1	Title Page
2	Title:
3	Thoracic Aorta Measurement Extraction from Computed Tomography Radiology Reports Using
4	Instruction Tuned Large Language Models
5	
6	Authors:
7	Ely Erez ¹ , Sedem Dankwa ¹ , McKenzie Tuttle ¹ , Afsheen Nasir ¹ , Prashanth Vallabhajosyula ¹ ,
8	Eric B. Schneider ² , Roland Assi ¹ , Chin Siang Ong ^{2,3}
9	¹ Division of Cardiac Surgery, Yale School of Medicine, New Haven, CT, USA
10	² Department of Surgery, Yale School of Medicine, New Haven, CT, USA
11	³ Harvard T.H. Chan School of Public Health, Boston, MA, USA
12	
13	Word Count: 4527
14	
15	Corresponding Author:
16	Chin Siang Ong, MBBS, PhD
17	Assistant Professor of Surgery
18	Division of Surgical Outcomes
19	Surgery Center for Health Services and Outcomes Research
20	Department of Surgery, Yale School of Medicine
21	Phone: 203-432-4771
22	Email Address: <u>chinsiang.ong@yale.edu</u>

23 Abstract:

24	Chest computed tomography (CT) is essential for diagnosing and monitoring thoracic aortic
25	dilations and aneurysms, conditions that place patients at risk of complications such as aortic
26	dissection and rupture. However, aortic measurements in chest CT radiology reports are often
27	embedded in free-text formats, limiting their accessibility for clinical care, quality improvement
28	and research purposes. In this study, we developed a multi-method pipeline to extract structured
29	aortic measurements from radiology reports, and compared the performance of fine-tuned
30	BERT-based models with instruction-tuned Llama large language models (LLMs). Applying the
31	best-performing method to a real-world large chest CT radiology report database, we generated a
32	comprehensive aortic measurement dataset that facilitates big data aortic disease research.

33 Introduction:

34	Chest computed tomography (CT) is essential for diagnosing and monitoring thoracic aortic
35	dilations and aneurysms. These conditions, often asymptomatic, significantly increase the risk of
36	life-threatening complications such as aortic dissection and rupture ¹ . Frequently, thoracic aortic
37	dilations are detected incidentally on chest CTs performed for unrelated clinical indications.
38	Once diagnosed, chest CTs serve as the preferred modality for tracking aortic diameter changes
39	over time and guiding surgical decision-making ¹ . However, key diagnostic measures, including
40	aortic diameters, are predominantly documented in free-text CT radiology reports, rendering
41	them inaccessible in a structured format within most electronic health record systems.
42	
43	Extracting these measures in a structured form could make a substantial clinical impact. These
44	structured data can be used to flag reports with incidental findings within the EHR software,
45	drawing the attention of physicians and facilitating timely referrals to surgeons. This can prevent
46	missed findings, improve the quality of care by monitoring referral rates, and adapt to evolving
47	evidence-based medicine (EBM) guidelines that adjust surgical referral thresholds. Additionally,
48	healthcare institutions can monitor surgical referral rates and ensure adherence to the most
49	current EBM, enhancing patient outcomes and healthcare quality. From the research perspective,
50	extracting these measures retrospectively in a large cohort of patients will enable researchers to
51	study rates of incidental aortic dilation detection and analyze how aortic diameters evolve over
52	time in affected patients. This structured data can also provide valuable epidemiological insights
53	into the prevalence and risk factors associated with thoracic aortic dilations.

54

55 The task of extracting aortic diameters falls within the broader domain of information extraction, 56 which is commonly addressed using natural language processing (NLP) techniques. Specifically, it requires word- or token-level classification, akin to named entity recognition (NER), where 57 58 specific entities are identified and categorized within text. NER techniques have evolved rapidly 59 in recent years, transitioning from hand-crafted rule-based approaches to feature-driven statistical models and, ultimately, to end-to-end deep learning models². As a key application of 60 NER, Biomedicine has been a central area of research³, with extensive work exploring its use in 61 medical imaging⁴. Early studies relied on hand-crafted rules to identify entity mentions, often 62 involving complex logic and requiring substantial domain expertise^{5,6}. Later work employed 63 64 more advanced classical machine learning techniques such as Hidden Markov Models⁷, Support Vector Machines⁸, and Conditional Random Fields⁹. While these methods improved 65 66 performance, they still depended on manual feature extraction, a process heavily reliant on 67 domain knowledge, as a prerequisite to classification.

68

69 The advent of deep neural networks marked a paradigm shift in NER. Models such as Recurrent 70 Neural Networks (RNNs) and Bidirectional Long Short-Term Memory (BiLSTM) networks 71 achieved state-of-the-art performance while eliminating the need for manual feature engineering, 72 enabling end-to-end learning directly from raw data. These models, in turn, were rapidly 73 surpassed by pretrained language models like the Bidirectional Encoder Representations from 74 Transformers (BERT) model, which leverage encoder-based transformer architectures to set new benchmarks in NER tasks. BERT and its domain specific variants, such as PubMedBERT¹⁰ and 75 76 BioBERT¹¹, have become the gold standard in NER. By fine-tuning on prelabeled datasets, these 77 models achieve high performance in NER tasks with minimal reliance on additional domain

78	knowledge. These models have been widely adopted by the medical community for information
79	extraction ³ , including significant effort to improve information extraction from radiology
80	reports ⁴ . For instance, Khurshid et al. ¹² developed Bio+Discharge Summary BERT, a fine-tuned
81	BERT model for NER, to extract vital signs such as height, weight, and blood pressure from
82	unstructured electronic health record (EHR) notes, reducing vital sign data missingness by 31%.
83	Similarly, Singh et al. ¹³ addressed a challenge closely related to ours, using a fine-tuned BERT
84	model to extract 21 quantitative measures from cardiac magnetic resonance imaging. Their
85	approach achieved a macro-average F1 score of 0.957, highlighting the strong performance of
86	these models with minimal labeling effort.
87	
88	In recent years generative LLMs such as OpenAI's GPT-3.5 and GPT-4 ¹⁴ , have transformed the
89	field of natural language processing, breaking performance records across numerous
90	benchmarking tasks. These models utilize a Transformer architecture scaled to hundreds of
91	billions of parameters, enabling unprecedented contextual understanding and fluency in text
92	generation. The introduction of smaller, open-source LLMs such as Meta's Llama ¹⁵ , expanded
93	research opportunities by making these technologies accessible to the research community
94	enabling the development of tools for fine-tuning and inference on more modest hardware. The
95	ability of pretrained LLMs to perform zero-shot ¹⁶ and few-shot ¹⁷ learning has allowed them to
96	excel in many NLP tasks without extensive labeled data. Recognizing this potential, researchers
97	have sought to apply similar approaches to biomedical NER ^{18,19} , hoping to reduce reliance on
98	labeled training data while maintaining competitive performance.

100	In practice, pretrained LLMs have struggled to match the performance of fine-tuned BERT-
101	based models on NER tasks ^{20,21} . Instruction tuning, in contrast, has shown far greater
102	potential ^{22,23} . Instruction tuning, or instruction fine-tuning, describes the process by which large
103	language models undergo supervised fine-tuning to better follow instructions and improve
104	performance on a given task ²⁴ . An example of this technique is a study by Keloth et al. ²⁵ , who
105	developed BioNER-Llama 2 by instruction-tuning Llama 2-7B on three publicly available
106	biomedical NER datasets focusing on diseases, chemicals and genes. BioNER-Llama 2 achieved
107	performance comparable to fine-tuned PubMedBERT, with F1 scores ranging from 0.949 to
108	0.956 on the test sets. Similarly, Bian et al. ²⁶ created the VANER model by instruction-tuning
109	Llama 2-7B on eight biomedical NER datasets, reporting F1 scores between 0.77 and 0.94,
110	consistent with fine-tuned BERT-based models. Notably, both VANER and BioNER-Llama 2
111	demonstrated poor generalizability, with significantly reduced performance on previously unseen
112	datasets. Additionally, these studies primarily focus on benchmark tasks, which, while useful for
113	assessing baseline capabilities, may not reflect real-world complexities. he real-world
114	performance of LLMs in NER applications, particularly in the biomedical domain, remains
115	largely underexplored.

116

The primary objective of this study was to develop an automated machine learning pipeline for extracting aortic measurements from chest CT radiology reports. To achieve this, we compared the performance of fine-tuned BERT-based models with generative LLMs. A secondary objective was to construct a comprehensive aortic measurement database by applying the pipeline to a large cohort of chest CT radiology reports from our institution. The generated

- 122 dataset will enable future investigations into patterns of aortic dilation detection and the
- 123 progression of aortic disease in a hospital-based population.
- 124

125 Methodology:

126 This study was determined to be exempt from review by Yale University's Institutional Review

127 Board (IRB) under protocol number 2000037866 on May 3, 2024.

- 128
- 129 Dataset

130 We conducted an institutional search for chest CTs with corresponding radiology reports for

131 patients aged 18 and older, performed between January 2013 and December 2023. The search

132 encompassed 43 distinct CT protocols and yielded 363,423 radiology reports. Reports from CT

133 protocols with fewer than 2,000 instances and reports without narrative content were excluded,

resulting in a final dataset of 356,690 radiology reports across 16 CT protocols.

135

136 A subset of 1,506 radiology reports was selected for manual annotation using stratified random 137 sampling to ensure balanced representation across protocols. This subset was divided into 1,002 138 reports for training (sampled at a 1:356 ratio) and 504 reports for validation and testing (sampled 139 at a 1:712 ratio), ensuring that reports in the training set were distinct from the reports used for 140 validation and testing to prevent information leakage. The narratives were annotated using Label Studio²⁷ by two medical students and a postdoctoral researcher with an MD. To ensure 141 142 consistency, all annotations were reviewed by the postdoctoral researcher. Thoracic aortic 143 diameters were labeled at eight anatomical sites: the annulus, sinus of Valsalva, sinotubular

junction, mid ascending, ascending proximal to the brachiocephalic, top of the arch, proximaldescending, and mid descending.

146

147 Due to the limited number of aortic diameter annotations identified in the 504 reports intended 148 for validation and testing (n=289 annotations), the reports designated for both validation and 149 testing were instead allocated exclusively for validation. To create the testing set, an additional 150 504 reports were sampled and annotated following the same protocol. Reports selected for 151 training and validation were excluded from the pool when selecting the test set to avoid data 152 leakage. This process resulted in 2,010 labeled reports, divided into training, validation, and 153 testing sets with a 50:25:25 split. Figure 1 provides a flowchart illustrating the dataset selection 154 process, while Table 1 presents the radiology reports and corresponding patient characteristics 155 for each set.

156

157 Data preprocessing

158 To account for BERT's token limit and ensure a fair comparison with Llama models, we opted to perform fine-tuning and inference on individual sentences rather than complete narratives. 159 160 Because most sentences in the report narratives did not contain aortic measurements, splitting the 161 reports into sentences allowed us to exclude irrelevant content, thereby improving label balance 162 and significantly reducing fine-tuning and inference times. Sentence splitting was performed 163 using the Python package NLTK. The first sentence of each report, as well as any sentence 164 lacking a non-time or date numeric value, was excluded from analysis. Additionally, we retained 165 only sentences containing at least one aorta-related keyword.

166

167	For fine-tuning BERT-based models, each aortic measurement site was assigned a numeric label
168	between 1 and 8. Tokens within the span of a measurement were assigned the corresponding
169	numeric label, while all other tokens were labeled as 0. This numerical vector served as the label
170	for each sentence. For Llama models we used XML tags to delineate measurements in the target
171	output, such as <sov> and </sov> for the sinus of Valsalva. If no measurements were present,
172	the output remained identical to the input sentence. This annotation approach, similar to that
173	employed by Keltoh et al. ²⁵ , facilitates straightforward postprocessing. Figure 2 shows a sample
174	input and output for Llama models.

175

176 <u>Baseline Model</u>

177 We used Meta's Llama 3.1 instruction-tuned model with 8 billion (8B) parameters as a baseline model²⁸. This 8B model was chosen for its strong benchmark performance relative to its size, 178 179 which represents the upper limit of our virtual machine's capacity for local fine-tuning. The 180 instruction-tuned version was chosen over the base (pre-trained) version because it underwent 181 several rounds of alignment, including supervised fine-tuning, rejection sampling, and direct 182 preference optimization, which improved its instruction-following capability, quality, and safety²⁹. The baseline model's performance was further optimized through prompt engineering, 183 following the methodology described by Hu et al.¹⁹. The prompt included a task description, 184 185 labeling instructions based on the annotation guidelines, and additional instructions informed by 186 error analysis conducted on the training set. We evaluated the baseline model's zero-shot 187 performance as well as few-shot performance using three pre-selected annotated samples from 188 the training set. The selected prompt, as well as several annotated radiology report samples, are 189 publicly available on GitHub at https://github.com/yalesurgeryresearch/RadTextExtractor.

190

191 <u>BERT-based Models</u>

192	We fine-tuned six BERT-based models by combining three weight initialization strategies with
193	two tokenization schemes. The weight initialization strategies included: (1) the original BERT
194	model ³⁰ , (2) BERT-NER ³¹ , a variant fine-tuned on the English CoNLL-2003 Named Entity
195	Recognition dataset ³² , and (3) PubMedBERT ¹⁰ , pre-trained on PubMed abstracts and full-text
196	articles from PubMed Central. The two tokenization schemes tested were: (1) the standard BERT
197	tokenization and (2) a modified scheme in which numeric values were replaced with the unique
198	[NUM] pseudo-token ³³ .
199	
200	Fine-tuning was performed using the AutoModelForTokenClassification class from the
201	HuggingFace transformers library ³⁴ , which adds a token classification head to the BERT
202	architecture for mapping hidden states to output labels. The fine-tuning process adhered to the
203	baseline scheme proposed by Mosbach et al. ³⁵ . Each model was fine-tuned on the selected
204	sentences from the training set over 20 epochs, using categorical cross-entropy loss.
205	Optimization was conducted with the AdamW ³⁶ optimizer, employing a linear learning rate
206	scheduler and a 10% warm-up phase. Hyperparameter tuning was conducted using grid search,
207	testing learning rates of 1e-5, 2e-5, 5e-5 and 1e-4, along with batch sizes of 8, 16, and 32. A
208	random seed was fixed during training to ensure reproducibility. Loss on the validation set was
209	calculated after each epoch, and the epoch with the lowest validation loss was selected for each

210 fine-tuning iteration.

211

212 <u>Llama Models</u>

213 We compared the performance of three versions of Meta's Llama models using instruction-214 tuning: the Llama 2 chat-tuned model with 7 billion parameters, the Llama 3 instruction-tuned 215 model with 8 billion parameters, and the Llama 3.1 instruction-tuned model with 8 billion 216 parameters. To accommodate the instruction-tuning process on our virtual machine's limited GPU RAM, we employed 4-bit Quantized Low-Rank Adaptation (QloRA)³⁷. QLoRA builds on 217 Low-Rank Adaptation (LoRA)³⁸, a technique that significantly reduces the number of trainable 218 219 parameters, by further quantizing model weights to 4-bit precision. This approach enables fine-220 tuning of large language models on resource-constrained hardware while maintaining high performance. Additionally, we utilized Unsloth³⁹, an open-source library that accelerates fine-221 222 tuning through a custom backpropagation engine. 223

224 Instruction-tuning for each model used the same prompt as the zero-shot baseline Llama 3.1 225 model. Instruction-tuning was conducted on sentences from the training set over 5 epochs, using cross-entropy loss and an AdamW³⁶ optimizer with a linear rate scheduler without a warm-up 226 227 phase. A batch size of 1 was used for all trials. During fine-tuning, we zeroed-out the loss on the 228 provided prompt, ensuring learning only on the model's output. Validation loss was calculated 229 after each epoch, and the epoch with the lowest validation loss was selected for each instruction-230 tuning trial. Hyperparameter tuning was performed using grid search to optimize the learning 231 rate, as well as LoRA's rank, and alpha parameters. The learning rates tested were 2e-5, 5e-5, 232 and 1e-4. Rank values included 16, 32, and 64, with alpha values set to rank multiplied by 1 or 2 233 (e.g., for a rank of 16, the alpha values tested were 16 and 32). Sampling was disabled during 234 inference to ensure deterministic and reproducible results. When labeling sentences, the model 235 was provided with the prompt and a sentence as input and generated a labeled output.

236

237 <u>Evaluation metrics</u>

238	Model performance was evaluated on the validation set using exact match macro-averaged
239	precision, recall, and F1 scores across all aortic measurement sites, as well as site-specific
240	precision, recall, and F1 scores. To simplify terminology, macro-averaged precision, recall, and
241	F1 scores are referred to as "macro precision," "macro recall," and "macro F1," respectively.
242	Performance metrics were calculated across the entire validation set, including sentences not
243	selected for inference during preprocessing. The optimal model from the baseline models,
244	BERT-based models, and Llama models was selected based on the highest macro F1 score on the
245	validation set.
246	
247	Ablation study
248	To evaluate the impact of training set size on model performance, we conducted an ablation
249	study in which the optimal model was fine-tuned using subsets of 10, 25, 50, and 100 randomly
250	selected sentences from the training set. To mitigate the effects of sentence selection, this process
251	was repeated five times, each time using a different random seed to generate distinct sentence
252	subsets. The median macro F1 score across the five trials was then compared to the performance
253	of the model trained on the full training set.
254	

Following the ablation study, we evaluated the optimal model on the test set to assess its generalizability and potential real-world performance. Finally, inference was conducted on the entire radiology report cohort to create an aortic measurement database. This process was limited to sentences selected according to the criteria outlined in the preprocessing phase. Measurement

259	extraction rates, aortic dilation rates, and aortic diameter median and interquartile range (IQR) at
260	each measurement site were analyzed as supplementary indicators of the model's real-world
261	performance.
262	
263	Computational Resources and Framework
264	All analyses were conducted on a HIPAA-compliant virtual machine hosted by Yale's Spinup
265	service, utilizing Amazon Elastic Cloud Compute (EC2). The environment comprised an
266	Amazon AWS G4 instance with 4 vCPUs, 16 GB of RAM, and an NVIDIA T4 GPU with 16 GB
267	of GPU memory. GPU acceleration was facilitated using CUDA (v12.4). Fine-tuning and
268	inference were performed using Python (v3.9.13) with the following key libraries: PyTorch
269	(v2.3.0), Hugging Face Transformers (v4.43.3), and Unsloth (v2024.8).
270	
271	The code for data preprocessing, model fine-tuning, and evaluation is available in a GitHub
272	repository at https://github.com/yalesurgeryresearch/RadTextExtractor. Due to the presence of
273	protected health information in the radiology reports, the datasets generated and analyzed in this
274	study, along with the fine-tuned models, are not publicly available. However, they can be
275	obtained from the corresponding author upon reasonable request, in accordance with institutional
276	policies and any applicable data access agreements.
277	
278	Results:

Following preprocessing, the training dataset used for fine-tuning consisted of 214 out of 19,844

sentences (1.08%), of which 166 (77.6%) contained at least one annotation. The training set

included a total of 589 annotations, with a median of 52 annotations per measurement site

282	(range: 44 to 166). The validation set contained 103 out of 9,505 sentences (1.08%) selected for
283	inference, of which 71 (68.9%) included at least one annotation. All sentences with annotations
284	in the validation set were included in the inference subset, which had a total of 289 annotations,
285	with a median of 25.5 annotations per measurement site (range: 20 to 76). The test set comprised
286	91 out of 9,664 sentences (0.94%) selected for inference, with 68 (74.7%) containing at least one
287	annotation. Similar to the validation set, all sentences with annotations in the test set were
288	included in the inference subset, which contained 215 annotations, with a median of 18
289	annotations per measurement site (range: 13 to 69). A summary of the annotation characteristics
290	for the training, validation, and test datasets after preprocessing is provided in Table 2.
291	
292	Model Performance Comparison
293	The performance of the baseline Llama 3.1 models, fine-tuned BERT-based models, and
294	instruction-tuned Llama models on the validation set is summarized in Table 3. The few-shot
295	Llama 3.1 was the best performing baseline model, besting the zero-shot model with a macro F1
296	score of 0.838 compared to 0.663. However, both baseline models were surpassed by all fine-
297	tuned BERT-based models and instruction-tuned Llama models.
298	
299	The best performance among the BERT-based models was achieved by the fine-tuned
300	PubMedBERT with [NUM] tokenization, which attained a macro F1 score of 0.945. Numeric
301	tokenization using a [NUM] pseudo-token consistently outperformed the standard tokenization
302	technique across all three models, and the fine-tuned PubMedBERT was the best performing
303	model in both the standard and [NUM] tokenization.
304	

305	The instruction-tuned Llama 3.1 delivered the highest overall performance, achieving a near-
306	perfect macro F1 score of 0.992, with a macro precision of 0.993 and macro recall of 0.992. The
307	instruction-tuned Llama 3 followed closely with a macro F1 score of 0.982. Notably, the
308	instruction-tuned Llama 2 achieved a macro F1 of 0.839, performance comparable to the few-
309	shot baseline model and significantly lower than the top-performing BERT-based models.
310	
311	Figure 3 compares the distributions of F1 scores across measurement sites for the few-shot
312	Llama 3.1, PubMedBERT with [NUM] tokenization, and the instruction-tuned Llama 3.1. The
313	few-shot Llama 3.1 and PubMedBERT models showed significant variability in F1 scores across
314	different measurement sites. In contrast, the instruction-tuned Llama 3.1 demonstrated consistent
315	performance, achieving an F1 score of at least 0.971 across all sites.
316	
317	
017	Impact of Training Set Size
318	Impact of Training Set Size Figure 4 shows the results of the ablation study, with macro F1 scores of the instruction-tuned
318 319	Impact of Training Set Size Figure 4 shows the results of the ablation study, with macro F1 scores of the instruction-tuned Llama 3.1 model as a function of the number of training sentences. Performance improved
318 319 320	Impact of Training Set SizeFigure 4 shows the results of the ablation study, with macro F1 scores of the instruction-tunedLlama 3.1 model as a function of the number of training sentences. Performance improvedrapidly with the initial increase in training sentences but slowed and eventually plateaued as the
318 319 320 321	Impact of Training Set SizeFigure 4 shows the results of the ablation study, with macro F1 scores of the instruction-tunedLlama 3.1 model as a function of the number of training sentences. Performance improvedrapidly with the initial increase in training sentences but slowed and eventually plateaued as thenumber grew. Median macro F1 scores were 0.800 with 10 training sentences, 0.880 with 20,
 318 319 320 321 322 	Impact of Training Set SizeFigure 4 shows the results of the ablation study, with macro F1 scores of the instruction-tunedLlama 3.1 model as a function of the number of training sentences. Performance improvedrapidly with the initial increase in training sentences but slowed and eventually plateaued as thenumber grew. Median macro F1 scores were 0.800 with 10 training sentences, 0.880 with 20,0.903 with 50, and 0.971 with 100, compared to 0.992 when using the full training set of 214
 318 319 320 321 322 323 	Impact of Training Set SizeFigure 4 shows the results of the ablation study, with macro F1 scores of the instruction-tunedLlama 3.1 model as a function of the number of training sentences. Performance improvedrapidly with the initial increase in training sentences but slowed and eventually plateaued as thenumber grew. Median macro F1 scores were 0.800 with 10 training sentences, 0.880 with 20,0.903 with 50, and 0.971 with 100, compared to 0.992 when using the full training set of 214sentences. The results also highlight significant variability in performance due to the random
 318 319 320 321 322 323 324 	Impact of Training Set Size Figure 4 shows the results of the ablation study, with macro F1 scores of the instruction-tuned Llama 3.1 model as a function of the number of training sentences. Performance improved rapidly with the initial increase in training sentences but slowed and eventually plateaued as the number grew. Median macro F1 scores were 0.800 with 10 training sentences, 0.880 with 20, 0.903 with 50, and 0.971 with 100, compared to 0.992 when using the full training set of 214 sentences. The results also highlight significant variability in performance due to the random selection of sentence subsets, which decreased as the training set size increased.
 318 319 320 321 322 323 324 325 	Impact of Training Set Size Figure 4 shows the results of the ablation study, with macro F1 scores of the instruction-tuned Llama 3.1 model as a function of the number of training sentences. Performance improved rapidly with the initial increase in training sentences but slowed and eventually plateaued as the number grew. Median macro F1 scores were 0.800 with 10 training sentences, 0.880 with 20, 0.903 with 50, and 0.971 with 100, compared to 0.992 when using the full training set of 214 sentences. The results also highlight significant variability in performance due to the random selection of sentence subsets, which decreased as the training set size increased.

327	The performance of the instruction-tuned Llama 3.1 model was evaluated on the test set to assess
328	its generalizability to unseen data sampled from the same source distribution. Table 4 compares
329	the model's performance across aortic measurement sites between the validation and test sets.
330	The macro F1 score on the test set was 0.970, slightly lower than the 0.992 achieved on the
331	validation set. Measurement site F1 scores ranged from 0.923 to 1.000 on the test set, compared
332	to 0.971 to 1.000 on the validation set.
333	
334	Insights from Full Dataset Extraction
335	The complete chest CT radiology report dataset consisted of 356,690 reports from 140,645
336	unique patients. Following preprocessing, 74,483 sentences out of 6,960,729 (approximately
337	1.07%) were selected for extraction, consistent with the proportions observed in the labeled
338	datasets. After extraction using the instruction-tuned Llama 3.1, 49,387 radiology reports
339	(13.85%) contained at least one aortic measurement, showing higher rates of aortic measurement
340	reporting in males (18.51%) compared to females (9.50%). Table 5 summarizes the extraction
341	results by aortic measurement site. Measurement extraction rates across the aortic sites were
342	similar to those in the labeled datasets (Table 2).
343	
344	The largest median diameters were observed at the mid ascending aorta and the sinus of
345	Valsalva, measuring 39 mm (IQR 36-42) and 36 mm (IQR 32-40), respectively. Median
346	diameters decreased distally along the aorta, measuring 31 mm (IQR 28-34) at the aortic arch,
347	30 mm (IQR 27–34) at the proximal descending aorta, and 29 mm (IQR 25–34) at the mid

descending aorta. Ascending aortic dilation of at least 40 mm was reported in 8.69% of patients

349 (12,228/140,645), with 2.27% (3,193/140,645) reported to have a dilation of at least 45 mm,
350 0.66% (925/140,645) at least 50 mm, and 0.28% (393/140,645) at least 55 mm.

351

352 Discussion:

353 In this study, we describe our experiences developing a machine learning pipeline for extracting 354 aortic measurements from chest CT radiology reports. Among the models evaluated, the 355 instruction-tuned Llama 3.1 outperformed both the BERT-based models and the pretrained 356 Llama 3.1 baseline, achieving macro F1 scores of 0.992 on the validation set and 0.970 on the 357 test set. PubMedBERT achieved the best performance among the BERT-based models, 358 suggesting that pre-training on medical literature, making it better suited for understanding and 359 processing medical texts, such as chest CT radiology reports. The effectiveness of [NUM] 360 tokenization is likely attributed to its consistent numerical tokenization compared as compared to 361 the standard BERT WordPiece tokenizer, which fragments numerical expressions requiring that all fragments be correctly tagged³³. Among the Llama-based models, the instruction-tuned Llama 362 363 3.1 significantly outperformed the Llama 2 chat-tuned model and was marginally better than the 364 Llama 3 instruction-tuned model. Meta attributes Llama 3.1's superior performance to its enhanced reasoning capabilities and improved context length²⁹. These improvements appear to 365 366 have carried over in instruction-tuning, which allowed it to better handle the complexities of the 367 dataset and achieve higher accuracy in extracting aortic measurements from chest CT radiology 368 reports.

369

When applied to our extensive radiology report database, the model successfully extracted aortic measurements from 13.85% of reports, a rate consistent with both our labeled subset and prior

372	work assessing aortic measurement reporting in CT radiology reports ⁴⁰ . The extracted aortic
373	measurements and dilation rates similarly aligned with findings from previous studies ^{41,42} . The
374	resulting aortic measurement database is one of the largest of its kind, encompassing
375	measurements from nearly 50,000 CT scans and over 28,000 patients, representing a valuable
376	resource for advancing the study of aortic disease.
377	
378	Initial enthusiasm for the potential of large language models (LLMs) in named entity recognition
379	(NER) has recently been tempered. The expectation that general-domain LLMs could achieve
380	domain-specific NER through in-context learning has been challenged by multiple studies, where
381	fine-tuned BERT-based models consistently outperform LLMs ^{20,21,23} . Even with instruction-
382	tuning, LLMs have, at best, matched the performance of BERT-based models-a disappointing
383	outcome given their significantly larger parameter counts and the associated higher costs of fine-
384	tuning and inference ^{23,25,26} . Researchers have suggested that the relatively poor NER
385	performance of LLMs may stem from the limitations of their decoder-only transformer
386	architecture and next-token prediction pretraining objective, compared to BERT's encoder-only
387	architecture and masked language modeling pretraining objective ⁴³ . Our findings, however,
388	challenge this hypothesis. In our study, the instruction-tuned Llama 3.1 achieved near-perfect
389	performance on the NER task, surpassing the fine-tuned BERT-based models by what we
390	consider a substantial margin. In addition to its fantastic performance, Llama 3.1 offers several
391	additional advantages over BERT, including a much larger context length for analyzing longer
392	text segments and more human-interpretable outputs, which streamline error analysis.
393	

394 Despite these excellent results, additional work is needed to discern whether instruction-tuned 395 generative LLMs have become the new gold standard for NER. Our findings are based on a 396 single dataset, and the observed differences might be attributed to suboptimal fine-tuning of the 397 BERT models, rather than the inherent superiority of the Llama 3 architecture. Further studies 398 replicating these results across additional NER datasets is essential to substantiate these claims. 399 Nonetheless, the ability of Llama 3 models to achieve this level of performance suggests that 400 instruction-tuned generative LLMs hold significant promise for NER and could play a valuable 401 role in clinical NER.

402

403 A significant advantage of our proposed methodology is its adaptability. The framework is 404 agnostic to both the entities being extracted and the domain, enabling straightforward adaptations 405 to various NER tasks. Instruction-tuning requires relatively few annotated samples, and open-406 source annotation tools such as Label Studio facilitate efficient, collaborative annotation 407 processes. Frameworks like Hugging Face's Transformers library offer well-developed pipelines 408 for instruction-tuning general-domain LLMs, making them easily adaptable to diverse tasks. 409 However, several barriers remain to the broader adoption of these techniques. LLMs still demand 410 substantial computational resources for training and inference. For clinical projects, the 411 additional requirement for HIPAA-compliant hardware introduces further costs and complexity. 412 While existing pipelines are robust, they often require advanced coding and machine learning 413 expertise, which may be beyond the scope of many clinical researchers. As the field of LLMs 414 continues to evolve, these barriers are likely to diminish. Companies such as Microsoft and 415 OpenAI are actively developing HIPAA-compliant implementations of their LLMs, and costs are 416 expected to decrease as competition increases and the technology matures. If these trends persist,

417	we anticipate that access to LLM instruction-tuning will become increasingly democratized,
418	empowering clinical researchers to leverage these powerful tools.

419

420 Our study has several limitations. Both the validation and test sets are relatively small, with few 421 annotations, making the results susceptible to variability as one or two errors can significantly impact model performance. Additionally, selecting a subset of sentences for inference may have 422 423 led to the omission of relevant sentences when extracting measurements from the complete 424 radiology report dataset. The BERT-based models used in our analysis are known to be sensitive to seed values⁴⁴, which may have influenced their performance. Another limitation is the 425 426 potential lack of generalizability to newly collected data. The validation and test sets share a temporal distribution with the training set, and medical data is prone to domain drift over time⁴⁵. 427 428 This could limit the applicability of our findings to datasets collected in different time periods or 429 settings. We believe these limitations do not detract significantly from the overall value of our 430 findings. Replication of our study in different datasets and settings is needed to validate our 431 results and confirm the generalizability of our approach.

432

433 **Conclusion:**

In this study, we developed and evaluated a machine learning pipeline for extracting aortic
measurements from chest CT radiology reports. The instruction-tuned Llama model achieved the
best performance, surpassing state-of-the-art BERT-based models. Using this pipeline, we
created a large, comprehensive database of aortic measurements from radiology reports, offering
a valuable resource for aortic research. Our results highlight the potential of instruction-tuned
generative LLMs in the NER domain, with a generalizable workflow that requires few labeled

440	samples and	1 modest com	putational	resources.	As the	technolog	v matures.	this	process i	is
	building to the		parational	100001000.	I ID UID	toomo c	y mataion			-0

- 441 expected to become even more streamlined, enabling broader adoption in clinical research.
- 442

443 Acknowledgments

- 444 R.A. discloses support for the research of this work from the Yale Department of Surgery and the
- 445 National Heart, Lung, and Blood Institute (NHLBI) of the National Institutes of Health (NIH)
- 446 [grant number R01HL168473].
- 447

448 **Competing Interests**

- 449 All authors declare no financial or non-financial competing interests.
- 450
- 451 Author Contributions
- 452 Conceptualization: EE, CSO, RA.
- 453 Data Curation: EE, SD, MT, AN.
- 454 Formal Analysis: EE.
- 455 Investigation: EE.
- 456 Methodology: EE, CSO.
- 457 Project Administration: EE, CSO.
- 458 Resources: EBS, CSO.
- 459 Supervision: RA, CSO.
- 460 Writing Original Draft: EE, CSO.
- 461 Writing Review & Editing: CSO, RA, PV, EBS.
- 462 All authors reviewed the manuscript.
- 463
- 464 Data Availability

465	Stu	dy data are available upon reasonable request from the corresponding author, in accordance
466	wit	h institutional policies and any applicable data sharing or data use agreements.
467		
468	Co	de Availability
469	Th	e code used in this study is open source and freely available under the MIT license. It can be
470	acc	essed on GitHub at https://github.com/yalesurgeryresearch/RadTextExtractor/. This
471	rep	ository includes detailed documentation and examples to facilitate reproducibility and
472	ada	aptation for related research.
473		
474	Re	ferences:
475	1.	Isselbacher, E. M. et al. 2022 ACC/AHA Guideline for the Diagnosis and Management of
476		Aortic Disease: A Report of the American Heart Association/American College of
477		Cardiology Joint Committee on Clinical Practice Guidelines. Circulation 146, e334–e482
478		(2022).
479	2.	Munnangi, M. A Brief History of Named Entity Recognition. Preprint at
480		https://doi.org/10.48550/arXiv.2411.05057 (2024).
481	3.	Nunes, M., Bone, J., Ferreira, J. C. & Elvas, L. B. Health Care Language Models and Their
482		Fine-Tuning for Information Extraction: Scoping Review. JMIR Med. Inform. 12, e60164
483		(2024).
484	4.	Hu, M. et al. Advancing medical imaging with language models: featuring a spotlight on
485		ChatGPT. Phys. Med. Biol. 69, 10TR01 (2024).
486	5.	Tsuruoka, Y. & Tsujii, J. Boosting precision and recall of dictionary-based protein name
487		recognition. in Proceedings of the ACL 2003 workshop on Natural language processing in

- *biomedicine Volume 13* 41–48 (Association for Computational Linguistics, USA, 2003).
 doi:10.3115/1118958.1118964.
- 490 6. Hanisch, D., Fundel, K., Mevissen, H.-T., Zimmer, R. & Fluck, J. ProMiner: rule-based
- 491 protein and gene entity recognition. *BMC Bioinformatics* **6**, S14 (2005).
- 492 7. Collier, N., Nobata, C. & Tsujii, J. Extracting the names of genes and gene products with a
- 493 hidden Markov model. in Proceedings of the 18th conference on Computational linguistics -
- 494 *Volume 1* 201–207 (Association for Computational Linguistics, USA, 2000).
- doi:10.3115/990820.990850.
- 496 8. Kazama, J., Makino, T., Ohta, Y. & Tsujii, J. Tuning support vector machines for biomedical
- 497 named entity recognition. in *Proceedings of the ACL-02 workshop on Natural language*
- 498 *processing in the biomedical domain Volume 3* 1–8 (Association for Computational
- 499 Linguistics, USA, 2002). doi:10.3115/1118149.1118150.
- 500 9. Settles, B. Biomedical named entity recognition using conditional random fields and rich
- 501 feature sets. in *Proceedings of the International Joint Workshop on Natural Language*
- 502 *Processing in Biomedicine and its Applications* 104–107 (Association for Computational
- 503 Linguistics, USA, 2004).
- 504 10. Gu, Y. *et al.* Domain-Specific Language Model Pretraining for Biomedical Natural
- 505 Language Processing. ACM Trans. Comput. Healthc. 3, 1–23 (2022).
- 506 11. Lee, J. et al. BioBERT: a pre-trained biomedical language representation model for
- 507 biomedical text mining. *Bioinformatics* **36**, 1234–1240 (2020).
- 508 12. Khurshid, S. *et al.* Cohort design and natural language processing to reduce bias in electronic
- bealth records research. *Npj Digit. Med.* **5**, 1–14 (2022).

- 510 13. Singh, P. et al. One Clinician Is All You Need–Cardiac Magnetic Resonance Imaging
- 511 Measurement Extraction: Deep Learning Algorithm Development. *JMIR Med. Inform.* **10**,
- 512 e38178 (2022).
- 513 14. OpenAI et al. GPT-4 Technical Report. Preprint at
- 514 https://doi.org/10.48550/arXiv.2303.08774 (2024).
- 515 15. Touvron, H. *et al.* LLaMA: Open and Efficient Foundation Language Models. Preprint at
- 516 https://doi.org/10.48550/arXiv.2302.13971 (2023).
- 517 16. Kojima, T., Gu, S. (Shane), Reid, M., Matsuo, Y. & Iwasawa, Y. Large Language Models
- 518 are Zero-Shot Reasoners. *Adv. Neural Inf. Process. Syst.* **35**, 22199–22213 (2022).
- 519 17. Brown, T. B. et al. Language Models are Few-Shot Learners. Preprint at
- 520 https://doi.org/10.48550/arXiv.2005.14165 (2020).
- 521 18. Agrawal, M., Hegselmann, S., Lang, H., Kim, Y. & Sontag, D. Large Language Models are
- 522 Few-Shot Clinical Information Extractors. Preprint at
- 523 https://doi.org/10.48550/arXiv.2205.12689 (2022).
- 524 19. Hu, Y. et al. Improving large language models for clinical named entity recognition via
- prompt engineering. J. Am. Med. Inform. Assoc. ocad259 (2024) doi:10.1093/jamia/ocad259.
- 526 20. Wang, S. *et al.* GPT-NER: Named Entity Recognition via Large Language Models. Preprint
- 527 at https://doi.org/10.48550/arXiv.2304.10428 (2023).
- 528 21. Xie, T. et al. Empirical Study of Zero-Shot NER with ChatGPT. Preprint at
- 529 https://doi.org/10.48550/arXiv.2310.10035 (2023).
- 530 22. Chen, Q. *et al.* A systematic evaluation of large language models for biomedical natural
- 531 language processing: benchmarks, baselines, and recommendations. Preprint at
- 532 https://doi.org/10.48550/arXiv.2305.16326 (2024).

- 533 23. Xu, D. *et al.* Large Language Models for Generative Information Extraction: A Survey.
- 534 Preprint at https://doi.org/10.48550/arXiv.2312.17617 (2024).
- 535 24. Wei, J. et al. Finetuned Language Models Are Zero-Shot Learners. Preprint at
- 536 https://doi.org/10.48550/arXiv.2109.01652 (2022).
- 537 25. Keloth, V. K. et al. Advancing entity recognition in biomedicine via instruction tuning of
- large language models. *Bioinformatics* **40**, btae163 (2024).
- 539 26. Biana, J., Zhai, W., Huang, X., Zheng, J. & Zhu, S. VANER: Leveraging Large Language
- 540 Model for Versatile and Adaptive Biomedical Named Entity Recognition. Preprint at
- 541 https://doi.org/10.48550/arXiv.2404.17835 (2024).
- 542 27. Tkachenko, M., Malyuk, M., Holmanyuk, A. & Liubimov, N. Label Studio: Data labeling
 543 software. (2020).
- 544 28. Dubey, A. et al. The Llama 3 Herd of Models. Preprint at
- 545 https://doi.org/10.48550/arXiv.2407.21783 (2024).
- 546 29. Introducing Llama 3.1: Our most capable models to date. *Meta AI*
- 547 https://ai.meta.com/blog/meta-llama-3-1/.
- 548 30. Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. BERT: Pre-training of Deep
- 549 Bidirectional Transformers for Language Understanding. Preprint at
- 550 https://doi.org/10.48550/arXiv.1810.04805 (2019).
- 551 31. Lim, David. dslim/bert-base-NER · Hugging Face. https://huggingface.co/dslim/bert-base552 NER (2024).
- 553 32. Sang, E. F. T. K. & Meulder, F. D. Introduction to the CoNLL-2003 Shared Task: Language-
- 554 Independent Named Entity Recognition. Preprint at
- 555 https://doi.org/10.48550/arXiv.cs/0306050 (2003).

- 556 33. Loukas, L. *et al.* FiNER: Financial Numeric Entity Recognition for XBRL Tagging. Preprint
- 557 at https://doi.org/10.48550/arXiv.2203.06482 (2022).
- 558 34. Wolf, T. et al. HuggingFace's Transformers: State-of-the-art Natural Language Processing.
- 559 Preprint at https://doi.org/10.48550/arXiv.1910.03771 (2020).
- 560 35. Mosbach, M., Andriushchenko, M. & Klakow, D. On the Stability of Fine-tuning BERT:
- 561 Misconceptions, Explanations, and Strong Baselines. Preprint at
- 562 https://doi.org/10.48550/arXiv.2006.04884 (2021).
- 563 36. Loshchilov, I. & Hutter, F. Decoupled Weight Decay Regularization. Preprint at
- 564 https://doi.org/10.48550/arXiv.1711.05101 (2019).
- 37. Dettmers, T., Pagnoni, A., Holtzman, A. & Zettlemoyer, L. QLoRA: Efficient Finetuning of
 Quantized LLMs. *Adv. Neural Inf. Process. Syst.* 36, 10088–10115 (2023).
- 38. Hu, E. J. *et al.* LoRA: Low-Rank Adaptation of Large Language Models. Preprint at
 https://doi.org/10.48550/arXiv.2106.09685 (2021).
- 569 39. Daniel Han and Michael Han. unslothai/unsloth. Unsloth AI (2024).
- 570 40. Zamirpour, S. et al. Sex differences in ascending aortic size reporting and growth on chest
- 571 computed tomography and magnetic resonance imaging. *Clin. Imaging* **105**, 110021 (2024).
- 572 41. Benedetti, N. & Hope, M. D. Prevalence and Significance of Incidentally Noted Dilation of
- 573 the Ascending Aorta on Routine Chest Computed Tomography in Older Patients. J. Comput.
- 574 Assist. Tomogr. **39**, 109 (2015).
- 42. Mori, M. *et al.* Prevalence of Incidentally Identified Thoracic Aortic Dilations: Insights for
 Screening Criteria. *Can. J. Cardiol.* 35, 892–898 (2019).
- 577 43. Lu, Q. et al. Large Language Models Struggle in Token-Level Clinical Named Entity
- 578 Recognition. Preprint at https://doi.org/10.48550/arXiv.2407.00731 (2024).

- 579 44. Dodge, J. *et al.* Fine-Tuning Pretrained Language Models: Weight Initializations, Data
- 580 Orders, and Early Stopping. Preprint at https://doi.org/10.48550/arXiv.2002.06305 (2020).
- 581 45. Guo, L. L. *et al.* Systematic Review of Approaches to Preserve Machine Learning
- 582 Performance in the Presence of Temporal Dataset Shift in Clinical Medicine. *Appl. Clin.*
- 583 *Inform.* **12**, 808–815 (2021).

585 Tables:

586 Table 1. Train, validation and test dataset radiology report characteristics

	Train	Validation	Test
Radiology reports (N)	1002	504	504
CT type (n [%])			
CT chest without IV contrast	288 [28.7]	144 [28.6]	144 [28.6]
CT chest with IV contrast	196 [19.6]	98 [19.4]	98 [19.4]
CTA chest (PE) with IV contrast	172 [17.2]	86 [17.1]	86 [17.1]
CT chest, abdomen, pelvis with IV contrast	157 [15.7]	79 [15.7]	79 [15.7]
CT ED chest, abdomen, pelvis with IV contrast	27 [2.7]	14 [2.8]	14 [2.8]
CTA chest, abdomen, pelvis with and/or without IV contrast	24 [2.4]	12 [2.4]	12 [2.4]
CT chest, abdomen, pelvis without IV contrast	22 [2.2]	11 [2.2]	11 [2.2]
CTA chest with and/or without IV contrast	18 [1.8]	9 [1.8]	9 [1.8]
CT chest without IV contrast, high resolution	17 [1.7]	9 [1.8]	9 [1.8]
CTA chest, abdomen with and/or without IV contrast	16 [1.6]	8 [1.6]	8 [1.6]
CTA coronary	16 [1.6]	8 [1.6]	8 [1.6]
CT initial lung cancer screening	12 [1.2]	6 [1.2]	6 [1.2]
CT cardiac scoring without IV contrast	12 [1.2]	6 [1.2]	6 [1.2]
CT subsequent lung cancer screening	11 [1.1]	6 [1.2]	6 [1.2]
CT thoracic spine without IV contrast	7 [0.7]	4 [0.8]	4 [0.8]
CTA chest vascular with and/or without IV contrast/gated	7 [0.7]	4 [0.8]	4 [0.8]
Age (median [IQR])	66 [55-75]	65 [54-75]	66 [54-76]
Females (n [%])	490 [48.9]	272 [54.0]	259 [51.4]
Race			
White	778 [77.6]	384 [76.2]	382 [75.8]
Black or African American	117 [11.7]	67 [13.3]	78 [15.5]
Asian	11 [1.1]	4 [0.8]	8 [1.6]
American Indian or Native American	1 [0.1]	1 [0.2]	2 [0.4]
Native Hawaiian or Other Pacific Islander	2 [0.2]	3 [0.6]	1 [0.2]
Other	67 [6.7]	31 [6.2]	28 [5.6]
Missing	20 [2.0]	12 [2.4]	5 [1.0]

588 Table 2. Train, validation and test dataset annotation characteristics following

589 preprocessing

	Train	Validation	Test
Sentences in analysis (N)	214	103	91
Sentences with at least one annotation (n [%])	166 [77.6]	71 [68.9]	68 [74.7]
Sentences with annotations by measurement site (n [%])			
Annulus	25 [11.7]	13 [12.6]	10 [11.0]
Sinus of Valsalva	43 [20.1]	23 [22.3]	17 [18.7]
Sinotubular junction	27 [12.6]	13 [12.6]	9 [9.9]
Mid ascending	137 [64.0]	60 [58.3]	59 [64.8]
Ascending proximal to brachiocephalic	27 [12.6]	13 [12.6]	9 [9.9]
Top of Arch	32 [15.0]	17 [16.5]	12 [13.2]
Proximal descending	34 [15.9]	12 [11.7]	12 [13.2]
Mid Descending	40 [18.7]	20 [19.4]	14 [15.4]
Total annotations (N)	589	289	215
Annotation counts by measurement site (n [%])			
Annulus	49 [8.3]	26 [9.0]	20 [9.3]
Sinus of Valsalva	120 [20.4]	64 [22.1]	47 [21.9]
Sinotubular junction	44 [7.5]	22 [7.6]	13 [6.0]
Mid ascending	166 [28.2]	76 [26.3]	69 [32.1]
Ascending proximal to brachiocephalic	44 [7.5]	22 [7.6]	13 [6.0]
Top of Arch	49 [8.3]	29 [10.0]	17 [7.9]
Proximal descending	55 [9.3]	20 [6.9]	17 [7.9]
Mid Descending	62 [10.5]	30 [10.4]	19 [8.8]

591 Table 3. Comparison of model performance on validation set.

Model	Macro-averaged evaluation metric						
	Precision	Recall	F1				
Baseline							
Zero-shot Llama 3.1	0.898	0.535	0.663				
Few-shot Llama 3.1	0.792	0.903	0.838				
Fine-tuned BERT							
Fine-tuned BERT	0.832	0.880	0.851				
Fine-tuned PubMedBERT	0.901	0.940	0.919				
Fine-tuned BERT-NER	0.868	0.942	0.902				
Fine-tuned BERT + [Num]	0.855	0.895	0.870				
Fine-tuned PubMedBERT + [Num]	0.940	0.956	0.945				
Fine-tuned BERT-NER + [Num]	0.923	0.944	0.931				
Instruction-tuned Llama							
Instruction-tuned Llama 2	0.826	0.853	0.839				
Instruction-tuned Llama 3	0.973	0.994	0.982				
Instruction-tuned Llama 3.1	0.993	0.992	0.992				

592 Numbers in bold represent best performance per evaluation metric.

593 Table 4. Fine-tuned Llama 3.1 performance on validation and test sets by aortic

594 measurement site.

Measurement site	Validation set			Test set		
	Precision	Recall	F1	Precision	Recall	F1
Annulus	1.000	1.000	1.000	1.000	1.000	1.000
Sinus of Valsalva	1.000	1.000	1.000	1.000	1.000	1.000
Sinotubular junction	1.000	1.000	1.000	0.857	1.000	0.923
Mid ascending	1.000	0.973	0.986	1.000	0.985	0.992
Ascending proximal to brachiocephalic	1.000	1.000	1.000	0.929	1.000	0.963
Top of arch	1.000	0.962	0.980	1.000	1.000	1.000
Proximal descending	0.944	1.000	0.971	0.938	0.938	0.938
Mid descending	1.000	1.000	1.000	0.900	1.000	0.947
Macro- averaged	0.993	0.993	0.992	0.953	0.990	0.970

595 Numbers in bold represent best performance per evaluation metric.

596

Table 5. Complete dataset inference results by aortic measurement site.

Measurement Site	Reports with measurements	Percent of sentences analyzed with measurements (%)	Max Diameter (mm, median [IQR])
Annulus	(II) 7 072	9 49%	28 [25 7-30 3]
Sinus of Valsalva	12,620	16.94%	36 [32-40]
Sinotubular junction	7,621	10.23%	34 [30-37]
Mid ascending	44,472	59.71%	39 [36-42]
Ascending proximal to brachiocephalic	8,056	10.82%	35 [32-39]
Top of arch	9,865	13.24%	31 [28-34]
Proximal descending	8,886	11.93%	30 [27-34]
Mid descending	13,939	18.71%	29 [25-34]

599 Figure Legends:

- 600 Figure 1: Flowchart illustrating the selection and annotation process of radiology reports, divided
- 601 into training, validation, and testing sets.
- 602
- 603 Figure 2: Sample input and output. (A) Zero-shot prompt and (B) Few-shot prompt for Llama
- 604 models, illustrating the use of XML tags to delineate aortic measurement sites.

605

- 606 Figure 3: F1 Scores by Model. F1 scores for few-shot Llama 3.1, finetuned PubMedBERT +
- 607 [NUM], and instruction-tuned Llama 3.1.

608

Figure 4: Ablation Study. Macro F1 scores by number of training samples: 10, 25, 50, 100, 214.

A) Zero-shot prompt

Input:

Prompt: You will be provided with CT scan narratives detailing CT scan findings. Your task is to tag diameter measurements of the thoracic aorta in the provided CT narrative using the provided tags. Format each measurement as follows: <tag>>measurement</tag>>. The tags for each aortic anatomic location are listed below...

User: The sinus of Valsalva is dilated, measuring 4.2 cm.

Output:

Assistant: The sinus of Valsalva is dilated, measuring <SOV>4.2</SOV> cm.

B) Few-shot prompt

Input:

Prompt: You will be provided with CT scan narratives detailing CT scan findings. Your task is to tag diameter measurements of the thoracic aorta in the provided CT narrative using the provided tags. Format each measurement as follows: <tag>>nte tags. The tags for each aortic anatomic location are listed below...

User: Stably ectatic ascending aorta measuring up to 3.8 cm.

Assistant: Stably ectatic ascending aorta measuring up to <ASC>3.8</ASC> cm.

User: There is aneurysmal dilatation of the descending thoracic aorta measuring up to 3.5 cm.

Assistant: There is aneurysmal dilatation of the descending thoracic aorta measuring up to <DSC>3.5</DSC> cm.

User: The sinus of Valsalva is dilated, measuring 4.2 cm.

Output:

Assistant: The sinus of Valsalva is dilated, measuring <SOV>4.2</SOV> cm.

F1 Scores by Model

Macro F1 Scores by Number of Training Samples

