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The Circle of Willis (CW) is a critical cerebrovas-
cular structure that supports collateral blood flow
to maintain brain perfusion and compensate for
eventual occlusions. Increased tortuosity of high-
risk vessels within the CW has been implicated
as a marker in the progression of cerebrovascular
diseases especially in structures like the internal
carotid artery (ICA). This is partly due to age-related
plaque deposition or arterial stiffening. Produc-
ing reliable tortuosity measurements for vessels
segmented from magnetic resonance (MR) time-of-
flight (TOF) images requires precise curvature esti-
mation, but existent methods struggle with noisy or
sparse segmentation data. We introduce an open-
source, end-to-end pipeline that uses unit-speed
spline fitting for accurate curvature estimation, gen-
erating robust curvature-based tortuosity metrics
for the ICA combined with an indicator of spline fit
quality. We test this with theoretical data and apply
this method to TOF data from 22 participants. We re-
port that our metrics are able to capture tortuosity
even under heightened noise constraints and dis-
criminate different types of abnormal arterial coil-
ing. We found that our ICA tortuosity measures cor-
relate positively with age and ultrasound measured
carotid artery intima media thickness. This ulti-
mately has important translational implications for
being able to reliably generate TOF tortuosity mea-
sures and estimate cerebrovascular disease bur-
den. We provide open-source code in a GitHub
repository. ©
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Introduction
The Circle of Willis (CW) is a continuous arterial circle
at the brain’s base, formed by interconnections between
branches of the left and right internal carotid arteries
(ICA) and the vertebrobasilar system (Vrselja et al.,
2014). This structure supports collateral circulation by
redirecting blood flow in cases of obstruction such as
ischemia or stenosis. Evolutionarily, the CW’s presence
in many non-human species suggests an advantage in
compensating for blood flow loss due to occlusion.

Recent studies suggest that the geometric features

of specific CW arteries may serve as important mark-
ers for cerebrovascular pathologies (Hoksbergen et al.,
2003). Anatomical abnormalities frequently occur in the
internal carotid artery (ICA) (Raidah et al., 2023), of-
ten presenting as coiling, looping, or bending. Elevated
cerebral vessel tortuosity is often a result of vascular re-
modeling triggered by micro infarcts from atherosclero-
sis and the thickening of the blood vessel walls. Highly
tortuous arteries are both a biological marker of cere-
brovascular damage and a risk factor for further compli-
cations as vessel tortuosity disrupts laminar blood flow,
elevating the risk of plaque burden, clots and infarcts
which compounds the risk of cerebrovascular accidents
(CVAs).

Altered cerebral blood flow is a leading cause of long-
term disability, and CVAs are the third leading cause of
death (Naghavi et al., 2024). Importantly, there is an
asymptomatic period, also called “silent interval”, be-
tween the onset of changes in vessel tortuosity and the
manifestation of CVAs clinical symptoms. During this
silent asymptomatic period, vessel tortuosity increases
as an adaptive response to alterations in blood flow or
pressure(Saba et al., 2021). Being able to quantify ar-
terial tortuosity during this preclinical phase offers in-
sights into the disease progression and can serve as an
early biomarker of potential cerebrovascular complica-
tions, aiding in timely intervention and management.

A major challenge in using the full geometric profile
of all the CW arteries as a marker is that intracerebral
structures are inherently tortuous with significant indi-
vidual variation. This complicates the detection process
as individuals’ CW may deviate from a single, standard-
ized shape for intracerebral arteries (Bullitt et al., 2003).
Assessing the geometry through tortuosity of isolated
arteries such as the ICA—where most abnormalities oc-
cur (Raidah et al., 2023)—is a more practical and tar-
geted approach.

Despite recent advancement in fully automated, end-
to-end methods which produce accurate segmentation
of CW arteries with anatomical labels from TOF im-
ages (Dumais et al., 2022), there are no open source
tools for extracting evaluation of tortuosity based on
common tortuosity metrics like Arc over Chord (also
called Tortuosity Index), Total Curvature, Mean Squared
Curvature, and Root Mean Squared Curvature. Most
of these have been previously used in the literature
for defining tortuosity. While the ICA typically exhibits
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S or U-shaped anatomical profile, it can also take on
more tortuous shape characterized by higher frequency
changes rather than large amplitude changes. As a re-
sult, the traditional Arc/Chord method alone may not
adequately capture these forms of tortuosity. Given
that the rest of the aforementioned tortuosity measure-
ments are curvature-based (Kashyap et al., 2023), it is
essential to obtain accurate curvature estimates. This
is challenging because segmentation represents a dis-
crete set of points, while curvature is defined for con-
tinuous functions. Previous research has shown that
methods based on discrete sampling are highly sensi-
tive to noise, particularly in calculating second deriva-
tives (Johnson and Dougherty, 2007).

In this paper, we use polynomial spline fitting as
proposed by Johnson et al.(Johnson and Dougherty,
2007), as direct sampling is too prone to noise. We
propose that fitting a uniform spline, in conjunction with
curvature-derived metrics, will yield accurate curvature
estimates relevant for research applications and im-
proves the rigor of derived measures. We create an
end-to-end workflow with important quality assurance
measures to compute multiple measures of tortuosity.
We additionally test whether our curvature metrics cor-
relate with age as well as maximum carotid intima-
medial thickness, a surrogate marker of atherosclerosis.

Method

Participants and study design

The participants data was collected from an an adminis-
trative supplement to R01 MH108509 (Functional neu-
roanatomy correlates of worry in older adults), aiming to
collect preliminary data on the risk of older severe wor-
riers to develop Alzheimer’s disease (AD) or AD-related
dementias (ADRD) (3R01MH108509-05S1). We re-
cruited participants (n = 22) who were between 50-
60 years with varying levels of worry and anxiety.
Participants were recruited from the Pittsburgh area
via Pitt+Me (website resource from the university), in-
person recommendations, flyers, and radio/television
advertisements. Exclusion criteria included uncorrected
vision problems, below 6th grade reading level, MRI
contraindications, autism spectrum disorder, intellectual
development disorder, major neurocognitive disorder,
psychosis, bipolar disorder, history of cerebrovascular
accident, multiple sclerosis, vasculitis, significant head
trauma, presence of Axis II disorders, increased sui-
cide risk, drug/alcohol abuse within the last six months,
uses of high doses of benzodiazepines (equivalent to
>2 mg of lorazepam), or current use of antidepressants.
Participants with mild cognitive impairment (MCI) were
allowed in the study. This study was approved by the
University of Pittsburgh Institutional Review Board. All
participants gave written informed consent before par-
ticipating in the study.

Assessments
Along with demographic information (age, sex, race,
and education), we acquired carotid ultrasound mea-
surements, including intima-media thickness. We used
an Acuson Sonoline Antares (Siemens) high resolu-
tion duplex ultrasound scanner to obtain bilateral carotid
images of the common carotid artery (CCA), carotid
bulb and ICA. Digitized images obtained at end-diastole
of these segments were read using semi-automated
software to measure IMT by electronically tracing the
lumen-intima interface and the media-adventitia inter-
face at the following 8 locations (4 from left and right
carotid arteries): near and far walls of the distal CCA,
and far walls of the carotid bulb and ICA. The com-
puter then generates one measurement for each pixel
over these areas, and the maximum of all average read-
ings across the eight locations comprised the average
carotid IMT. We call this measure Mmax. We also col-
lected data on worry (Penn-State Worry Questionnaire,
PSWQ) (Meyer et al., 1990), anxiety (Hamilton Anxiety
Rating Scale, HARS) (Hamilton, 1959), and measures
of systolic and diastolic blood pressure (BP).

MRI Data Acquisition
MR data were acquired on a 7T Siemens Magnetom
scanner on a custom 16-transmit and 32-receive chan-
nels (Tic-Tac-Toe design) radiofrequency (RF) coil sys-
tem (Santini et al., 2020) operating in the single transmit
mode (Santini et al., 2018; Krishnamurthy et al., 2019).
Structural images were acquired using a 3D multi-
echo Magnetization Prepared Rapid Gradient Echo
(MPRAGE) sequence (TR = 3000ms, TE = 2.17 ms, TI =
1200 ms, 0.75 mm3 isotropic resolution, and GRAPPA
acceleration factor of 2). ). TOF images covering the
whole brain were acquired using TOF 7 slabs protocol
with with TR: 14 ms, TE 4.5 ms, resolution = 0.38 mm3,
and 17.86 mm slab overlap.

Vessel Segmentation
We use the open-source Express Intracranial Arteries
Breakdown (eICAB) method developed by Dumais et
al. (Dumais et al., 2022) for automated segmentation
and labeling of the CW arteries from input TOF im-
ages. The pipeline generates an image annotated with
18 labels corresponding to major arteries, with a res-
olution of 0.625 mm3 isotropic. The segmented out-
put is aligned in the same spatial orientation as the
resampled TOF. To enhance the segmentations qual-
ity, manual corrections were performed using ITK-SNAP
(Yushkevich et al., 2006) addressing disconnected re-
gions of the same structure. Supplementary Figure S1
illustrates examples where manual adjustments were
applied (indicated with arrowhead) on the segmenta-
tions of the left (green label) and right (red label) ICA.

Data Description
After running the eICAB pipeline, we retained only high-
quality segmentation (n = 11) from the PALS dataset,
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which serves as our evaluation set for the developed
metrics. The dataset has a mean age of 56.6 years
±3.2, with 3 males and 8 females. The mean Mmax
value is 0.904±0.080. For the psychological scores, the
mean PSWQ Total is 53.8±12.3, the mean HARS score
is 14.7 ± 8.3, the mean systolic blood pressure(BP) is
127.4 ± 15.7, and the mean diastolic BP is 80.6 ± 7.3
(Table 1).

Mean Standard Deviation

Age 56.6 3.2
Mmax 0.904 0.080
PSWQ Total 53.8 12.3
HARS Score 14.7 8.3
Systolic BP 127.4 15.7
Diastolic BP 80.6 7.3

Table 1. Demographic of PALS Dataset

Tortuosity Metrics and Curvature Estimation
Estimating the tortuosity of individual large arteries is
important when evaluating atherosclerosis since abnor-
mal tortuosity is associated with both increased risk of
stroke and failure of endovascular therapy (Bullitt et al.,
2003). The most common vascular tortuosity metrics
are Arc over Chord, which measure the actual path
length over the Euclidean distance between two end-
points of a vessel. This metric is extremely popular due
to its ease of calculation, but it has the disadvantage
of being insensitive to arteries that "wiggle" (Capowski
et al., 1995). Given that the skeleton vessel could be
represented as a discrete space curve in 3D space, and
Curvature and Torsion are the most important proper-
ties for describing how curves bend in 3D (Nguyen and
Debled-Rennesson, 2008), we included the most com-
monly used curvature-based tortuosity metrics including
Mean Curvature, Mean Squared Curvature, and Root
Mean Squared Curvature in (Table S1).
The Mean (Total) Curvature κm is the integral of curva-
ture along the length of the artery and is scale invariant.
The Mean Squared Curvature is similar to κm but ap-
plies higher weights to greater curvature values in the
summation. The normalized root mean squared curva-
ture κrms is similar to κms but because of the normal-
ization with arc-length, this metric is scale invariant like
κm.

Given that 3 out of 4 popular tortuosity metrics we are
referencing are curvature-based, the first step to output
metrics is to have accurate approximation method to ac-
quire the curvature estimation from the space curve of
the segmented arteries. Popular approximation meth-
ods of curvature includes estimating the derivatives of
the curve using finite difference. Velocity and Acceler-
ation vectors are calculated from consecutive discrete
points(Bullitt et al., 2003). Frenet-Seret frame (compris-
ing the Tangent, Normal, and Binormal vectors) is uti-
lized to compute curvature based on the rate of change
of the tangent vector along the curve. This method is

inherently local and its approximations can be sensi-
tive to noise, leading to significant errors in curvature
estimation if the data is noisy. Circle fitting could ap-
proximate the curvature at a point on the curve by fit-
ting a local circle (osculating circle) to a neighborhood
of points around that point(Kashyap et al., 2023). The
inverse of the circle’s radius is then used as an estimate
of the curvature. Circle fitting is moderately scalable for
larger datasets, but it is limited to regions where circular
approximation is valid and requires careful selection of
sliding window size. Spline fitting interpolates the dis-
crete points of the space curve with a smooth paramet-
ric spline (e.g., cubic spline, B-spline). Once the spline
is fit, curvature can be analytically derived from the
splines’ parametric equations using derivatives. Spline
fitting is computationally expensive and does not scale
well with large datasets but it handles varying curvature
smoothly.

Given the noise present in our TOF in addition to the
noise introduced by segmentation, the direct numerical
approximation method does not perform well especially
when the points that constitutes the space curve of ar-
teries have varied distance between them. The circle
fitting also does not perform well as one tortuous space
curve has varied curvature along its length, and will re-
quire us to get an optimal window of points. This is diffi-
cult to do especially when the skeleton of artery seg-
mentation output only consists of on average of less
than 30 points. After testing all 3 approximations, we be-
lieve fitting unit-speed spline to the artery mid-line skele-
ton is the best way to approximate curvature for space
curve of artery as it is more robust to noise than finite
difference direct approximation, and it avoids manually
choosing a window size or fitting on a limited number of
points for circle fitting.

Work Flow from Segmentation to Tortuosity Metrics
To quantify tortuosity from segmentation data, we build
a pipeline encompassing skeletonization, endpoint de-
tection, path ordering, spline fitting, and curvature-
based tortuosity estimation. We first convert segmenta-
tions into binary masks by isolating the target label of in-
terest (the ICA). This binarization ensures that only the
anatomical structure of interest was retained for subse-
quent analysis. The binary 3D arrays are skeletonized
using the skeletonize function from the skimage library.
The skeletonization is medial-axis extracted from the
cloud of points representing the segmented structure. It
preserves the topological integrity of the cloud of points
while reducing its representation to a single-pixel-wide
line.

To identify the endpoints of each skeletal structure,
we convolve each point in the skeleton with a 3×3×3
neighborhood kernel. Points with only one active neigh-
boring voxel were marked as the terminal of the skeletal
pathway. We do not consider the scenario where there
are multiple end points for a single structure or bifurca-
tion points since elCAB has already effectively handled
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Figure 1. workflow of segmentation to csv file for the spline fit tortuosity metrics estimation pipeline

bifurcation by assigning each branch with different la-
bels. The convolution-based start-tail points detection
is necessary for setting starting and end points. This
traversal from the identified start point to the end point
produces an ordered list of 3D points that accurately
represents the morphological path of the structure since
coherent, ordered sequence of points are a requirement
for spline fitting.

Next, a uniform-speed 3rd-degree B-spline was fit to
the ordered list of skeleton points. This spline provides a
smooth and continuous parametric curve approximating
the central trajectory of the segmented structure. The
uniform-speed property of the B-spline ensures consis-
tent parametrization along the curve, which is essential
for accurate derivative computations. By computing the
first and second derivatives of the B-spline, we quantify
the curvature along the pathway. Higher curvature val-
ues corresponded to more tortuous segments, allowing
for a precise quantitative assessment of the structural
complexity. Then, the tortuosity metric can be derived
from the curvature of the fitted spline as illustrated in
(Figure 1). In the output CSV file, we also produce
both the Root Mean Square Curvature and the Root
Mean Square Error (RMSE) from the derived spline
to the input points as a quality measure of our fitting.
Smaller RMS Curvature correspond to smoother spline
and smaller RMSE correspond to spline that has higher
fidelity to the points.

Results
After building the end-to-end pipeline, it is essential to
evaluate the utility of these metrics. This evaluation is
conducted using both simulated parametric curves and
data from the PALS study. On parametric curves like he-

lix of varied radius and pitch, we tested how each met-
rics changes with radius and pitch of helix. On clinical
data, we test each metric’s Spearman correlation with
MMax and age.

Phantom Helix Result
By testing on phantom helix data with same radius and
different pitches, we observe that all κm, κms, κrms de-
creases with increasing pitch as expected. This trend
aligns with our intuition, as increasing the pitch while
keeping the radius and number of turns fixed makes the
curve progressively "straighter." By fixing the radius and
pitch and varying the number of turns, we find that all
our metrics assign higher values to more tightly coiled
shapes (i.e., helices with more turns while other param-
eters remained constant). Scale invariance was verified
in κm and κrms. Specifically, for helices where the ra-
dius and pitch are doubled while the number of turns
remains the same, the values of κm and κrms remain
unchanged, as shown in (Figure 2).

Tortuosity Correlation with PALS Age-related Vari-
ables
Computing the tortuosity metrics from our PALS data
and calculating the spearman correlation of each of the
metrics with Mmax show that all curvature-based met-
rics are positively correlated with Mmax yet AOC is not.
(see Table 2). Similarly, all curvature-based metrics are
positively correlated with age whereas AOC shows a
negative correlation. (see Table 3). All Spearman’s ρ
values were not statistically significant; even age itself
has non-significant Spearman’s rho of 0.014 with Mmax
and corresponding p-value of 0.968. Pairwise correla-
tion between metrics pair shows AOC exhibits only a
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Figure 2. Phantom Helix Testing Result. A. spline fitting on helix B. Same spline as in A, spline colored by curvature at each point. C. Table of Helix with varies radius,
pitch and turns and their tortuosity metrics derived from fitted spline. D. log scale combined metrics of rmse + rms curvature of fitted spline decrease as we increase
signal to noise ratio in all multiple helices. E. example of residual from data point to fitted spline from helix in A, plotted along the length of this curve

slight positive correlation with the curvature-based met-
rics. In contrast curvature-based metrics are strongly
and significantly positively correlated with each other.
For instance, total curvature and root mean square
curvature have Spearman’s ρ of 0.951 with p value of
1.08×10−11. (see Table 4).

Curvature Measure Spearman ρ p-value

Total Curvature 0.039 0.865
Mean Squared Curvature 0.009 0.968
RMS Curvature 0.032 0.889
AOC -0.131 0.560

Table 2. Spearman Correlation Results for Curvature Measures vs. Mmax

Curvature Measure Spearman ρ p-value

Total Curvature 0.152 0.500
Mean Squared Curvature 0.249 0.264
RMS Curvature 0.230 0.302
AOC -0.076 0.735

Table 3. Spearman Correlation Results for Curvature Measures vs. Age

Variable Pair Spearman ρ p-value

(AOC,κm) 0.237 0.289
(AOC,κms) 0.267 0.230
(AOC,κrms) 0.291 0.189
(κm,κrms) 0.951 1.08×10−11

Table 4. Additional Correlations

Discussion

This paper introduces a fully open-source, end-to-end
pipeline that takes segmented TOF images as input and
outputs a CSV file of tortuosity metrics. The pipeline
evaluates vessel tortuosity by fitting splines optimized
through minimizing root mean square error (RMSE) of
curvature. Unlike previous methods that rely on non-
spline-based curvature approximations, this approach is
more robust to noise. Additionally, unlike other spline-
fitting methods, our approach includes RMSE as a re-
liability indicator in the output, providing a quantitative
measure of the fit’s reliability. The validity of tortuosity
derived from spline fit approximation is substantiated by
simulated helix data as our metrics are able to assign
higher value to helices that are more tightly coiled.

Curvature-based tortuosity metrics and age both
demonstrate a similar association with Mmax. IMT is
a risk factor and surrogate marker for atherosclerosis, a
condition that typically progresses with age (Bonithon-
Kopp et al., 1996; Wang and Bennett, 2012). IMT
is positively associated with the increased atheroscle-
rotic plaque development that could lead to increased
tortuosity of carotid vessel and higher blood pressure
(Tschiderer et al., 2023). However, the mean sys-
tolic blood pressure of our sample at was baseline is
127.39 mmHg (SD = 14.87), and the mean diastolic
blood pressure was 80.56 mmHg (SD = 7.01). Given
the relatively young age range of our participants (50-60
years), these values do not indicate hypertensive lev-
els. This suggests our PALS cohort is less likely to have
the degree of arterial tortuosity observed in older(70-80
years) or more hypertensive populations, where vascu-
lar changes are typically more pronounced(Sun et al.,

Pan et al. | | 5

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 26, 2024. ; https://doi.org/10.1101/2024.12.23.24319570doi: medRxiv preprint 

https://doi.org/10.1101/2024.12.23.24319570
http://creativecommons.org/licenses/by/4.0/


2022). As such, IMT did not show a statistically sig-
nificant association with vessel tortuosity in our PALS
dataset. We plan to validate our approach on on larger
and older cohorts.

This pipeline facilitates easy calculation for tortuos-
ity measures in CW, providing an end-to-end solution
with measures that are less susceptible to noise, which
allows for estimation of subthreshold changes in tortu-
osity, particularly during the silent interval. Ultimately, it
enables researchers to understand how different clinical
variables in the elderly (e.g., anxiety, worry) are associ-
ated with tortuosity and their potential association with
increased risk of early cognitive decline (Zlokovic et al.,
2020).

Appendix
Helix is generating by finding pair of radius r and pitch c

p(t) = [r cos(t), r sin(t), ct] (1)

The arc length of curve f starting from point t0 is de-
fined as

s(t) =
∫ t

t0

∥f ′(t)∥dt (2)

∥ · ∥ denote the Euclidean vector norm.

A curve is parametrized by arc length if t is the arc length
of f measured from some start point such that ds/dt =
∥f ′(t)∥ = 1 and

s(t) =
∫ t

t0

∥f ′(t)∥dt = t− t0 (3)

To achieve arc length parametrization numerically, the
following steps were performed:

1. Fit cubic splines to the x, y, and z coordinates of
the input curve f(t).

2. Compute the derivatives of the spline, f ′(t),
and calculate the arc length differentials ds =
∥f ′(t)∥dt.

3. Generate a cumulative mapping from parameter u
to arc length s, and invert it to map arc length s
back to u.

4. Evaluate the spline at uniformly spaced arc length
values, producing a re-parametrized curve f(s).
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Figure S1. Quality Assurance example of eICAB segmentation
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Supplementary Tables

Metric Name Metric Symbol Metric Formula

Arc over Chord (AOC) τ τ = L

C
Mean(Total) Curvature κm κm =

∫ t2
t1

κ(t)dt

Mean(Total) Squared Curvature κms κms =
∫ t2

t1
κ2(t)dt

Normalized Root Mean Squared Curvature κrms κrms =
√

1
L

∫ t2
t1

κ2(t)dt

Table S1. Curvature and Tortuosity Metrics
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