise compensated Lasso model correctly classifies all cases. 
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Figure 3. Comparison of classifiers with and without noise compensation (a) and regression 

estimators with various data augmentation during training (b). The ROC shows an improvement 

of Δ𝐴𝑈𝐶 = 0.13. The REC measures accuracy (vertical axis) of a regression estimator at 

allowable error bound (horizontal axis) described by the absolute deviation |𝑦 − 𝑋Φ𝑤|. Note the 

radiomics models outperform the mean reference estimator, unlike LCT. 
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Figure 4. Predictive radiomic features sorted by frequency in 𝑁 = 37 models. All models use the 

first feature, GLDM large dependence high gray level emphasis, which measures the 

coarseness of the substantia nigra. In the subthalamic nucleus, the wavelet GLZSM entropy is 

most predictive, which measures the heterogeneity of the susceptibility distribution. 
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Figure 5. QSM and normalized predictive feature maps or responders (first row) and non-

responders (second row) in the substantia nigra (left, a, GLDM large dependence high gray 

level emphasis, or coarseness) and subthalamic nucleus (right, b, wavelet GLZSM zone 

entropy). The increased gray level emphasis (a) and the decreased zone entropy (b) in non-

responders versus responders were consistent with the ROI feature trends in the Predictive 

features section of the Results. 
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