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Abstract 24 

Biological aging is marked by a decline in resilience at the cellular and systemic levels, driving an 25 

exponential increase in mortality risk. Here, we evaluate several clinical and epigenetic clocks for their 26 

ability to predict mortality, demonstrating that clocks trained on survival and functional aging 27 

outperform those trained on chronological age. We present an enhanced clinical clock that predicts 28 

mortality more accurately and provides actionable insights for guiding personalized interventions. 29 

These findings highlight the potential of mortality-predicting clocks to inform clinical decision-making 30 

and promote strategies for healthy longevity.  31 
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Main 32 

Biological aging is characterized by the progressive decline in intrinsic biological resilience that is 33 

associated with an exponential increase in mortality, expressed in the demographic “Gompertz 34 

mortality law”1. Not all humans age at the same rate since genetics, lifestyle and stochastic factors 35 

can affect future mortality and morbidity trajectories. Consequently, individual true biological age (BA) 36 

is not identical to calendar or chronological age (CA). The true BA of an individual can be uniquely 37 

defined as the age at which subjects of a reference cohort have the same risk of age-dependent 38 

disease and all-cause mortality as the subject in question. Tools to accurately track changes in true 39 

BA are essential for the development and validation of novel life- and healthspan-optimizing diet, 40 

lifestyle, supplement and drug interventions.  41 

 42 

Biological aging “clocks” are computational tools that estimate individual true BA based on 43 

demographic, clinical, and/or molecular data. CA itself is widely used for both clinical prognostication 44 

and decision-making, and can be viewed as a first order approximation of true BA. The ideal BA clock 45 

should predict individual Gompertz mortality risk with higher accuracy than CA. Some aging clocks, 46 

including most clinical clocks, explicitly include CA as a covariate, using biological features to estimate 47 

a correction factor aimed at providing a better estimate of true BA. CA in this case is used as a proxy 48 

for effects and mechanisms, such as entropic damage, not captured by the clock itself. Of course, the 49 

ideal clock would include all relevant processes, wherein the model would assign zero or negligible 50 

weight to CA. 51 

 52 

Aging clocks are generalizations of current clinical risk markers that predict disease-specific morbidity 53 

and, in some cases, mortality. Aging clocks should similarly enable early detection of hidden or 54 

subclinical diseases, surpassing the capabilities of diagnostics by identifying disease processes years 55 

or decades before overt disease is present. Secondly, to inform risk-to-benefit estimates (clinical 56 

equipoise), aging clocks should capture all-cause mortality holistically, providing value beyond organ 57 

or disease-specific risks. Thirdly, aging clocks must be sensitive to individual variations in biological 58 

resilience. Finally, aging clocks should provide tools for mechanistic interpretation and provide 59 

actionable insights, facilitating targeted interventions. To date, none of the existing clocks meet all 60 

these criteria.  61 
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 62 

To evaluate the performance of aging clocks, we can compare them to a hypothetical “ideal” clock, 63 

which we term “CrystalAge”. This optimal clock would predict disease-specific and all-cause mortality 64 

at the individual level with near-perfect accuracy, essentially forecasting an individual’s date of death 65 

(Fig. 1a and d). While practically impossible, in retrospective studies, we can determine the 66 

theoretically optimal performance of CrystalAge and use it as a benchmark to evaluate the 67 

performance of existing aging clocks. 68 
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 69 
Fig. 1: LinAge2 predicts 20-year all-cause mortality and tracks with healthspan markers. a-c, 70 
Kaplan-Meier survival curves showing 20-year survival in the 65-74 CA bin (n=631). For each clock, 71 
subjects were stratified by selecting the lowest (best, solid line) and highest (worst, dotted line) 25% 72 
quartiles for BA. Clocks within the same quartile were compared using log-rank tests with Benjamini-73 
Hochberg correction. Areas shaded indicate 95% error bands for lines of the same color. b, 74 
Compared to ChronAge, use of LinAge2 BA results in a significant survival difference for the lowest 75 
25% BA quartile (P=6.16E-04), but not for the highest 25% quartile (P=0.07). PhenoAge Clinical did 76 
not significantly outperform ChronAge in predicting survival in this age bin. c, LinAge2 significantly 77 
outperformed DunedinPoAm (P=1.09E-02) and PhenoAge DNAm (P=1.37E-03) in the lowest 25% BA 78 
quartile, but not GrimAge2 (P=0.22). In the highest 25% quartile, while LinAge2 significantly 79 
outperformed PhenoAge DNAm (P=0.03), the differences between LinAge2 and DunedinPoAm 80 
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(P=0.11) and GrimAge2 (P=0.58) did not reach statistical significance. e, ROC analysis revealed that 81 
LinAge2 (area under the curve (AUC)=0.8684) was significantly more informative than PhenoAge 82 
Clinical (AUC=0.8479, P=6.35E-05) and ChronAge (AUC=0.8288, P=3.16E-10) in predicting future 83 
mortality (n=2,036). LinAge2 performed similarly to LinAge (AUC=0.8647). f, LinAge2 also 84 
outperformed PhenoAge DNAm (AUC=0.7859, P=4.44E-07) and GrimAge2 (AUC=0.8233, P=0.02) in 85 
predicting 20-year mortality (n=1,065). Although GrimAge2 outperformed ChronAge (AUC=0.7933, 86 
P=2.74E-03) in predicting 20-year mortality, PhenoAge DNAm did not (P=0.47). a,d, HorvathAge, 87 
HannumAge, and ChronAge did not significantly differ in predicting mortality risk (AUCs=0.7776, 88 
0.7978 and 0.7933, respectively, n=1,065). ROC curves were compared using DeLong’s test. 89 
a,b,d,e,f, CrystalAge, a theoretical perfect clock shown for reference, accurately identifies individuals 90 
at risk of dying (AUC=1), whereas RandomAge adds random gaussian noise of +10 years to CA. g-k, 91 
Violin plots for each clock categorized into low (biologically younger/best 25% quartile) and high 92 
(biologically older/worst 25% quartile) groups plotted against healthspan markers: cognitive scores 93 
(digit symbol substitution test), gait speed, ability to work, and ability to perform all instrumental and 94 
basic activities of daily living (iADLs and bADLs). Groups (BA high versus low) were compared using 95 
two-sided t-tests. Median value, lower (25th) and upper (75th) percentiles are indicated. Lines extend 96 
to +1.5 times interquartile range, with points outside this range drawn individually. The violin shape 97 
indicates the probability density function. yo, years old. HA, HorvathAge. LA2, LinAge2. GA2, 98 
GrimAge2. DPA, DunedinPoAm. 99 
 100 

Taking inspiration from Levine’s PhenoAge clinical clock2, we recently developed and validated clinical 101 

aging clocks (PCAge, LinAge) based on linear dimensionality reduction by matrix factorization 102 

(singular value decomposition) and demonstrated them to be highly predictive in terms of future 103 

disease-specific and all-cause mortality3. These clocks have since been applied in a range of clinical 104 

settings and, taking advantage of user feedback, we have implemented several improvements, 105 

creating an updated version of these clocks (LinAge2). Like LinAge, we trained LinAge2 in the 106 

National Health and Nutrition Examination Survey (NHANES) IV 1999-2000 wave before testing it in 107 

the 2001-2002 wave. LinAge2 further reduces the number of rarely measured parameters and 108 

emphasizes interpretability. For a detailed description of LinAge2's features and construction, refer to 109 

Methods.  110 

 111 

Many aging clocks have been developed, with epigenetic or DNA methylation (DNAm) clocks most 112 

widely recognized and well-established. Several epigenetic clocks have been commercially licensed 113 

for applications, including estimating CA (HorvathAge4, HannumAge5), optimizing life insurance 114 

policies (PhenoAge DNAm6, GrimAge7), and monitoring the rate of aging (DunedinPoAm8)9. Recently, 115 

a dataset of pre-calculated epigenetic clock ages has been published for the NHANES 1999-2002 116 

waves, permitting direct comparison of the predictive power of CA, the original LinAge, LinAge2 and 117 

PhenoAge clinical clocks, and the HorvathAge, HannumAge, PhenoAge DNAm, GrimAge210 and 118 

DunedinPoAm epigenetic clocks. 119 

 120 
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To compare efficacy in predicting mortality, we performed survival and receiver operating 121 

characteristic (ROC) analyses on 20- and 10-year mortality in the NHANES 2001-2002 test cohort. 122 

Compared to CA, LinAge2 demonstrated significant survival differences across all age bins, whereas 123 

PhenoAge Clinical did not (Fig. 1b, Extended Data Fig. 1b and e). LinAge2 performed similarly to 124 

LinAge and demonstrated superior predictive power for future mortality compared to PhenoAge 125 

Clinical and CA (Fig. 1e and Extended Data Fig. 2b). Surprisingly, LinAge2 also outperformed 126 

PhenoAge DNAm and DunedinPoAm in predicting age-specific survival differences (Fig. 1c, Extended 127 

Data Fig. 1c and f) and future mortality (Fig. 1f and Extended Data Fig. 2c). In contrast, PhenoAge 128 

DNAm, HorvathAge, and HannumAge did not significantly differ from CA in predicting future mortality 129 

(Fig. 1a, d and f, Extended Data Fig. 1a and d, and Extended Data Fig. 2a and c). LinAge2 and 130 

GrimAge2 performed similarly in predicting future mortality (Fig. 1f and Extended Data Fig. 2c) and 131 

survival across all age bins (Fig. 1c, Extended Data Fig. 1c and f). 132 

 133 

While mortality prediction is an important function of aging clocks, it is important to evaluate if clock 134 

ages are similarly predictive of functional status and healthspan. We tested this for the same clinical 135 

and epigenetic clocks by comparing markers of functional and health status in individuals selected by 136 

each clock to be in the lowest 25% BA quartile (biologically younger, low) with those in the highest 137 

25% quartile (biologically older, high). Our analysis revealed that LinAge2 low was associated with 138 

superior healthspan markers, including higher cognitive scores, faster gait speed, ability to work, and 139 

performance of all instrumental and basic activities of daily living (iADLs and bADLs) (Fig. 1g-k). 140 

Conversely, individuals in the LinAge2 high group had poorer healthspan, with statistically significant 141 

differences between the two groups across all markers (Fig. 1g-k). Similar trends were observed for 142 

GrimAge2 and DunedinPoAm, with statistically significant differences between the low and high 143 

groups across most healthspan markers, except for the ability to perform all bADLs (Fig. 1g-k and 144 

Extended Data Fig. 3). In contrast, no statistically significant differences were found between 145 

HorvathAge low and HorvathAge high across healthspan markers (Fig. 1g-k). Our findings on 146 

healthspan markers and mortality, for HorvathAge, HannumAge, PhenoAge DNAm and GrimAge2, 147 

corroborate similar findings for 10-year survival in 490 subjects of the Irish Longitudinal Study on 148 

Aging11. 149 

  150 
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A significant drawback of many existing aging clocks is that they lack interpretability and actionable 151 

insights, making it challenging to develop targeted interventions. However, one key benefit of clinical 152 

clocks is that they are built from parameters directly related to the underlying disease mechanisms, 153 

enabling easier interpretation of clock residuals and providing actionable insights into disease 154 

pathophysiology. Individual age-associated principal components (PCs) identify clusters of features 155 

that change in a coordinated manner during aging. Analyzing individual PCs can provide valuable 156 

insights into the underlying patterns and trajectories of aging-related changes. Using heatmaps, we 157 

visualized the predictive power of individual PCs relative to clinical outcomes, including sex-specific 158 

causes of death and chronic diseases (Fig. 2). Supplementary Table 5 provides detailed insights into 159 

the interpretation of each PC, including associations with causes of death, chronic diseases, lifestyle 160 

factors, and potential aging mechanisms, as well as suggested interventions to optimize each PC and 161 

lower BA. 162 
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 163 
Fig. 2: Heatmaps illustrating the associations between clinical outcomes and PCs analyzed 164 
using multivariate logistic regression. Associations of PCs with specific causes of death at a-b, 10-165 
20 year and c-d, 0-5 year follow-up for male and females, respectively. Strength of association (odds 166 
ratio) is represented using a red color scale. PCs that are strongly positively associated with a specific 167 
cause of death are bright red. For cause of death, negative associations were truncated by setting 168 
their values to zero (i.e. no harm). e-f, Association of PCs with specific chronic diseases, and 169 
measures of lifestyle and socioeconomic status. Strength of association is represented using a blue-170 
red scale ranging from -1 (blue, negative association) to 2 (red, positive association). PCs that are 171 
strongly positively associated (positive risk ratios) with a specific disease are bright red, whereas PCs 172 
that are strongly negatively associated (negative risk ratios) with a specific disease are bright blue.  173 
 174 

Accurately predicting patient outcomes and allocating healthcare resources is a significant challenge 175 

in clinical practice12. Currently, clinicians rely heavily on CA to make these decisions. However, here 176 
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we show that mortality-predicting clocks, such as LinAge2 and GrimAge2, outperform CA in predicting 177 

mortality risk across timeframes, ranging from 2-20 years (Fig. 1, Extended Data Fig. 4). Moreover, 178 

clinical clocks can also predict specific causes of death within a 5-year window (Fig. 2c and d). This 179 

illustrates that clock-based BAs are more accurate and informative estimates of true BA than CA itself. 180 

By providing a more precise metric of biological status than CA alone, BA can enable clinicians to 181 

better support patients and their caregivers in navigating healthcare choices, including end-of-life 182 

care. 183 

 184 

Overall, our analysis reveals that, regardless of feature space (methylation or clinical), aging clocks 185 

trained to predict mortality or functional aging outcomes provide more predictive value in terms of 186 

clinical decision-making. Surprisingly, clinical aging clocks still outperform several prominent mortality-187 

predicting and functional epigenetic clocks, including PhenoAge DNAm and DunedinPoAm, in 188 

predicting future mortality. A key advantage of LinAge2 lies in its interpretability. Because principal 189 

component analysis is a linear matrix factorization technique, the resulting model is easier to interpret 190 

than nonlinear alternatives13. Latent variables based on linear dimensionality reduction (PCs), 191 

especially those based on clinical parameters, are comparatively easy to understand and interpret, 192 

making them more actionable. This enables clinical aging clocks like LinAge2 to detect hidden or 193 

subclinical diseases and inform primordial prevention strategies. By identifying individuals at high risk 194 

of developing specific diseases, healthcare providers can implement targeted interventions early and 195 

proactively. By casting specific risk in terms of BA acceleration, aging clocks can significantly increase 196 

compliance and adherence with specific health recommendations14. For example, male smokers with 197 

high PC5M values in LinAge2 are at increased risk of death from chronic lung disease and should be 198 

screened and advised to quit smoking (Fig. 2 and Supplementary Table 5). 199 

 200 

All current aging clocks, regardless of feature space (e.g. clinical, methylation, proteomics, etc.) and 201 

target (mortality, functional outcomes, disease, or CA) share significant limitations. Most importantly, 202 

many current clocks employ linear techniques (e.g. principal component analysis/singular value 203 

decomposition, regression-based predictions), which limit their ability to distinguish between aging 204 

signatures and those of age-dependent diseases, and to learn U-shape response patterns. Current 205 

clocks therefore inherently conflate intrinsic biological aging with disease-specific signatures (hidden 206 
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sickness, primordial disease signatures). Nonlinear approaches including generative artificial 207 

intelligence and artificial neural networks are being investigated and could offer improved models, but 208 

their increased complexity pose a significant challenge for interpretation15,16. Next generation clocks 209 

will need to differentiate between disease signatures and intrinsic aging, and quantify intrinsic 210 

biological resilience. Further theoretical work will be required to deconvolute these disease-centric 211 

signatures from determinants of intrinsic resilience and entropic aging17-19. Advancing next generation 212 

clocks is crucial to equip healthcare providers with the essential tools needed to make informed 213 

decisions regarding targeted interventions that support healthy longevity in populations where 214 

healthcare needs are increasingly dominated by aging.  215 
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Methods 216 

Motivation for enhancing LinAge2 217 

The original PCAge and LinAge3 both utilized some parameters that are not routinely collected. 218 

LinAge has been utilized by several clinics worldwide, and we have received informal feedback 219 

regarding its use. Common suggestions for enhancing the clock include: (i) improving handling of 220 

outliers and threshold effects, (ii) further refining the clinical parameters, especially removing serum 221 

fibrinogen due to the need for a specialized sodium citrate tube, (iii) providing additional tools to 222 

improve the interpretability of PCs, and (iv) providing specific strategies to optimize each PC to lower 223 

BA. PCs can also be sensitive to outliers, thresholding and batch effects. We developed LinAge2 in 224 

response to these concerns. 225 

 226 

We followed the same workflow, as previously described3, to construct LinAge2 but with several 227 

modifications. To enhance LinAge2, we refined the clinical parameters by reducing the total number to 228 

60, removing serum fibrinogen (Supplementary Table 2). We also addressed outliers and thresholding 229 

by capping outliers at six standard deviations and log-transforming additional parameters 230 

(Supplementary Table 2). Batch effects were mitigated through z-score normalization by median and 231 

median absolute deviation to a younger, generally healthy cohort (age 40-50 years), separately for 232 

males and females (Supplementary Table 2), generating sex-specific PCs. The loadings for male and 233 

female PCs are provided in Supplementary Table 3, and sex-specific weights of the Cox proportional 234 

hazards models are listed in Supplementary Table 4.  235 

 236 

A parametrized version of LinAge2 is provided as previously described3 (Supplementary Table 2). The 237 

baseline characteristics of the study participants are listed in Supplementary Table 1.  238 

 239 

PhenoAge Clinical and epigenetic clocks 240 

PhenoAge Clinical was implemented using the equation from the original publication. The dataset of 241 

pre-calculated epigenetic clock ages published for the NHANES 1999-2002 waves were obtained 242 

from https://wwwn.cdc.gov/nchs/nhanes/dnam/ and analyzed. 243 

 244 
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Construction of healthspan markers 245 

The digit symbol substitution test score (NHANES variable ‘CFDRIGHT’) was used as a cognitive 246 

measure. Gait speeds were obtained by taking the total distance walked (20 feet or 6.096 meters) 247 

divided by the time taken (NHANES variable ‘MSXWTIME’). Differences in cognitive scores and gait 248 

speeds were calculated as the percent difference between a control group (middle 50% of all 249 

subjects), for younger (best 25% quartile) and older (worst 25% quartile) groups. The ability to work 250 

was established using the NHANES variable ‘PFQ048’. The ability to perform all instrumental 251 

activities of daily living (iADLs) was a combination of the NHANES variables ‘PFQ060A’, ‘PFQ060F’, 252 

‘PFQ060G’, ‘PFQ060Q’, PFQ060R’ and ‘PFQ060S’, while the ability to perform all basic activities of 253 

daily living (bADLs) was a combination of the NHANES variables ‘PFQ060B’, ‘PFQ060C’, ‘PFQ060H’, 254 

‘PFQ060I’, ‘PFQ060J’, ‘PFQ060K’ and ‘PFQ060L’. Participants had to have either no difficulty or 255 

some difficulty in all the variables to be deemed able to perform all iADLs or all bADLs.  256 

 257 

Heatmap analysis 258 

Using the ‘nnet’20 (version 7.3-19) R package, heatmaps were generated to evaluate the predictive 259 

values for PCs included in LinAge2. For each parameter, we attempted to predict status 260 

(diseased/compromised or not) using multivariate logistic regression with the clock PCs as covariates. 261 

PCs that received a statistically insignificant (P>0.05) weight in the logistic regression model were 262 

assigned zero weights (white). The remaining PCs (P<0.05) were assigned color values according to 263 

their weight in the model (see Fig. 2f legend for color mapping). 264 

 265 

Statistics and reproducibility 266 

For the NHANES IV 1999-2002 waves, we excluded: participants top-coded at age 85 years, as we 267 

could not ascertain the exact CAs of these adults, and participants who died from accidental deaths, 268 

as these were deemed to be not age-related. 269 

 270 

Survival analyses were performed using log-rank tests with Benjamini-Hochberg correction. ROC 271 

curves were compared using DeLong’s test. For healthspan markers, two-sided t-tests were used to 272 

compare between the low and high clock groups. All statistical analyses were performed using R 273 

version 4.2.0 (https://www.R-project.org/). 274 
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 275 

Data availability 276 

All datasets used are publicly available online at https://wwwn.cdc.gov/nchs/nhanes/Default.aspx. 277 

There were no restrictions on data availability. This study was reported according to STROBE 278 

guidelines for cohort studies. 279 

 280 

References 281 

1 Gompertz, B. On the nature of the function expressive of the law of human mortality : and on 282 
a new mode of determining the value of life contingencies ; In a letter to Francis Baily / by 283 
Benjamin Gompertz.  (Printed by W. Nicol, 1825). 284 

2 Liu, Z. et al. A new aging measure captures morbidity and mortality risk across diverse 285 
subpopulations from NHANES IV: A cohort study. PLoS Med 15, e1002718 (2018). 286 
https://doi.org:10.1371/journal.pmed.1002718 287 

3 Fong, S. et al. Principal component-based clinical aging clocks identify signatures of healthy 288 
aging and targets for clinical intervention. Nat Aging 4, 1137-1152 (2024). 289 
https://doi.org:10.1038/s43587-024-00646-8 290 

4 Horvath, S. DNA methylation age of human tissues and cell types. Genome Biol 14, R115 291 
(2013). https://doi.org:10.1186/gb-2013-14-10-r115 292 

5 Hannum, G. et al. Genome-wide methylation profiles reveal quantitative views of human 293 
aging rates. Mol Cell 49, 359-367 (2013). https://doi.org:10.1016/j.molcel.2012.10.016 294 

6 Levine, M. E. et al. An epigenetic biomarker of aging for lifespan and healthspan. Aging 295 
(Albany NY) 10, 573-591 (2018). https://doi.org:10.18632/aging.101414 296 

7 Lu, A. T. et al. DNA methylation GrimAge strongly predicts lifespan and healthspan. Aging 297 
(Albany NY) 11, 303-327 (2019). https://doi.org:10.18632/aging.101684 298 

8 Belsky, D. W. et al. Quantification of the pace of biological aging in humans through a blood 299 
test, the DunedinPoAm DNA methylation algorithm. Elife 9 (2020). 300 
https://doi.org:10.7554/eLife.54870 301 

9 Moqri, M. et al. Biomarkers of aging for the identification and evaluation of longevity 302 
interventions. Cell 186, 3758-3775 (2023). https://doi.org:10.1016/j.cell.2023.08.003 303 

10 Lu, A. T. et al. DNA methylation GrimAge version 2. Aging (Albany NY) 14, 9484-9549 (2022). 304 
https://doi.org:10.18632/aging.204434 305 

11 McCrory, C. et al. GrimAge Outperforms Other Epigenetic Clocks in the Prediction of Age-306 
Related Clinical Phenotypes and All-Cause Mortality. J Gerontol A Biol Sci Med Sci 76, 741-307 
749 (2021). https://doi.org:10.1093/gerona/glaa286 308 

12 Orlovic, M. et al. Accuracy of clinical predictions of prognosis at the end-of-life: evidence from 309 
routinely collected data in urgent care records. BMC Palliat Care 22, 51 (2023). 310 
https://doi.org:10.1186/s12904-023-01155-y 311 

13 Sayed, N. et al. An inflammatory aging clock (iAge) based on deep learning tracks 312 
multimorbidity, immunosenescence, frailty and cardiovascular aging. Nat Aging 1, 598-615 313 
(2021). https://doi.org:10.1038/s43587-021-00082-y 314 

14 Bonner, C. et al. Interventions Using Heart Age for Cardiovascular Disease Risk 315 
Communication: Systematic Review of Psychological, Behavioral, and Clinical Effects. JMIR 316 
Cardio 5, e31056 (2021). https://doi.org:10.2196/31056 317 

15 Qiu, W., Chen, H., Kaeberlein, M. & Lee, S. I. ExplaiNAble BioLogical Age (ENABL Age): an 318 
artificial intelligence framework for interpretable biological age. Lancet Healthy Longev 4, 319 
e711-e723 (2023). https://doi.org:10.1016/S2666-7568(23)00189-7 320 

16 Nusinovici, S. et al. Application of a deep-learning marker for morbidity and mortality 321 
prediction derived from retinal photographs: a cohort development and validation study. 322 
Lancet Healthy Longev 5, 100593 (2024). https://doi.org:10.1016/S2666-7568(24)00089-8 323 

17 Denisov, K. A., Gruber, J. & Fedichev, P. O. Discovery of Thermodynamic Control Variables 324 
that Independently Regulate Healthspan and Maximum Lifespan. bioRxiv, 325 
2024.2012.2001.626230 (2024). https://doi.org:10.1101/2024.12.01.626230 326 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 26, 2024. ; https://doi.org/10.1101/2024.12.23.24319587doi: medRxiv preprint 

https://doi.org/10.1101/2024.12.23.24319587
http://creativecommons.org/licenses/by-nc-nd/4.0/


 15

18 Perevoshchikova, K. & Fedichev, P. O. Differential Responses of Dynamic and Entropic Aging 327 
Factors to Longevity Interventions. bioRxiv, 2024.2002.2025.581928 (2024). 328 
https://doi.org:10.1101/2024.02.25.581928 329 

19 Tarkhov, A. E., Denisov, K. A. & Fedichev, P. O. Aging clocks, entropy, and the challenge of 330 
age reversal. AgingBio 2, e20240031 (2024). https://doi.org:10.59368/agingbio.20240031 331 

20 Venables, W. N. & Ripley, B. D. Modern Applied Statistics with S. Fourth edn,  (Springer, 332 
2002). 333 

 334 

Acknowledgements 335 

We thank the National Health and Nutrition Examination Survey participants and staff who made this 336 

study possible. We thank C. Chen for her careful reading of this manuscript. This research was 337 

funded by the Ministry of Education in Singapore, grant numbers IG21-SG007 and A-0007215-00-00, 338 

to J.G. S.F. is supported by the Research Training Fellowship (MOH-001294-00) from the National 339 

Medical Research Council Singapore. This work was supported by the Lien Foundation. 340 

 341 

Author contributions 342 

S.F., B.K.K. and J.G. conceived, conceptualized and designed the study. S.F., K.A.D. and J.G. 343 

analyzed and interpreted the data. S.F., B.K.K. and J.G. wrote the first draft of the paper. 344 

 345 

Competing interests 346 

The authors declare no competing interests.  347 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 26, 2024. ; https://doi.org/10.1101/2024.12.23.24319587doi: medRxiv preprint 

https://doi.org/10.1101/2024.12.23.24319587
http://creativecommons.org/licenses/by-nc-nd/4.0/


 16

Additional information 348 

 349 
Extended Data Fig. 1: LinAge2 predicts survival in chronologically 55-64 and 75-84 year old 350 
individuals. Kaplan-Meier survival curves showing 20-year survival in the a-c, 55-64 CA bin (n=657) 351 
and d-f, 75-84 CA bin (n=348) in the test cohort. a,d, HannumAge, HorvathAge, and ChronAge 352 
showed no statistically significant differences in survival. b, LinAge2 demonstrated significant survival 353 
differences compared to ChronAge in both the best 25% (P=2.01E-03) and worst 25% (P=0.03) 354 
quartiles. In contrast, PhenoAge Clinical showed a significant difference only in the best 25% quartile 355 
(P=3.80E-02). c,f, In the best 25% quartile, LinAge2 outperformed DunedinPoAm (P=6.45E-03 and 356 
P=1.39E-02 in the 55-64 and 75-84 CA bins, respectively) and PhenoAge DNAm (P=8.90E-03 and 357 
P=1.73E-02 in the 55-64 and 75-84 CA bins, respectively). LinAge2 and GrimAge2 performed 358 
similarly with no significant differences between them. In the worst 25% quartile, no significant 359 
differences in survival were found between LinAge2, DunedinPoAm, PhenoAge DNAm, and 360 
GrimAge2. e, Compared to ChronAge, both LinAge2 (P=4.56E-03) and PhenoAge Clinical (P=3.16E-361 
02) showed significant survival differences in the best 25% quartile, but not in the worst 25% quartile. 362 
Clocks were compared using log-rank tests with Benjamini-Hochberg correction. Areas shaded 363 
indicate 95% error bands for lines of the same color. yo, years old. 364 
 365 

 366 
Extended Data Fig. 2: ROC curves for 10-year all-cause mortality in the test cohort. a, There 367 
were no significant differences in the AUCs between HorvathAge (AUC=0.7425), HannumAge 368 
(AUC=0.7612), and ChronAge (AUC=0.7501) (n=1,065). b, LinAge2 (AUC=0.8468) was significantly 369 
more informative than PhenoAge Clinical (AUC=0.8203, P=6.91E-05) and ChronAge (AUC=0.7946, 370 
P=2.65E-09) in predicting future mortality (n=2,036). LinAge2 performed similarly to LinAge 371 
(AUC=0.8383). c, Compared to LinAge2 (AUC=0.8144), PhenoAge DNAm (AUC=0.7390, P=2.84E-372 
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06) and GrimAge2 (AUC=0.7801, P=1.81E-03) were significantly less predictive of 10-year follow-up 373 
(n=1,065). Although GrimAge2 outperformed ChronAge (AUC=0.7501, P=0.01) in predicting 10-year 374 
mortality, PhenoAge DNAm did not (P=0.39). ROC curves were compared using DeLong’s test. 375 
 376 

 377 
Extended Data Fig. 3: DunedinPoAm tracks with healthspan markers. Differences between 378 
DunedinPoAm low (slow aging) and DunedinPoAm high (fast aging) were significant for: a, ability to 379 
work; b, ability to perform instrumental activities of daily living (iADLs); but not for c, ability to perform 380 
basic activities of daily living (bADLs). Median value, lower (25th) and upper (75th) percentiles are 381 
indicated. Lines extend to +1.5 times interquartile range, with points outside this range drawn 382 
individually. The violin shape indicates the probability density function. 383 
 384 

 385 
Extended Data Fig. 4: Clinical clocks are better predictors of 2-year mortality than CA. ROC 386 
curves for 2-year all-cause mortality in the test cohort. LinAge2 (AUC=0.8294, P=4.02E-06), LinAge 387 
(AUC=0.8003, P=3.91E-04) and PhenoAge Clinical (AUC=0.7870, P=3.24E-03) were significantly 388 
more predictive of 2-year follow-up than ChronAge (AUC=0.7120) (n=2,036). ROC curves were 389 
compared using DeLong’s test. 390 
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