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Abstract 1 

Background and aims: Heart Failure with Preserved Ejection Fraction (HFpEF) accounts for 2 

approximately half of all heart failure cases, with high levels of morbidity and mortality.  However, 3 

most cases of HFpEF are undiagnosed as conventional risk scores underestimate risk in non-White 4 

populations.  Our aim was to develop and validate a diagnostic prediction model to detect 5 

undiagnosed HFpEF, AIM-HFpEF. 6 

Methods: We applied natural language processing (NLP) and machine learning methods to routinely 7 

collected electronic health record (EHR) data from a tertiary centre hospital trust in London, UK, to 8 

derive the AIM-HFpEF model. We then externally validated the model and performed benchmarking 9 

against existing HFpEF prediction models (H2FPEF and HFpEF-ABA) for diagnostic power in 10 

patients of non-white ethnicity and patients from areas of increased socioeconomic deprivation.   11 

Results: An XGBoost model combining demographic, clinical and echocardiogram data showed 12 

strong diagnostic performance in the derivation dataset (n=3170, AUC=0.88, [95% CI, 0.86-0.91]) 13 

and validation cohort (n=5383, AUC: 0.88 [95% CI, 0.87-0.89]).  Diagnostic performance was 14 

maintained in patients of non-White ethnicity (AUC=0.88 [95% CI, 0.84-0.93]) and patients from 15 

areas of high socioeconomic deprivation (AUC=0.89 [95% CI, 0.84-0.94]). and AIM-HFpEF 16 

performed favourably in comparison to H2FPEF and HFpEF-ABA models.  AIM-HFpEF model 17 

probabilities were associated with an increased risk of death, hospitalisation and stroke in the external 18 

validation cohort (P<0.001, P=0.01, P<0.001 respectively for highest versus middle tertile). 19 

Conclusion:  AIM-HFpEF represents a validated equitable diagnostic model for HFpEF, which can be 20 

embedded within an EHR to allow for fully automated HFpEF detection. 21 

 22 

Keywords: Heart Failure with Preserved Ejection Fraction; Prediction Model; Electronic Health 23 

Records  24 
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Introduction 1 

Heart Failure with Preserved Ejection Fraction (HFpEF) accounts for approximately half of all heart 2 

failure (HF) cases and is associated with significant healthcare costs, morbidity, and mortality.  Early 3 

diagnosis is important and has prognostic benefit 1.  However, despite the high prevalence of HFpEF, 4 

most cases remain undiagnosed 2 and therefore a high proportion of patients do not benefit from 5 

specialist cardiology care, evidence-based therapies, and eventually improved outcomes. 3,4 6 

Strategies have been developed to improve HFpEF detection, including the H2FPEF scoring system 5. 7 

The H2FPEF score is validated for the diagnosis of HFpEF, but requires an a priori suspicion of 8 

HFpEF. More recently, the HFpEF-ABA score, based on clinical features alone with no cardiac 9 

imaging features, has been developed as a screening tool to identify possible HFpEF cases and guide 10 

the need for specialist cardiac imaging and clinical evaluation 6. 11 

HFpEF is disproportionately under-diagnosed particularly in patients of non-white race and ethnicity 7.  12 

Indeed, Black and Asian patients with HFpEF have different patterns of comorbidity to White patients, 13 

including features used in current HFpEF diagnostic systems such as atrial fibrillation and body mass 14 

index.   15 

The widespread deployment of electronic health record (EHR) platforms provides the potential to 16 

enable access to a wide range of routinely collected clinical data in a fraction of the time taken to 17 

perform manual case record completion.  EHR-based diagnostic approaches lend themselves to 18 

automation, removing the need for clinician-initiated suspicion of disease and therefore potentially 19 

decreasing the risk of bias. Moreover, advances in artificial intelligence (AI) methods allow for the 20 

capture of both structured and unstructured data, including AI-based detection of clinical concepts 21 

from free text via natural language processing (NLP) 8-11 with potentially less data missingness in 22 

populations less engaged with health services. We have previously used these methods to detect 23 

undiagnosed HFpEF from the EHR, finding that less than 10% of all cases of HFpEF have a clinician-24 

assigned diagnosis, while the remaining 90% are undiagnosed. 2 25 
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The aim of this study was to develop and externally validate a prediction model for detecting HFpEF 1 

by applying artificial intelligence methods to routinely collected data from the EHR of two 2 

independent, ethnically diverse cohorts of HFpEF patients, including a representative distribution of 3 

cases of Confirmed and Undiagnosed HFpEF.  A further aim was to assess the performance of the 4 

prediction model across racial and ethnicity groups and in patients from socially deprived areas. 5 
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Methods 1 

Ethical Considerations  2 

This project operated under London South-East Research Ethics Committee approval (18/LO/2048) 3 

granted to the King’s Electronic Records Research Interface (KERRI) and London Dulwich Research 4 

Ethics Committee approval (19/LO/1957), which did not require written informed patient consent.  5 

The study complies with the Declaration of Helsinki.  Patients were consulted on the study via a 6 

dedicated patient and public involvement (PPI) meeting held during the study design phase. A formal 7 

protocol was not published and the study was not registered. 8 

Participating Centres 9 

King’s College Hospital NHS Foundation Trust (KCH) and Guy’s and St Thomas’ NHS Foundation 10 

Trust (GSTT) are two large, multi-site tertiary hospitals in London, UK, providing specialist 11 

cardiology services and a dedicated heart failure service open to referral by any physician.  12 

 
Figure 1. Schematic diagram of the study 

 13 

 14 
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Study Design and inclusion criteria 1 

At each participating centre, we established a registry comprising a retrospective anonymised 2 

database of adult patients with a clinical diagnosis of HF documented within the EHR between 2010-3 

2022. Figure 1 shows the schematic diagram of the study. Patients were included if they had two or 4 

more mentions of a “heart failure” (HF) diagnosis in the clinical text as determined by a well-5 

validated NLP pipeline 12-15.  Specifically, a random sample of 100 HFpEF patients identified by the 6 

NLP pipeline were manually validated for this study and 100% of them were true positive. Patients 7 

were included regardless of nature of clinical episode (inpatient or outpatient). Both structured and 8 

unstructured portions of the echocardiogram report were used to extract LVEF data of patients and 9 

other relevant echocardiographic parameters.  Patients with a clinical diagnosis of HF and LVEF 10 

≥50% were categorised into one of the following 2 groups: 11 

1. Confirmed HFpEF: Clinician-assigned diagnosis of HFpEF 12 

2. Undiagnosed HFpEF (meeting the ESC diagnostic criteria): Patients with HF, LVEF≥50%, 13 

and imaging/biochemical evidence of diastolic dysfunction meeting the ESC diagnostic 14 

criteria 16 but who have not received a HFpEF diagnosis. 15 

Patients were excluded if at any point they had an echocardiogram with LVEF <50%.  Patients with a 16 

clinical diagnosis of HF and LVEF≥50% on echocardiography, but not meeting ESC diagnostic 17 

criteria and who have not received a HFpEF diagnosis were excluded, as were patients with an 18 

alternative diagnosis (severe valvular heart disease, hypertrophic cardiomyopathy, restrictive 19 

cardiomyopathy, constrictive pericarditis, and cardiac amyloidosis).  Supplementary Table 1 20 

contains the SNOMED terms used in the classification of included and excluded patients. Patients 21 

needed to have the echocardiogram report within one year of clinical diagnosis of HF, otherwise they 22 

were excluded. 23 

At each site we also established a registry of non-cardiac dyspnoea patients to act as control groups.  24 

Patients in the control group needed (1) two or more mentions of dyspnoea in the clinical text as 25 

determined by NLP; (2) an echocardiogram report (LVEF≥50%) within one year of the dyspnoea 26 
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mentions; and (3) no mentions of HF diagnosis in the clinical text. Patients with severe valvular heart 1 

disease, hypertrophic cardiomyopathy, restrictive cardiomyopathy, constrictive pericarditis, or cardiac 2 

amyloidosis were also excluded from the control group. 3 

Prediction Model Development  4 

The dataset collected from KCH was used as the derivation cohort, with 80% of the data used for 5 

training and 20% for testing, while the GSTT dataset was used for external validation.  All model 6 

development and evaluation were performed using Python version 3.10.12. 7 

We derived prediction models using four different methods: Logistic Regression (LR), Support Vector 8 

Machine (SVM), Random Forest (RF) and XGBoost (XGB). The machine learning models were built 9 

and evaluated using the ‘scikit-learn’ (for LR, SVM and RF) and ‘xgboost’ (for XGB) python 10 

packages. Hyperparameter tuning for each model was performed through grid search and 10-fold 11 

cross-validation using the training dataset only. The ‘StandardScaler’ from ‘scikit-learn.preprocessing’ 12 

was applied to the data before model training for consistent scaling across echocardiograph parameter 13 

features for LR, SVM and RF models. Mean imputation was applied to the missing values for the 14 

three (LR, SVM and RF) machine learning models, missForest imputation was also tested and the 15 

correlation of the predicted probabilities from both methods were greater than 98%. XGB can handle 16 

scaling and missing values internally. Model evaluation was based on metrics including accuracy, 17 

precision, recall, F1 score, and AUC-ROC, calculated using functions from ‘scikit-learn.metrics’. The 18 

comparison of AUCs was performed using a python implementation of the DeLong test 17. We 19 

selected the model which had the best overall performance for the Results section while the 20 

performances for non-selected models are reported in Supplementary Table 2. 21 

Feature Engineering 22 

We aimed to produce a model based on the parameters included in the ESC criteria for diagnosing 23 

HFpEF. Features representing key demographic, echocardiographic, comorbid, and symptomatic 24 

factors commonly associated with HFpEF are used to construct the model and they are extracted from 25 

both structured and unstructured data. Features from structured data include age, sex, BMI, 26 
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 9

NTproBNP and echocardiographic parameters (E/e’, LA volume, LA volume indexed, IVSd, LVPWD, 1 

LVEDD, LV V1 max, LV V1 max PG, LV mass, LV mass indexed, and PASP), while comorbidities 2 

(diabetes mellitus type 1, diabetes mellitus type 2, ischemic heart disease, myocardial infarction, 3 

cerebrovascular accident, hypertensive disorder, transient ischemic attack, atrial fibrillation, 4 

pulmonary hypertension, kidney disease, and angina) and symptoms (dyspnoea at rest, chest pain, 5 

dizziness, and syncope) were extracted from unstructured clinical notes through natural language 6 

processing (NLP) using MedCAT 13 within the CogStack platform 18. Echocardiographic parameters 7 

included in the ESC criteria were prioritized in the model, while other parameters with more than 30% 8 

missingness were excluded. Comorbidities and symptoms are represented as binary features, with a 9 

positive value indicating the presence of the comorbidity or symptom before the first mention of HF 10 

(for the HFpEF group) or dyspnoea (for the control group) in the EHR while a negative value 11 

indicates the absence of the condition. Dyspnoea was excluded as a feature in the model since it was 12 

part of the inclusion criteria for control patients, resulting in 100% of the control group presenting 13 

with dyspnoea. The full model includes 30 features in total and can be executed automatically on the 14 

CogStack platform using routinely collected EHR data. 15 

A generalised linear model (GLM) from the ‘statsmodels’ package was used to simplify the full 16 

prediction model through feature selection using the KCH training dataset, retaining the top 10 17 

features ranked by significance based on their p-values. These selected features were then used to 18 

construct a simplified prediction model. In the simplified model, diabetes mellitus type 1 and type 2 19 

were combined into a single feature. The simplified model can be useful for manually inputting 20 

feature values in the form of an online application. 21 

Model explainability 22 

A Shapley Additive Explanations (SHAP) graph was plotted for the full model using the ‘shap’ python 23 

library (version 0.45.1) 19 to show the importance and values of each feature contributing to the 24 

prediction outcome. 25 

Comparison with H2FPEF and HFpEF-ABA 26 
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For comparison with the H2FPEF score, we followed the more precise version of the H2FPEF 1 

probability using the formula provided in Reddy et al. (2018) 5, specifically the online calculator from 2 

the supplemental material. The formula requires five key variables: BMI, atrial fibrillation (AF), 3 

pulmonary artery systolic pressure (PASP), age, and filling pressure (E/e’). We also compared the 4 

results with the point-based version of the H2FPEF score (which requires six variables with 5 

antihypertensive drugs added) in Supplementary Table 2. Patients with any missing values for these 6 

key variables were excluded from the comparison to ensure accurate probability estimation. 7 

For comparison with the HFpEF-ABA score, we used the formula provided in Reddy et al. (2024) 6, 8 

specifically from “Extended Data Table 4 Regression equations for clinical variable models”. This 9 

model requires three variables: age, BMI, and atrial fibrillation (AF). Similar to the comparison with 10 

H2FPEF score, patients with missing values for any of these three variables were excluded from the 11 

comparison. 12 

Subgroup analysis 13 

In the subgroup analysis, we examined two patient subgroups: (1) non-White individuals based on 14 

self-ascribed ethnicity 2 and (2) those with low socioeconomic status, as assessed by the English 15 

Indices of Multiple Deprivation 2019 (IMD). The IMD was determined using postcodes of the 16 

patients. Patients were classified as having low IMD if their postcodes fell within the most deprived 17 

quintiles according to the national index. The model’s performance was evaluated separately in the 18 

two subgroups to assess potential variations in predictive accuracy for HFpEF based on ethnicity and 19 

socioeconomic status. 20 

Prediction Model Output and Calibration 21 

The machine learning models output the probability of HFpEF for each patient. For consistency, the 22 

cut-off value for a positive HFpEF prediction is set at 0.5 when computing the accuracy, precision and 23 

recall values in Supplementary Table 2. The same threshold is used when comparing those metrics 24 

with the H2FPEF and HFpEF-ABA scores. In practice, the threshold can be adjusted according to 25 

individual treatment goals and preferences 6. Calibration of the prediction probabilities were assessed 26 
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graphically using calibration curves produced by the ’calibration_curve’ function in ‘scikit-learn’ 1 

package. 2 

 3 

Outcome data 4 

Mortality data were obtained from death notification letters in the EHR system and the master 5 

demographic patient indices of the hospitals (synchronised with NHS Spine for demographics). 6 

Hospitalisations were estimated by the number of discharge notifications in the EHR in the study 7 

timeframe i.e. 2010-2022.  Diagnoses of myocardial infarction and stroke were recorded as outcome 8 

data if they occurred after the first mention of HF (for the HFpEF group) or dyspnoea (for the control 9 

group) in the EHR.  10 
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Results 1 

We identified 2,220 HFpEF patients (231 [10%] confirmed HFpEF and 1,989 [90%] undiagnosed 2 

HFpEF) at KCH and 3,349 HFpEF patients (430 [13%] confirmed HFpEF and 2,919 [87%] 3 

undiagnosed HFpEF) at GSTT. There were 950 and 2,034 non-HF patients with dyspnoea at KCH and 4 

GSTT, respectively, for the control groups. Table 1 shows the baseline characteristics of the patients. 5 

We randomly divided the KCH patients into 80% for training (a total of 2,536 patients: 177 confirmed 6 

HFpEF, 1,599 undiagnosed HFpEF, and 760 control) and 20% for testing (a total of 634 patients: 54 7 

confirmed HFpEF, 390 undiagnosed HFpEF, and 190 control), stratified by HFpEF and non-HF 8 

groups. The GSTT patients were used for external validation. 9 

Among the four machine learning models: logistic regression (LR), random forest (RF), support 10 

vector machine (SVM), and XGBoost (XGB), the XGB model achieved the highest performance, 11 

with an AUC-ROC of 0.8910 (95% CI, 0.8665-0.9154) in the KCH testing cohort, outperforming the 12 

other models (LR:0.8204 [95% CI, 0.7868-0.8540], RF: 0.8472 [95% CI, 0.8161-0.8784], 13 

SVM:0.8386 [95% CI, 0.8063-0.8709]). Therefore, we focused on the XGBoost model for further 14 

analysis and validation. The full report of the performances of all the models is shown in 15 

Supplementary Table 2. 16 

 17 

 18 

 19 

 20 

 21 

 22 
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(b) 

 
(c) 

 

Figure 2. (a) SHAP graph for the XGB AIM-HFpEF full model, the y-axis is the list of features 
ranked by their importance with the most important feature at the top. The x-axis shows the SHAP 
values which indicate the impact of each feature on the model’s prediction. Positive SHAP values 
show to a tendency of positive HFpEF prediction. The colour reflects the values of the features (for 
continuous features: red represents higher values and blue lower values; for sex: red represents 
male and blue female; for binary features like comorbidities and symptoms: red represents positive 
and blue negative). (b) ROC curve of KCH testing cohort. (c) ROC curve of GSTT validation 
cohort. 
 1 

We employed SHAP analysis to understand the contribution of individual features to the model’s 2 

predictions from XGB as shown in Figure 2 (a).  The top contributing features include NTproBNP, 3 

age, PASP, LA volume and BMI. Age, PASP and BMI are also included in the H2FPEF formula but 4 

the XGB model has no prior information of this. 5 

Figure 2(b) and (c) shows the Receiver Operating Characteristic (ROC) curves for the XGB 6 

prediction model on the KCH testing dataset and GSTT validation dataset, respectively. The AUC for 7 

the GSTT validation dataset was 0.8934 (95% CI, 0.8852-0.9016) for the XGB model. 8 

 9 
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Simplified Model 1 

While the SHAP graph can help us to understand how the XGB model predicts the patients, in order 2 

to identify features with the strongest statistical relationship with the prediction outcome, a 3 

Generalized Linear Model (GLM) analysis was performed to select the top 10 features for a simplified 4 

model. Table 2 shows the results of the GLM with the top selected features and their coefficients and 5 

p-values associated with HFpEF prediction using the KCH training dataset. All the top 10 features 6 

have a p-value of less than 0.02 indicating that they are statistically significant predictors. 7 

Table 2. GLM selected features. 
Feature Coefficient P-Value 

Age at presentation 0.5640 <0.0001 

PASP 0.5713 <0.0001 

Sex -0.2801 <0.0001 

NT-proBNP 1.0217 <0.0001 

Atrial fibrillation 0.2816 0.0002 

LVEDD -0.3566 0.0024 

Transient ischemic attack 0.2012 0.0033 

Diabetes mellitus 0.1804 0.0046 

BMI 0.1790 0.0113 

LA volume 0.4207 0.0139 
 8 

A simplified version of the machine learning models was next built using the 10 features identified by 9 

GLM. The XGB model again performed the best (AUC-ROC of 0.8845 [95% CI, 0.8592-0.9097]) 10 

among the four models (LR: 0.8025 [95% CI, 0.7678-0.8373], RF: 0.8379 [95% CI, 0.8051-0.8707], 11 

SVM: 0.8205 [95% CI, 0.7852-0.8559]) for the KCH testing cohort. The AUC of the simplified 12 

model is slightly less than that in the full model (AUC of 0.8809 [95% CI, 0.8721-0.8897] for the 13 

GSTT validation cohort), but it is more usable in practice. The individual performances of the model 14 

on the confirmed HFpEF and undiagnosed HFpEF groups are shown in Supplementary Figure 1. 15 

The calibration curves for the two HFpEF groups in the GSTT validation cohort is shown in 16 

Supplementary Figure 2. The simplified XGB model is used for subsequent comparison and 17 

subgroup analysis.  18 

 19 
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Comparison with H2FPEF and HFpEF-ABA scores 1 

To evaluate the performance of the simplified XGB model in comparison with established clinical 2 

scoring systems, we compared it to the widely used H2FPEF score and the more recently published 3 

HFpEF-ABA score. In the KCH testing cohort (n=634), 182 (29%) patients had complete data for all 4 

five variables (age, BMI, PASP, E/e’, and AF) required to calculate the H2FPEF probability (AUC, 5 

AIM-HFpEF: 0.8751 [95% CI, 0.8225-0.9276], H2FPEF: 0.7873 [95% CI, 0.7075-0.8672], 6 

p=0.0064), while 483 (76%) patients had all three variables (age, BMI, and AF) necessary for the 7 

HFpEF-ABA score calculation (AUC, AIM-HFpEF: 0.8792 [95% CI, 0.8493-0.9091], HFpEF-ABA: 8 

0.7425 [95% CI, 0.6949-0.7901], p<0.0001). In the GSTT validation cohort (n=5,621), 967 (17%) 9 

patients had the full set of variables to compute the H2FPEF probability (AUC, AIM-HFpEF: 0.8746 10 

[95% CI, 0.8510-0.8982]), H2FPEF: 0.7805 [95% CI, 0.7505-0.8105], p<0.0001) and 3,735 (66%) 11 

patients had the variables required for the HFpEF-ABA score (AUC, AIM-HFpEF: 0.8788 [95% CI, 12 

0.8665-0.8912], HFpEF-ABA: 0.7624 [95% CI, 0.7462-0.7787], p<0.0001). Figure 3 (a) presents the 13 

ROC curves comparing the performance of the simplified XGB model, H2FPEF score, and HFpEF-14 

ABA score in the GSTT validation cohort. Comparison for the KCH testing cohort is shown in 15 

Supplementary Figure 3(a). 16 

 17 
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(a) Overall 

  
(b) Non-White patients 

  
(c) Low IMD patients 

  
Figure 3. Comparisons of Simplified XGB, H2FPEF and HFpEF-ABA in the GSTT validation 
cohort 
 1 

Subgroup analysis 2 

In GSTT validation cohort (n=5,621), there were 1,282 (23%) non-White patients and 1,136 (20%) 3 

patients from the lowest quintile of IMD. 4 
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Non-White patients: In the GSTT validation cohort, the number of patients included in the 1 

comparison for the H2FPEF and HFpEF-ABA scores were 249 (AUC, AIM-HFpEF: 0.8812 [95% CI, 2 

0.8365-0.9259], H2FPEF: 0.7681 [95% CI, 0.7071-0.8291], p<0.0001) and 923 (AUC, AIM-HFpEF: 3 

0.8744 [95% CI, 0.8477-0.9012], HFpEF-ABA: 0.7101 [95% CI, 0.6734-0.7468], p<0.0001), 4 

respectively. Figure 3 (b) shows the ROC curves for the GSTT validation cohort. Comparisons for 5 

the KCH testing cohort is shown in Supplementary Figure 3(b). 6 

Low IMD patients: In the GSTT validation cohort, the corresponding numbers were 195 (AUC, AIM-7 

HFpEF: 0.8914 [95% CI, 0.8423-0.9406], H2FPEF: 0.7793 [95% CI, 0.7127-0.8459], p=0.0003) and 8 

726 (AUC, AIM-HFpEF: 0.8829 [95% CI, 0.8557-0.9100], HFpEF-ABA: 0.7745 [95% CI, 0.7383-9 

0.8107], p<0.0001), respectively. Figure 3 (c) shows the ROC curves for the GSTT validation cohort. 10 

Comparisons for the KCH testing cohort is shown in Supplementary Figure 3(c). 11 

Outcome analysis 12 

In the outcome analysis, we selected patients with a predicted probability ≥90% of having HFpEF 13 

from the models and investigated their all-cause mortality over a 5-year period. In the KCH testing 14 

cohort, the AIM-HFpEF model identified 223 patients and 89 (40%) of them died within 5 years of 15 

HF diagnosis. H2FPEF identified 32 patients and 13 (33%) died within 5 years, while HFpEF-ABA 16 

identified 87 and 29 (33%) of them died. In the GSTT validation cohort, the numbers are AIM-HFpEF: 17 

2272 and 957 (42%); H2FPEF: 105 and 53 (50%); HFpEF-ABA: 606 and 193 (32%). Kaplan-Meier 18 

(KM) curves of the outcome analysis for all-cause mortality, MI and stroke are shown in 19 

Supplementary Figure 4. We also investigated whether the AIM-HFpEF model can predict outcome 20 

by dividing the GSTT validation cohort into three groups based on AIM-HFpEF predicted probability 21 

tertiles in Figure 4. In the overall cohort, AIM-HFpEF produced probabilities that were associated 22 

with an increased risk of death (p<0.0001), stroke (p=0.01) and hospitalisation (p<0.0001) when 23 

comparing the highest tertile to the middle tertile. In the undiagnosed cohort, AIM-HFpEF 24 

probabilities were associated with an increased risk of death (p<0.0001) and hospitalisation 25 

(p<0.0001). 26 
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(a) All-cause mortality 

  
(b) Stroke 

  
(c) MI 

  
(d) Hospitalisation within 5 years 
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Figure 4. Outcome of GSTT validation cohort divided into three groups based on AIM-
HFpEF predicted probability tertiles (left: overall cohort, right: undiagnosed HFpEF). 
 1 

 2 
 3 
  4 
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Discussion 1 

Using well-validated NLP and machine learning techniques applied to routinely collected data from 2 

the EHR, we have developed the AIM-HFpEF predictive model to accurately detect patients with 3 

HFpEF.    Importantly from a health equity point of view and to address algorithmic bias 20, it 4 

performs well in patients of non-White ethnicity and in patients from areas of higher socioeconomic 5 

deprivation. 6 

 7 

AIM-HFpEF is designed to be fully automated and integrated into EHR platforms, has been externally 8 

validated and performs favourably to current diagnostic and screening models.  It is anticipated that 9 

patients with a high likelihood of HFpEF as ascertained by the AIM-HFpEF model could be identified 10 

to the clinician by way of an electronic pop-up prompt within the EHR, with subsequent referral to a 11 

cardiologist for specialist assessment and initiation of treatment if appropriate. 12 

 13 

In constructing AIM-HFpEF, we have taken the novel step of including data from patients with 14 

undiagnosed HFpEF in the datasets.  We see this as a potential key approach in addressing the issue of 15 

underdiagnosis in HFpEF.  Conceptually, it can be considered that the characteristics of the 16 

undiagnosed HFpEF patients are the clinically most important predictors, not captured through 17 

analysis solely of diagnosed HFpEF.  One possible reason is that these patients not yet diagnosed have 18 

information missing in their structured data and only present in unstructured form.  Patients within the 19 

Confirmed HFpEF group have already been diagnosed and therefore are in less of a need of a 20 

predictive model, whereas the patients within the Undiagnosed HFpEF group are those who are being 21 

missed by current diagnostic methods.  22 

 23 

A key concern of AI-based disease prediction tools is the risk of potentiating any biases contained 24 

within the training dataset.  A key aim of this study was to ensure that AIM-HFpEF retained good 25 
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performance in diagnosing the significant minority of HFpEF patients of non-White race and ethnicity, 1 

to ensure alignment with future frameworks for assessing algorithmic bias 20.  We note that the 2 

derivation and validation populations of the HFPEF-ABA score were overwhelming of White 3 

ethnicity and therefore its generalisability to non-White populations has not previously been 4 

ascertained. Furthermore, several studies have identified a lack of generalisability in the H2FPEF 5 

score viz a viz its performance in non-White populations, likely at least in part due to the heavy 6 

weighting afforded to a diagnosis of AF in the H2FPEF score (only a small proportion of Black 7 

patients with HFpEF have a diagnosis of AF) 7.  Our results show that AIM-HFpEF performs better 8 

than H2FpEF and HFpEF-ABA in non-White patients in the UK, although we do note that both 9 

existing scores have reasonable performance in this patient group and our study can also be 10 

considered as additional external validation of these models. 11 

 12 

The predictors identified in the full model can be related to HFpEF either in terms of direct 13 

pathophysiological mechanisms or by their relation to clinical features associated with the syndrome.   14 

In contrast to HFpEF-ABA, in our GLM model we found several echocardiogram variables to be 15 

significant predictors of HFpEF and therefore our model includes a number of echocardiogram 16 

measures i.e. Pulmonary artery systolic pressure (PASP), left atrial volume and LVEDD.  The least 17 

explainable feature in our simplified model is TIA: we consider that it is likely to represent a 18 

composite of age, atrial fibrillation and cardiovascular disease, each of which are known to contribute 19 

to HFpEF pathophysiology. As expected, there is significant overlap between the variables included in 20 

AIM-HFpEF and those in other HFpEF predictive models.  A key difference is the inclusion of 21 

NTproBNP in our model. Given that not all patients will have NTproBNP results available, we have 22 

confirmed the acceptable model performance even when natriuretic peptide results are not available 23 

(Supplementary Document 1).  24 

 25 

Strengths and Limitations 26 
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A key strength of an EHR-based approach is that it lends itself to automation i.e. there is no 1 

requirement for an a priori suspicion of HFpEF as is the case with diagnostic scores such as H2FPEF 2 

and HFA-PEFF.  Conversely, the use of routinely collected, retrospective data does have key 3 

limitations, including non-standardised reporting of clinical features across the two participating 4 

centres, therefore requiring prospective validation.   5 

As discussed above, the inclusion of patients with undiagnosed HFpEF in both the derivation and 6 

validation datasets is a strength of our approach, potentially allowing the final model to be much more 7 

generalisable and less prone to bias compared to diagnostic models derived from smaller, more highly 8 

preselected groups of confirmed HFpEF patients. 9 

Another limitation of our model is the reliance on an advanced data extraction platform to employ 10 

NLP methods and retrieve clinical data from the EHR.  Hospital systems with informatics capabilities 11 

to employ our model are in the minority globally, particularly in low- and lower-middle income 12 

countries, despite the CogStack technology being low cost and light weight, and available open source.  13 

We have sought to mitigate this limitation by producing an alternative prediction model that does not 14 

require advanced EHR data analytic capabilities.  This Simplified Model could potentially be 15 

accessed via a smartphone app to enable clinicians to define the likelihood of a HFpEF diagnosis. 16 

A further limitation is that although both the derivation and validation cohorts come from separate 17 

large multi-hospital NHS trusts, they are both within the same large urban metropolis i.e. London. 18 

Further external validation in different settings is therefore required to ensure generalisability of our 19 

findings across broader geographic areas.  Further work will therefore involve assessment of wider 20 

generalisability both in larger UK datasets and in international datasets.  Additional future avenues 21 

including prospective validation will be a key step toward assessing the ability of AIM-HFpEF to 22 

affect patient outcomes through improved diagnosis via the model. Finally, incorporation of primary 23 

care data will be important to ensure accurate diagnosis in the unknown proportion of undiagnosed 24 

HFpEF patients without clinical data within secondary care. 25 

 26 
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 1 

 2 

Conclusion 3 

In this study we describe the use of AI methods to develop an automated, EHR based diagnostic 4 

prediction model for HFpEF.  The AIM-HFpEF model has been externally validated and is seen to 5 

perform favourably to existing diagnostic and screening models and is accurate in non-White patients 6 

and in those from areas of high socio-economic deprivation. 7 

 8 
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Figure Legends 1 

Figure 1. Schematic diagram of the study 2 

Figure 2. (a) SHAP graph for the XGB AIM-HFpEF full model, the y-axis is the list of features 3 

ranked by their importance with the most important feature at the top. The x-axis shows the SHAP 4 

values which indicate the impact of each feature on the model’s prediction. Positive SHAP values 5 

show to a tendency of positive HFpEF prediction. The colour reflects the values of the features (for 6 

continuous features: red represents higher values and blue lower values; for sex: red represents male 7 

and blue female; for binary features like comorbidities and symptoms: red represents positive and 8 

blue negative). (b) ROC curve of KCH testing cohort. (c) ROC curve of GSTT validation cohort. 9 

Figure 3. Comparisons of Simplified XGB, H2FPEF and HFpEF-ABA in the GSTT validation cohort 10 

Figure 4. Outcome of GSTT validation cohort divided into three groups based on AIM-HFpEF 11 

predicted probability tertiles (left: overall cohort, right: undiagnosed HFpEF). 12 

Supplementary Figure 1. (a) Performance of the AIM-HFpEF prediction model on Confirmed HFpEF 13 

(left) and Undiagnosed HFpEF (right) patients in GSTT validation cohort. (b) Comparison with 14 

H2FPEF. (c) Comparison with HFpEF-ABA. 15 

Supplementary Figure 2. Calibration curves of predicted probabilities produced by the AIM-HFpEF 16 

simplified model.  The undiagnosed HFpEF group is more calibrated, while the confirmed HFpEF 17 

group tends to have over-estimated probabilities when predicted probabilities are low. 18 

Supplementary Figure 3. ROC curves for comparisons with H2FPEF and HFpEF-ABA scores in KCH 19 

testing cohort, (a) Overall (b) Non-White patients (c) low IMD patients. 20 

Supplementary Figure 4. Kaplan-Meier (KM) curves for patients having a predicted probability ³ 90% 21 

of having HFpEF by the models with (a) all-cause mortality (b) MI and (c) Stroke within 5 years. 22 
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Table 1. Baseline characteristics (demographics, comorbidities, symptoms, echocardiograph parameters) of patients 

  KCH GSTT 

  

HFpEF (n=2220) non-HF 

Dyspnoea 

HFpEF (n=3349) non-HF 

Dyspnoea 

  

Confirmed 

HFpEF 

Undiagnosed 

HFpEF 

Control Confirmed 

HFpEF 

Undiagnosed 

HFpEF 

Control 

n 231 1989 950 430 2919 2034 

age, mean (SD) 78.8 (10.3) 71.1 (15.5) 57.5 (15.7) 78.1 (10.3) 70.7 (15.1) 56.5 (15.5) 

sex, n (%) Female 153 (66.2) 1176 (59.1) 438 (46.1) 257 (59.8) 1561 (53.5) 1080 (53.1) 

ethnicity, n (%) White 

  Black 

  Asian 

122 (52.8) 1136 (57.1) 531 (55.9) 249 (57.9) 1701 (58.3) 1170 (57.5) 

65 (28.1) 513 (25.8) 196 (20.6) 85 (19.8) 485 (16.6) 350 (17.2) 

17 (7.4) 117 (5.9) 57 (6.0) 29 (6.7) 99 (3.4) 138 (6.8) 

diabetes mellitus type 1, n (%) 26 (11.3) 171 (8.6) 30 (3.2) 49 (11.4) 214 (7.3) 123 (6.0) 

diabetes mellitus type 2, n (%) 85 (36.8) 493 (24.8) 118 (12.4) 230 (53.5) 962 (33.0) 449 (22.1) 

ischemic heart disease, n (%) 93 (40.3) 455 (22.9) 242 (25.5) 152 (35.3) 843 (28.9) 378 (18.6) 

myocardial infarction, n (%) 36 (15.6) 147 (7.4) 95 (10.0) 72 (16.7) 409 (14.0) 205 (10.1) 

cerebrovascular accident, n (%) 81 (35.1) 379 (19.1) 95 (10.0) 38 (8.8) 113 (3.9) 61 (3.0) 

hypertensive disorder, n (%) 214 (92.6) 1223 (61.5) 423 (44.5) 379 (88.1) 1932 (66.2) 998 (49.1) 

transient ischemic attack, n (%) 47 (20.3) 200 (10.1) 35 (3.7) 40 (9.3) 194 (6.6) 94 (4.6) 

atrial fibrillation, n (%) 119 (51.5) 409 (20.6) 60 (6.3) 247 (57.4) 1151 (39.4) 202 (9.9) 

pulmonary hypertension, n (%) 40 (17.3) 180 (9.0) 11 (1.2) 51 (11.9) 281 (9.6) 61 (3.0) 

kidney disease, n (%) 132 (57.1) 601 (30.2) 156 (16.4) 250 (58.1) 1184 (40.6) 783 (38.5) 

angina, n (%) 58 (25.1) 221 (11.1) 101 (10.6) 55 (12.8) 243 (8.3) 104 (5.1) 

dyspnoea, n (%) 212 (91.8) 1169 (58.8) 950 (100.0) 353 (82.1) 1784 (61.1) 2034 (100.0) 

dyspnoea at rest, n (%) 10 (4.3) 22 (1.1) NA 34 (7.9) 18 (0.6) 3 (0.1) 

chest pain, n (%) 141 (61.0) 651 (32.7) 413 (43.5) 171 (39.8) 787 (27.0) 643 (31.6) 

dizziness, n (%) 86 (37.2) 346 (17.4) 125 (13.2) 143 (33.3) 558 (19.1) 341 (16.8) 

presyncope, n (%) 5 (2.2) 27 (1.4) 8 (0.8) 8 (1.9) 44 (1.5) 23 (1.1) 

syncope, n (%) 33 (14.3) 120 (6.0) 49 (5.2) 49 (11.4) 209 (7.2) 156 (7.7) 
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NTproBNP (pg/ml), mean (SD) 2714.3 (4412.3) 3086.0 (5519.3) 111.4 (83.5) 3938.9 (7518.0) 3533.3 (6905.5) 122.6 (97.9) 

BMI, mean (SD) 30.6 (6.7) 29.2 (7.0) 28.0 (6.1) 31.3 (5.7) 28.8 (5.7) 28.0 (5.3) 

IVSd (mm), mean (SD) 1.2 (0.2) 1.2 (0.3) 1.1 (0.2) 1.2 (0.3) 1.2 (0.3) 1.1 (0.3) 

LVEDD (mm), mean (SD) 4.5 (0.6) 4.4 (0.6) 4.5 (0.6) 4.5 (0.7) 4.5 (0.7) 4.5 (0.6) 

LVEF (%), mean (SD) 59.8 (5.8) 60.5 (6.1) 60.1 (6.3) 59.7 (5.4) 59.3 (5.6) 60.6 (4.9) 

LVPWD (mm), mean (SD) 1.1 (0.2) 1.1 (0.2) 1.0 (0.2) 1.1 (0.2) 1.1 (0.2) 1.0 (0.2) 

E/e', mean (SD) 13.7 (6.0) 11.6 (5.9) 8.5 (3.3) 13.0 (6.1) 11.1 (5.3) 8.1 (3.8) 

LA volume (ml), mean (SD) 80.2 (34.3) 69.0 (38.4) 50.7 (19.3) 70.2 (40.1) 66.7 (38.9) 44.5 (24.0) 

LA volume indexed (ml/m2), mean 

(SD) 41.7 (14.7) 35.7 (17.8) 27.1 (8.9) 42.8 (22.0) 36.7 (16.1) 24.0 (12.5) 

LV mass (g), mean (SD) 191.4 (59.6) 185.5 (66.6) 167.2 (55.8) 188.7 (61.1) 190.1 (65.4) 163.6 (59.6) 

LV mass indexed (g/m2), mean (SD) 101.3 (28.4) 95.8 (33.4) 84.1 (24.2) 104.0 (31.5) 100.7 (29.7) 86.1 (27.9) 

PASP (mmHg), mean (SD) 31.6 (12.4) 32.5 (14.3) 23.2 (8.1) 33.1 (13.7) 32.0 (15.3) 23.5 (9.9) 

TR max vel (cm/s), mean (SD) 276.1 (52.3) 278.6 (60.2) 237.3 (40.5) 273.7 (55.5) 267.3 (64.9) 227.0 (50.2) 

H2FPEF, mean (SD) 5.8 (1.8) 4.3 (2.1) 2.2 (1.6) 4.5 (1.9) 3.5 (2.0) 2.2 (1.7) 

IMD, mean (SD) 4.4 (2.2) 4.4 (2.3) 4.7 (2.4) 3.9 (1.9) 4.6 (2.4) 4.7 (2.4) 
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Supplementary Figure 1 

(a) AIM-HFpEF simplified model on Confirmed HFpEF patients (AUC: 0.9586 [95% CI, 0.9474-
0.9699]) and Undiagnosed HFpEF patients (AUC: 0.8694 [95% CI, 0.8597- 0.8792]) 

  
(b) Comparison with H2FPEF in GSTT validation cohort. Left, AIM-HFpEF: 0.9534 [0.9141-
0.9927], H2FPEF: 0.8875 [0.8383-0.9368], p=0.0030. Right, AIM-HFpEF: 0.8637 [0.8378-
0.8895], H2FPEF: 0.7656 [0.7335-0.7978], p<0.001. 

  
(c) Comparison with HFpEF-ABA in GSTT validation cohort. Left, AIM-HFpEF: 0.9691 [0.9548-
0.9834], HFpEF-ABA: 0.8827 [0.8572-0.9082], p<0.0001. Right, AIM-HFpEF: 0.8654 [0.8516-
0.8793], HFpEF-ABA: 0.7446 [0.7270-0.7622], p<0.0001 

  

Supplementary Figure 1. (a) Performance of the AIM-HFpEF prediction model on Confirmed 
HFpEF (left) and Undiagnosed HFpEF (right) patients in GSTT validation cohort. (b) Comparison 
with H2FPEF. (c) Comparison with HFpEF-ABA. 
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Supplementary Figure 2 

 
Supplementary Figure 2. Calibration curves of predicted probabilities produced by 
the AIM-HFpEF simplified model.  The undiagnosed HFpEF group is more 
calibrated, while the confirmed HFpEF group tends to have over-estimated 
probabilities when predicted probabilities are low. 
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Supplementary Figure 3. 

(a) KCH testing cohort (Overall) 

  
(b) KCH testing cohort (Non-White patients)  In the KCH testing cohort, we compared the performance 
of the models in 74 non-White patients for the H2FPEF score (AUC, AIM-HFpEF: 0.8513 [95% CI, 
0.7561-0.9465], H2FPEF: 0.7899 [95% CI, 0.6774-0.9023], p=0.2179) and 159 patients for the HFpEF-
ABA score (AUC, AIM-HFpEF: 0.8613 [95% CI, 0.8041-0.9184], HFpEF-ABA: 0.7542 [95% CI, 
0.6725-0.8359], p=0.0036). 

  
(c) KCH testing cohort (Low IMD patients)  For the low IMD group, in the KCH testing cohort, we 
compared 44 patients using the H2FPEF score (AUC, AIM-HFpEF: 0.8308 [95% CI, 0.6429-1.0000], 
H2FPEF: 0.7538 [95% CI, 0.6080-0.8996], p=0.4628) and 93 patients using the HFpEF-ABA score 
(AUC, AIM-HFpEF: 0.8676 [95% CI, 0.7894-0.9457], HFpEF-ABA: 0.7426 [95% CI, 0.6245-0.8607], 
p=0.0245). 

  
Supplementary Figure 3. ROC curves for comparisons with H2FPEF and HFpEF-ABA scores in KCH 
testing cohort, (a) Overall (b) Non-White patients (c) Low IMD patients. 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 29, 2024. ; https://doi.org/10.1101/2024.12.24.24319603doi: medRxiv preprint 

https://doi.org/10.1101/2024.12.24.24319603
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 29, 2024. ; https://doi.org/10.1101/2024.12.24.24319603doi: medRxiv preprint 

https://doi.org/10.1101/2024.12.24.24319603
http://creativecommons.org/licenses/by-nc-nd/4.0/


Supplementary Figure 4 
 
(a) All-cause mortality within 5 years 

  
(b) MI within 5 years 

  
(c) Stroke within 5 years 

  
Supplementary Figure 4. Kaplan-Meier (KM) curves for patients having a predicted probability ³ 
90% of having HFpEF by the models with (a) all-cause mortality (b) MI and (c) Stroke within 5 
years.  
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Supplementary Table 1. SNOMED-CT terms used in the study for the inclusion and exclusion criteria. 
All child terms are included by default. Inclusion criteria include HF, HFpEF and Dyspnoea. 
Exclusion criteria include severe valvular heart disease, hypertrophic cardiomyopathy, restrictive 
cardiomyopathy, constrictive pericarditis, and cardiac amyloidosis 
 
Criteria SNOMED-CT Term ID 
Inclusion Heart failure (disorder) 84114007 

Heart failure with normal ejection fraction (disorder) 446221000 
Dyspnoea (finding) 267036007 

Exclusion Aortic valve stenosis (disorder)* 60573004 
Aortic valve regurgitation (disorder) * 60234000 
Mitral valve stenosis (disorder) * 79619009 
Mitral valve regurgitation (disorder) * 48724000 
Pulmonic valve stenosis (disorder) * 56786000 
Pulmonic valve regurgitation (disorder) * 91434003 
Hypertrophic cardiomyopathy (disorder) 233873004 
Senile cardiac amyloidosis (disorder) 16573007 
Restrictive cardiomyopathy (disorder) 415295002 
Constrictive pericarditis (disorder) 85598007 

 
* - the severe valvular heart disease patients are identified with the ‘severe’ keyword before the 
mentions of the SNOMED-CT terms. 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 29, 2024. ; https://doi.org/10.1101/2024.12.24.24319603doi: medRxiv preprint 

https://doi.org/10.1101/2024.12.24.24319603
http://creativecommons.org/licenses/by-nc-nd/4.0/


Supplementary Table 2. Performances of all machine learning models 
 
F – Full Model 
S – Simplified Model 
 
LR – Logistic Regression 
RF – Random Forest 
SVM – Support Vector Machine 
XGB – XGBoost 
 
H2FPEF-Point – Point-based H2FPEF score 
 
KCH Testing Cohort (n=634) 
Model Accuracy Precision  Recall F1-Score AUC [95% CI] 
F-LR 0.7760 0.8094 0.8896 0.8476 0.8204 [0.7868-0.8540] 
F-RF 0.7382 0.7473 0.9459 0.8350 0.8472 [0.8161-0.8784] 
F-SVM 0.7918 0.8250 0.8919 0.8571 0.8386 [0.8063-0.8709] 
F-XGB 0.8186 0.8600 0.8851 0.8724 0.8910 [0.8665-0.9154] 
S-LR 0.7539 0.7975 0.8694 0.8319 0.8025 [0.7678-0.8373] 
S-RF 0.7240 0.7307 0.9595 0.8296 0.8379 [0.8051-0.8707] 
S-SVM 0.7918 0.8223 0.8964 0.8578 0.8205 [0.7852-0.8559] 
S-XGB 0.8060 0.8607 0.8626 0.8616 0.8845 [0.8592-0.9097] 
 
KCH Testing Cohort – Comparison with H2FPEF (n=182) 
Model Accuracy Precision  Recall F1-Score AUC [95% CI] P-value 
F-LR 0.7935 0.8649 0.8767 0.8707 0.8398 [0.7764-0.9031] 0.0753 
F-RF 0.8043 0.8354 0.9384 0.8839 0.8600 [0.8060-0.9141] 0.0318 
F-SVM 0.7989 0.8658 0.8836 0.8746 0.8506 [0.7844-0.9168] 0.0447 
F-XGB 0.8261 0.8800 0.9041 0.8919 0.8756 [0.8245-0.9267] 0.0062 
S-LR 0.7935 0.8699 0.8699 0.8699 0.8327 [0.7684-0.8971] 0.0490 
S-RF 0.8043 0.8274 0.9521 0.8854 0.8634 [0.8034-0.9233] 0.0351 
S-SVM 0.8152 0.8636 0.9110 0.8867 0.8131 [0.7350-0.8912] 0.4362 
S-XGB 0.8315 0.8912 0.8973 0.8942 0.8751 [0.8225-0.9276] 0.0064 
H2FPEF 0.6848 0.9231 0.6575 0.7680 0.7873 [0.7075-0.8672] - 
H2FPEF-
Point 

0.8152 0.8544 0.9247 0.8882 0.7222 [0.6259-0.8184] 0.1663 

 
KCH Testing Cohort – Comparison with HFpEF-ABA (n=483) 
Model Accuracy Precision  Recall F1-Score AUC [95% CI] P-value 
F-LR 0.7734 0.8150 0.8837 0.8480 0.8206 [0.7821-0.8591] <0.0001 
F-RF 0.7443 0.7552 0.9506 0.8417 0.8454 [0.8096-0.8811] <0.0001 
F-SVM 0.7879 0.8288 0.8866 0.8567 0.8353 [0.7973-0.8732] <0.0001 
F-XGB 0.8170 0.8657 0.8808 0.8732 0.8873 [0.8587-0.9159] <0.0001 
S-LR 0.7588 0.8081 0.8692 0.8375 0.7983 [0.7573-0.8392] 0.0013 
S-RF 0.7297 0.7388 0.9622 0.8359 0.8275 [0.7880-0.8671] <0.0001 
S-SVM 0.7963 0.8254 0.9070 0.8643 0.8148 [0.7724-0.8572] 0.0007 
S-XGB 0.8046 0.8676 0.8576 0.8626 0.8792 [0.8493-0.9091] <0.0001 
HFpEF-ABA 0.7173 0.8230 0.7703 0.7958 0.7425 [0.6949-0.7901] - 
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KCH Testing Cohort – Non-White (n=202) 
Model Accuracy Precision  Recall F1-Score AUC [95% CI] 
F-LR 0.7824 0.8108 0.8955 0.8511 0.8327 [0.7715-0.8938] 
F-RF 0.7668 0.7633 0.9627 0.8515 0.8576 [0.8044-0.9108] 
F-SVM 0.7927 0.8264 0.8881 0.8561 0.8443 [0.7852-0.9034] 
F-XGB 0.8135 0.8451 0.8955 0.8696 0.8848 [0.8390-0.9305] 
S-LR 0.7513 0.7945 0.8657 0.8286 0.8034 [0.7397-0.8672] 
S-RF 0.7513 0.7529 0.9552 0.8421 0.8578 [0.8014-0.9143] 
S-SVM 0.7720 0.8041 0.8881 0.8440 0.8252 [0.7645-0.8859] 
S-XGB 0.7927 0.8406 0.8657 0.8529 0.8823 [0.8356-0.9290] 
 
KCH Testing Cohort – Non-White – Comparison with H2FPEF (n=74) 
Model Accuracy Precision  Recall F1-Score AUC [95% CI] P-value 
F-LR 0.7973 0.8909 0.8448 0.8673 0.8513 [0.7472-0.9554] 0.1586 
F-RF 0.8243 0.8571 0.9310 0.8926 0.8594 [0.7721-0.9467] 0.1175 
F-SVM 0.8108 0.9074 0.8448 0.8750 0.8524 [0.7477-0.9571] 0.1786 
F-XGB 0.8108 0.8793 0.8793 0.8793 0.8739 [0.7899-0.9580] 0.0614 
S-LR 0.7703 0.8727 0.8276 0.8496 0.8222 [0.7160-0.9284] 0.4025 
S-RF 0.8108 0.8438 0.9310 0.8852 0.8815 [0.7954-0.9676] 0.0559 
S-SVM 0.7703 0.8475 0.8621 0.8547 0.8060 [0.6980-0.9141] 0.7285 
S-XGB 0.8108 0.8929 0.8621 0.8772 0.8513 [0.7561-0.9465] 0.2179 
H2FPEF 0.6622 0.9459 0.6034 0.7368 0.7899 [0.6774-0.9023] - 
H2FPEF-
Point 0.7703 0.8154 0.9138 0.8618 0.6546 [0.4886-0.8207] 

0.1400 

 
KCH Testing Cohort – Non-White – Comparison with HFpEF-ABA (n=159) 
Model Accuracy Precision  Recall F1-Score AUC [95% CI] P-value 
F-LR 0.7707 0.8197 0.8772 0.8475 0.8027 [0.7268-0.8787] 0.2133 
F-RF 0.7707 0.7786 0.9561 0.8583 0.8355 [0.7721-0.8988] 0.0420 
F-SVM 0.7834 0.8390 0.8684 0.8534 0.8154 [0.7408-0.8900] 0.1153 
F-XGB 0.8089 0.8559 0.8860 0.8707 0.8694 [0.8142-0.9247] 0.0020 
S-LR 0.7580 0.8167 0.8596 0.8376 0.7752 [0.6976-0.8528] 0.5610 
S-RF 0.7580 0.7676 0.9561 0.8516 0.8308 [0.7610-0.9006] 0.0279 
S-SVM 0.7707 0.8095 0.8947 0.8500 0.7997 [0.7260-0.8734] 0.2027 
S-XGB 0.7834 0.8448 0.8596 0.8522 0.8613 [0.8041-0.9184] 0.0036 
HFpEF-ABA 0.7197 0.8571 0.7368 0.7925 0.7542 [0.6725-0.8359] - 
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KCH Testing Cohort – Low IMD (n=118) 
Model Accuracy Precision  Recall F1-Score AUC [95% CI] 
F-LR 0.7812 0.8447 0.8788 0.8614 0.8213 [0.7416-0.9010] 
F-RF 0.8125 0.8319 0.9495 0.8868 0.8467 [0.7745-0.9190] 
F-SVM 0.8047 0.8700 0.8788 0.8744 0.8746 [0.8151-0.9341] 
F-XGB 0.8438 0.899 0.8990 0.8990 0.9011 [0.8460-0.9562] 
S-LR 0.7656 0.8350 0.8687 0.8515 0.8001 [0.7177-0.8824] 
S-RF 0.7891 0.8000 0.9697 0.8767 0.8558 [0.7846-0.9270] 
S-SVM 0.7969 0.8763 0.8586 0.8673 0.8335 [0.7550-0.9120] 
S-XGB 0.8281 0.9053 0.8687 0.8866 0.8812 [0.8198-0.9427] 
 
KCH Testing Cohort – Low IMD – Comparison with H2FPEF (n=44) 
Model Accuracy Precision  Recall F1-Score AUC [95% CI] P-value 
F-LR 0.7727 0.9143 0.8205 0.8649 0.8359 [0.7065-0.9653] 0.3105 
F-RF 0.8409 0.8810 0.9487 0.9136 0.8077 [0.6738-0.9416] 0.5139 
F-SVM 0.7727 0.9143 0.8205 0.8649 0.8513 [0.7404-0.9622] 0.1805 
F-XGB 0.8409 0.9000 0.9231 0.9114 0.8615 [0.7282-0.9948] 0.2082 
S-LR 0.7955 0.9167 0.8462 0.8800 0.8513 [0.7320-0.9705] 0.1345 
S-RF 0.8636 0.8837 0.9744 0.9268 0.8923 [0.7955-0.9891] 0.0973 
S-SVM 0.7955 0.9167 0.8462 0.8800 0.7795 [0.6015-0.9575] 0.7758 
S-XGB 0.8636 0.9459 0.8974 0.9211 0.8308 [0.6429-1.0000] 0.4628 
H2FPEF 0.6818 1.0000 0.6410 0.7812 0.7538 [0.6080-0.8996] - 
H2FPEF-
Point 0.7955 0.9167 0.8462 0.8800 0.6821 [0.3958-0.9683] 

0.5871 

 
KCH Testing Cohort – Low IMD – Comparison with HFpEF-ABA (n=93) 
Model Accuracy Precision  Recall F1-Score AUC [95% CI] P-value 
F-LR 0.7660 0.8421 0.8649 0.8533 0.8034 [0.7023-0.9044] 0.3102 
F-RF 0.7979 0.8161 0.9595 0.8820 0.8007 [0.7034-0.8980] 0.2763 
F-SVM 0.7872 0.8553 0.8784 0.8667 0.8500 [0.7728-0.9272] 0.0319 
F-XGB 0.8404 0.8831 0.9189 0.9007 0.8892 [0.8185-0.9599] 0.0098 
S-LR 0.7660 0.8333 0.8784 0.8553 0.7682 [0.6585-0.8779] 0.5925 
S-RF 0.7979 0.8022 0.9865 0.8848 0.8324 [0.7381-0.9268] 0.0784 
S-SVM 0.7872 0.8462 0.8919 0.8684 0.8142 [0.7131-0.9152] 0.1978 
S-XGB 0.8298 0.8919 0.8919 0.8919 0.8676 [0.7894-0.9457] 0.0245 
HFpEF-ABA 0.7234 0.8636 0.7703 0.8143 0.7426 [0.6245-0.8607] - 
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GSTT Validation Cohort (n=5,621) 
Model Accuracy Precision  Recall F1-Score AUC [95% CI] 
F-LR 0.7251 0.7364 0.8692 0.7973 0.7989 [0.7870-0.8108] 
F-RF 0.7485 0.7340 0.9343 0.8221 0.8348 [0.8237-0.8459] 
F-SVM 0.7377 0.7481 0.8719 0.8053 0.8086 [0.7970-0.8203] 
F-XGB 0.7986 0.8112 0.8815 0.8449 0.8934 [0.8852-0.9016] 
S-LR 0.7269 0.7315 0.8865 0.8016 0.8053 [0.7936-0.8170] 
S-RF 0.7111 0.6998 0.9382 0.8016 0.8315 [0.8204-0.8426] 
S-SVM 0.7215 0.7288 0.8797 0.7972 0.7952 [0.7830-0.8073] 
S-XGB 0.7826 0.7986 0.8701 0.8328 0.8809 [0.8721-0.8897] 
 
GSTT Validation Cohort – Comparison with H2FPEF (n=967) 
Model Accuracy Precision  Recall F1-Score AUC [95% CI] P-value 
F-LR 0.6685 0.5817 0.8223 0.6814 0.7849 [0.7550-0.8149] 0.6847 
F-RF 0.6411 0.5493 0.9340 0.6917 0.8242 [0.7972-0.8513] 0.0001 
F-SVM 0.6783 0.5871 0.8553 0.6963 0.8016 [0.7726-0.8306] 0.0623 
F-XGB 0.7123 0.6105 0.9188 0.7335 0.8821 [0.8596-0.9047] <0.0001 
S-LR 0.6783 0.5890 0.8401 0.6925 0.7815 [0.7514-0.8117] 0.8918 
S-RF 0.5722 0.5020 0.9569 0.6585 0.8071 [0.7788-0.8355] 0.0199 
S-SVM 0.6422 0.5548 0.8604 0.6746 0.7821 [0.7515-0.8128] 0.8819 
S-XGB 0.6860 0.5876 0.9112 0.7144 0.8746 [0.8510-0.8982] <0.0001 
H2FPEF 0.7144 0.6692 0.6675 0.6684 0.7805 [0.7505-0.8105] - 
H2FPEF-
Point 0.6772 0.5980 0.7665 0.6719 0.7550 [0.7242-0.7858] 0.0072 
 
GSTT Validation Cohort – Comparison with HFpEF-ABA (n=3,735) 
Model Accuracy Precision  Recall F1-Score AUC [95% CI] P-value 
F-LR 0.6391 0.5440 0.8496 0.6633 0.7800 [0.7644-0.7956] 0.0119 
F-RF 0.6446 0.5442 0.9255 0.6854 0.8236 [0.8098-0.8375] <0.0001 
F-SVM 0.6597 0.5610 0.8585 0.6786 0.7949 [0.7798-0.8101] <0.0001 
F-XGB 0.7518 0.6511 0.8763 0.7471 0.8898 [0.8784-0.9012] <0.0001 
S-LR 0.6357 0.5399 0.8742 0.6675 0.7915 [0.7762-0.8068] <0.0001 
S-RF 0.5882 0.5042 0.9371 0.6557 0.8220 [0.8079-0.8362] <0.0001 
S-SVM 0.6340 0.5385 0.8742 0.6665 0.7886 [0.7731-0.8041] <0.0001 
S-XGB 0.7341 0.6331 0.8667 0.7317 0.8788 [0.8665-0.8912] <0.0001 
HFpEF-ABA 0.6623 0.5687 0.7977 0.6640 0.7624 [0.7462-0.7787] - 
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GSTT Validation Cohort – Non-White (n=1,182) 
Model Accuracy Precision  Recall F1-Score AUC [95% CI] 
F-LR 0.7125 0.7112 0.8610 0.7790 0.7956 [0.7703-0.8210] 
F-RF 0.7302 0.7019 0.9413 0.8042 0.8301 [0.8066-0.8536] 
F-SVM 0.7218 0.7201 0.8625 0.7849 0.8013 [0.7764-0.8261] 
F-XGB 0.7850 0.7814 0.8811 0.8283 0.8893 [0.8717-0.9070] 
S-LR 0.7015 0.7014 0.8582 0.7719 0.7794 [0.7534-0.8053] 
S-RF 0.6855 0.6694 0.9198 0.7749 0.8166 [0.7926-0.8406] 
S-SVM 0.6813 0.6878 0.8395 0.7561 0.7616 [0.7343-0.7888] 
S-XGB 0.7572 0.7615 0.8553 0.8057 0.8641 [0.8437-0.8844] 
 
GSTT Validation Cohort – Non-White – Comparison with H2FPEF (n=249) 
Model Accuracy Precision  Recall F1-Score AUC [95% CI] P-value 
F-LR 0.7018 0.6439 0.8019 0.7143 0.7877 [0.7284-0.8469] 0.4246 
F-RF 0.6798 0.5976 0.9528 0.7345 0.8304 [0.7786-0.8823] 0.0119 
F-SVM 0.7149 0.6414 0.8774 0.7410 0.8017 [0.7447-0.8588] 0.1444 
F-XGB 0.7412 0.6556 0.9340 0.7704 0.9041 [0.8666-0.9416] <0.0001 
S-LR 0.6886 0.6259 0.8208 0.7102 0.7674 [0.7062-0.8286] 0.9653 
S-RF 0.5965 0.5376 0.9434 0.6849 0.7856 [0.7265-0.8447] 0.4863 
S-SVM 0.6535 0.5931 0.8113 0.6853 0.7543 [0.6888-0.8199] 0.5595 
S-XGB 0.7018 0.6218 0.9151 0.7405 0.8812 [0.8365-0.9259] <0.0001 
H2FPEF 0.6974 0.7033 0.6038 0.6497 0.7681 [0.7071-0.8291] - 
H2FPEF-
Point 0.6711 0.6260 0.7264 0.6725 0.7394 [0.6760-0.8028] 0.1688 
 
GSTT Validation Cohort – Non-White – Comparison with HFpEF-ABA (n=923) 
Model Accuracy Precision  Recall F1-Score AUC [95% CI] P-value 
F-LR 0.6312 0.5326 0.8201 0.6458 0.7678 [0.7347-0.8010] 0.0003 
F-RF 0.6409 0.5350 0.9469 0.6837 0.8219 [0.7937-0.8500] <0.0001 
F-SVM 0.6590 0.5543 0.8584 0.6736 0.7898 [0.7581-0.8216] <0.0001 
F-XGB 0.7497 0.6387 0.8968 0.7460 0.8990 [0.8768-0.9212] <0.0001 
S-LR 0.6215 0.5243 0.8289 0.6423 0.7569 [0.7231-0.7907] <0.0001 
S-RF 0.5816 0.4944 0.9145 0.6418 0.8031 [0.7725-0.8337] <0.0001 
S-SVM 0.6058 0.5119 0.8230 0.6312 0.7494 [0.7146-0.7841] 0.0045 
S-XGB 0.7170 0.6096 0.8614 0.7139 0.8744 [0.8477-0.9012] <0.0001 
HFpEF-ABA 0.6518 0.5609 0.6932 0.6201 0.7101 [0.6734-0.7468] - 
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GSTT Validation Cohort – Low IMD (n=1,136) 
Model Accuracy Precision  Recall F1-Score AUC [95% CI] 
F-LR 0.7324 0.7528 0.8670 0.8059 0.8074 [0.7816-0.8332] 
F-RF 0.7736 0.7580 0.9499 0.8432 0.8513 [0.8276-0.8751] 
F-SVM 0.7544 0.7731 0.8727 0.8199 0.8202 [0.7949-0.8454] 
F-XGB 0.8130 0.8322 0.8870 0.8587 0.8969 [0.8789-0.9148] 
S-LR 0.7369 0.7470 0.8913 0.8128 0.8170 [0.7918-0.8422] 
S-RF 0.7287 0.7212 0.9399 0.8161 0.8376 [0.8137-0.8615] 
S-SVM 0.7324 0.7455 0.8841 0.8089 0.7993 [0.7724-0.8262] 
S-XGB 0.7837 0.8099 0.8655 0.8368 0.8811 [0.8615-0.9006] 
 
GSTT Validation Cohort – Low IMD – Comparison with H2FPEF (n=195) 
Model Accuracy Precision  Recall F1-Score AUC [95% CI] P-value 
F-LR 0.6902 0.6667 0.7609 0.7107 0.7811 [0.7133-0.8488] 0.9449 
F-RF 0.6957 0.6364 0.9130 0.7500 0.8355 [0.7751-0.8959] 0.0365 
F-SVM 0.7609 0.7264 0.8370 0.7778 0.8358 [0.7762-0.8954] 0.0323 
F-XGB 0.7935 0.7411 0.9022 0.8137 0.8982 [0.8505-0.9459] 0.0001 
S-LR 0.7120 0.6726 0.8261 0.7415 0.7883 [0.7222-0.8544] 0.6006 
S-RF 0.6359 0.5817 0.9674 0.7265 0.8159 [0.7545-0.8773] 0.1997 
S-SVM 0.6793 0.6364 0.8370 0.7230 0.8029 [0.7366-0.8693] 0.3887 
S-XGB 0.7337 0.6720 0.9130 0.7742 0.8914 [0.8423-0.9406] 0.0003 
H2FPEF 0.7065 0.7317 0.6522 0.6897 0.7793 [0.7127-0.8459] - 
H2FPEF-
Point 0.7065 0.6759 0.7935 0.7300 0.7517 [0.6819-0.8214] 0.1754 
 
GSTT Validation Cohort – Low IMD – Comparison with HFpEF-ABA (n=726) 
Model Accuracy Precision  Recall F1-Score AUC [95% CI] P-value 
F-LR 0.6388 0.5488 0.8374 0.6630 0.7761 [0.7399-0.8123] 0.9205 
F-RF 0.6608 0.5602 0.9343 0.7004 0.8365 [0.8064-0.8665] <0.0001 
F-SVM 0.6799 0.5828 0.8651 0.6964 0.8058 [0.7721-0.8395] 0.0459 
F-XGB 0.7709 0.6736 0.8927 0.7679 0.8993 [0.8749-0.9237] <0.0001 
S-LR 0.6344 0.5433 0.8685 0.6684 0.7949 [0.7599-0.8298] 0.0832 
S-RF 0.6050 0.5189 0.9481 0.6707 0.8240 [0.7927-0.8552] 0.0013 
S-SVM 0.6358 0.5443 0.8720 0.6702 0.7871 [0.7518-0.8224] 0.3572 
S-XGB 0.7342 0.6378 0.8651 0.7342 0.8829 [0.8557-0.9100] <0.0001 
HFpEF-ABA 0.6711 0.5799 0.8166 0.6782 0.7745 - 
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