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Abstract: 23 

Chest computed tomography (CT) is essential for diagnosing and monitoring thoracic aortic 24 

dilations and aneurysms, conditions that place patients at risk of complications such as aortic 25 

dissection and rupture. However, aortic measurements in chest CT radiology reports are often 26 

embedded in free-text formats, limiting their accessibility for clinical care, quality improvement 27 

and research purposes. In this study, we developed a multi-method pipeline to extract structured 28 

aortic measurements from radiology reports, and compared the performance of fine-tuned 29 

BERT-based models with instruction-tuned Llama large language models (LLMs). Applying the 30 

best-performing method to a real-world large chest CT radiology report database, we generated a 31 

comprehensive aortic measurement dataset that facilitates big data aortic disease research.  32 
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Introduction: 33 

Chest computed tomography (CT) is essential for diagnosing and monitoring thoracic aortic 34 

dilations and aneurysms. These conditions, often asymptomatic, significantly increase the risk of 35 

life-threatening complications such as aortic dissection and rupture1. Frequently, thoracic aortic 36 

dilations are detected incidentally on chest CTs performed for unrelated clinical indications. 37 

Once diagnosed, chest CTs serve as the preferred modality for tracking aortic diameter changes 38 

over time and guiding surgical decision-making1. However, key diagnostic measures, including 39 

aortic diameters, are predominantly documented in free-text CT radiology reports, rendering 40 

them inaccessible in a structured format within most electronic health record systems.  41 

 42 

Extracting these measures in a structured form could make a substantial clinical impact. These 43 

structured data can be used to flag reports with incidental findings within the EHR software, 44 

drawing the attention of physicians and facilitating timely referrals to surgeons. This can prevent 45 

missed findings, improve the quality of care by monitoring referral rates, and adapt to evolving 46 

evidence-based medicine (EBM) guidelines that adjust surgical referral thresholds. Additionally, 47 

healthcare institutions can monitor surgical referral rates and ensure adherence to the most 48 

current EBM, enhancing patient outcomes and healthcare quality. From the research perspective, 49 

extracting these measures retrospectively in a large cohort of patients will enable researchers to 50 

study rates of incidental aortic dilation detection and analyze how aortic diameters evolve over 51 

time in affected patients. This structured data can also provide valuable epidemiological insights 52 

into the prevalence and risk factors associated with thoracic aortic dilations. 53 

 54 
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The task of extracting aortic diameters falls within the broader domain of information extraction, 55 

which is commonly addressed using natural language processing (NLP) techniques. Specifically, 56 

it requires word- or token-level classification, akin to named entity recognition (NER), where 57 

specific entities are identified and categorized within text. NER techniques have evolved rapidly 58 

in recent years, transitioning from hand-crafted rule-based approaches to feature-driven 59 

statistical models and, ultimately, to end-to-end deep learning models2. As a key application of 60 

NER, Biomedicine has been a central area of research3, with extensive work exploring its use in 61 

medical imaging4. Early studies relied on hand-crafted rules to identify entity mentions, often 62 

involving complex logic and requiring substantial domain expertise5,6. Later work employed 63 

more advanced classical machine learning techniques such as Hidden Markov Models7, Support 64 

Vector Machines8, and Conditional Random Fields9. While these methods improved 65 

performance, they still depended on manual feature extraction, a process heavily reliant on 66 

domain knowledge, as a prerequisite to classification.  67 

 68 

The advent of deep neural networks marked a paradigm shift in NER. Models such as Recurrent 69 

Neural Networks (RNNs) and Bidirectional Long Short-Term Memory (BiLSTM) networks 70 

achieved state-of-the-art performance while eliminating the need for manual feature engineering, 71 

enabling end-to-end learning directly from raw data. These models, in turn, were rapidly 72 

surpassed by pretrained language models like the Bidirectional Encoder Representations from 73 

Transformers (BERT) model, which leverage encoder-based transformer architectures to set new 74 

benchmarks in NER tasks. BERT and its domain specific variants, such as PubMedBERT10 and 75 

BioBERT11, have become the gold standard in NER. By fine-tuning on prelabeled datasets, these 76 

models achieve high performance in NER tasks with minimal reliance on additional domain 77 
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knowledge. These models have been widely adopted by the medical community for information 78 

extraction3, including significant effort to improve information extraction from radiology 79 

reports4.  For instance, Khurshid et al.12 developed Bio+Discharge Summary BERT, a fine-tuned 80 

BERT model for NER, to extract vital signs such as height, weight, and blood pressure from 81 

unstructured electronic health record (EHR) notes, reducing vital sign data missingness by 31%. 82 

Similarly, Singh et al.13 addressed a challenge closely related to ours, using a fine-tuned BERT 83 

model to extract 21 quantitative measures from cardiac magnetic resonance imaging. Their 84 

approach achieved a macro-average F1 score of 0.957, highlighting the strong performance of 85 

these models with minimal labeling effort. 86 

 87 

In recent years generative LLMs such as OpenAI’s GPT-3.5 and GPT-414, have transformed the 88 

field of natural language processing, breaking performance records across numerous 89 

benchmarking tasks. These models utilize a Transformer architecture scaled to hundreds of 90 

billions of parameters, enabling unprecedented contextual understanding and fluency in text 91 

generation. The introduction of smaller, open-source LLMs such as Meta’s Llama15, expanded 92 

research opportunities by making these technologies accessible to the research community 93 

enabling the development of tools for fine-tuning and inference on more modest hardware. The 94 

ability of pretrained LLMs to perform zero-shot16 and few-shot17 learning has allowed them to 95 

excel in many NLP tasks without extensive labeled data. Recognizing this potential, researchers 96 

have sought to apply similar approaches to biomedical NER18,19, hoping to reduce reliance on 97 

labeled training data while maintaining competitive performance. 98 

 99 
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In practice, pretrained LLMs have struggled to match the performance of fine-tuned BERT-100 

based models on NER tasks20,21. Instruction tuning, in contrast, has shown far greater 101 

potential22,23. Instruction tuning, or instruction fine-tuning, describes the process by which large 102 

language models undergo supervised fine-tuning to better follow instructions and improve 103 

performance on a given task24. An example of this technique is a study by Keloth et al.25, who 104 

developed BioNER-Llama 2 by instruction-tuning Llama 2-7B on three publicly available 105 

biomedical NER datasets focusing on diseases, chemicals and genes. BioNER-Llama 2 achieved 106 

performance comparable to fine-tuned PubMedBERT, with F1 scores ranging from 0.949 to 107 

0.956 on the test sets. Similarly, Bian et al.26 created the VANER model by instruction-tuning 108 

Llama 2-7B on eight biomedical NER datasets, reporting F1 scores between 0.77 and 0.94, 109 

consistent with fine-tuned BERT-based models. Notably, both VANER and BioNER-Llama 2 110 

demonstrated poor generalizability, with significantly reduced performance on previously unseen 111 

datasets. Additionally, these studies primarily focus on benchmark tasks, which, while useful for 112 

assessing baseline capabilities, may not reflect real-world complexities. he real-world 113 

performance of LLMs in NER applications, particularly in the biomedical domain, remains 114 

largely underexplored. 115 

 116 

The primary objective of this study was to develop an automated machine learning pipeline for 117 

extracting aortic measurements from chest CT radiology reports. To achieve this, we compared 118 

the performance of fine-tuned BERT-based models with generative LLMs. A secondary 119 

objective was to construct a comprehensive aortic measurement database by applying the 120 

pipeline to a large cohort of chest CT radiology reports from our institution. The generated 121 
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dataset will enable future investigations into patterns of aortic dilation detection and the 122 

progression of aortic disease in a hospital-based population. 123 

 124 

Methodology: 125 

This study was determined to be exempt from review by Yale University’s Institutional Review 126 

Board (IRB) under protocol number 2000037866 on May 3, 2024. 127 

 128 

Dataset 129 

We conducted an institutional search for chest CTs with corresponding radiology reports for 130 

patients aged 18 and older, performed between January 2013 and December 2023. The search 131 

encompassed 43 distinct CT protocols and yielded 363,423 radiology reports. Reports from CT 132 

protocols with fewer than 2,000 instances and reports without narrative content were excluded, 133 

resulting in a final dataset of 356,690 radiology reports across 16 CT protocols.  134 

 135 

A subset of 1,506 radiology reports was selected for manual annotation using stratified random 136 

sampling to ensure balanced representation across protocols. This subset was divided into 1,002 137 

reports for training (sampled at a 1:356 ratio) and 504 reports for validation and testing (sampled 138 

at a 1:712 ratio), ensuring that reports in the training set were distinct from the reports used for 139 

validation and testing to prevent information leakage. The narratives were annotated using Label 140 

Studio27 by two medical students and a postdoctoral researcher with an MD. To ensure 141 

consistency, all annotations were reviewed by the postdoctoral researcher. Thoracic aortic 142 

diameters were labeled at eight anatomical sites: the annulus, sinus of Valsalva, sinotubular 143 
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junction, mid ascending, ascending proximal to the brachiocephalic, top of the arch, proximal 144 

descending, and mid descending. 145 

 146 

Due to the limited number of aortic diameter annotations identified in the 504 reports intended 147 

for validation and testing (n=289 annotations), the reports designated for both validation and 148 

testing were instead allocated exclusively for validation. To create the testing set, an additional 149 

504 reports were sampled and annotated following the same protocol. Reports selected for 150 

training and validation were excluded from the pool when selecting the test set to avoid data 151 

leakage. This process resulted in 2,010 labeled reports, divided into training, validation, and 152 

testing sets with a 50:25:25 split. Figure 1 provides a flowchart illustrating the dataset selection 153 

process, while Table 1 presents the radiology reports and corresponding patient characteristics 154 

for each set. 155 

 156 

Data preprocessing 157 

To account for BERT’s token limit and ensure a fair comparison with Llama models, we opted to 158 

perform fine-tuning and inference on individual sentences rather than complete narratives. 159 

Because most sentences in the report narratives did not contain aortic measurements, splitting the 160 

reports into sentences allowed us to exclude irrelevant content, thereby improving label balance 161 

and significantly reducing fine-tuning and inference times. Sentence splitting was performed 162 

using the Python package NLTK. The first sentence of each report, as well as any sentence 163 

lacking a non-time or date numeric value, was excluded from analysis. Additionally, we retained 164 

only sentences containing at least one aorta-related keyword.  165 

 166 
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For fine-tuning BERT-based models, each aortic measurement site was assigned a numeric label 167 

between 1 and 8. Tokens within the span of a measurement were assigned the corresponding 168 

numeric label, while all other tokens were labeled as 0. This numerical vector served as the label 169 

for each sentence. For Llama models we used XML tags to delineate measurements in the target 170 

output, such as <SOV> and </SOV> for the sinus of Valsalva. If no measurements were present, 171 

the output remained identical to the input sentence. This annotation approach, similar to that 172 

employed by Keltoh et al.25, facilitates straightforward postprocessing. Figure 2 shows a sample 173 

input and output for Llama models.  174 

 175 

Baseline Model 176 

We used Meta’s Llama 3.1 instruction-tuned model with 8 billion (8B) parameters as a baseline 177 

model28. This 8B model was chosen for its strong benchmark performance relative to its size, 178 

which represents the upper limit of our virtual machine’s capacity for local fine-tuning. The 179 

instruction-tuned version was chosen over the base (pre-trained) version because it underwent 180 

several rounds of alignment, including supervised fine-tuning, rejection sampling, and direct 181 

preference optimization, which improved its instruction-following capability, quality, and 182 

safety29. The baseline model’s performance was further optimized through prompt engineering, 183 

following the methodology described by Hu et al.19. The prompt included a task description, 184 

labeling instructions based on the annotation guidelines, and additional instructions informed by 185 

error analysis conducted on the training set. We evaluated the baseline model’s zero-shot 186 

performance as well as few-shot performance using three pre-selected annotated samples from 187 

the training set. The selected prompt, as well as several annotated radiology report samples, are 188 

publicly available on GitHub at https://github.com/yalesurgeryresearch/RadTextExtractor. 189 
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 190 

BERT-based Models 191 

We fine-tuned six BERT-based models by combining three weight initialization strategies with 192 

two tokenization schemes. The weight initialization strategies included: (1) the original BERT 193 

model30, (2) BERT-NER31, a variant fine-tuned on the English CoNLL-2003 Named Entity 194 

Recognition dataset32, and (3) PubMedBERT10, pre-trained on PubMed abstracts and full-text 195 

articles from PubMed Central. The two tokenization schemes tested were: (1) the standard BERT 196 

tokenization and (2) a modified scheme in which numeric values were replaced with the unique 197 

[NUM] pseudo-token33.  198 

 199 

Fine-tuning was performed using the AutoModelForTokenClassification  class from the 200 

HuggingFace transformers library34, which adds a token classification head to the BERT 201 

architecture for mapping hidden states to output labels. The fine-tuning process adhered to the 202 

baseline scheme proposed by Mosbach et al.35. Each model was fine-tuned on the selected 203 

sentences from the training set over 20 epochs, using categorical cross-entropy loss. 204 

Optimization was conducted with the AdamW36 optimizer, employing a linear learning rate 205 

scheduler and a 10% warm-up phase. Hyperparameter tuning was conducted using grid search, 206 

testing learning rates of 1e-5, 2e-5, 5e-5 and 1e-4, along with batch sizes of 8, 16, and 32. A 207 

random seed was fixed during training to ensure reproducibility. Loss on the validation set was 208 

calculated after each epoch, and the epoch with the lowest validation loss was selected for each 209 

fine-tuning iteration.  210 

 211 

Llama Models 212 
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We compared the performance of three versions of Meta’s Llama models using instruction-213 

tuning: the Llama 2 chat-tuned model with 7 billion parameters, the Llama 3 instruction-tuned 214 

model with 8 billion parameters, and the Llama 3.1 instruction-tuned model with 8 billion 215 

parameters. To accommodate the instruction-tuning process on our virtual machine’s limited 216 

GPU RAM, we employed 4-bit Quantized Low-Rank Adaptation (QloRA)37. QLoRA builds on 217 

Low-Rank Adaptation (LoRA)38, a technique that significantly reduces the number of trainable 218 

parameters, by further quantizing model weights to 4-bit precision. This approach enables fine-219 

tuning of large language models on resource-constrained hardware while maintaining high 220 

performance. Additionally, we utilized Unsloth39, an open-source library that accelerates fine-221 

tuning through a custom backpropagation engine.  222 

 223 

Instruction-tuning for each model used the same prompt as the zero-shot baseline Llama 3.1 224 

model. Instruction-tuning was conducted on sentences from the training set over 5 epochs, using 225 

cross-entropy loss and an AdamW36 optimizer with a linear rate scheduler without a warm-up 226 

phase. A batch size of 1 was used for all trials. During fine-tuning, we zeroed-out the loss on the 227 

provided prompt, ensuring learning only on the model’s output. Validation loss was calculated 228 

after each epoch, and the epoch with the lowest validation loss was selected for each instruction-229 

tuning trial. Hyperparameter tuning was performed using grid search to optimize the learning 230 

rate, as well as LoRA’s rank, and alpha parameters. The learning rates tested were 2e-5, 5e-5, 231 

and 1e-4. Rank values included 16, 32, and 64, with alpha values set to rank multiplied by 1 or 2 232 

(e.g., for a rank of 16, the alpha values tested were 16 and 32). Sampling was disabled during 233 

inference to ensure deterministic and reproducible results. When labeling sentences, the model 234 

was provided with the prompt and a sentence as input and generated a labeled output. 235 
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 236 

Evaluation metrics 237 

Model performance was evaluated on the validation set using exact match macro-averaged 238 

precision, recall, and F1 scores across all aortic measurement sites, as well as site-specific 239 

precision, recall, and F1 scores. To simplify terminology, macro-averaged precision, recall, and 240 

F1 scores are referred to as "macro precision," "macro recall," and "macro F1," respectively. 241 

Performance metrics were calculated across the entire validation set, including sentences not 242 

selected for inference during preprocessing. The optimal model from the baseline models, 243 

BERT-based models, and Llama models was selected based on the highest macro F1 score on the 244 

validation set. 245 

 246 

Ablation study 247 

To evaluate the impact of training set size on model performance, we conducted an ablation 248 

study in which the optimal model was fine-tuned using subsets of 10, 25, 50, and 100 randomly 249 

selected sentences from the training set. To mitigate the effects of sentence selection, this process 250 

was repeated five times, each time using a different random seed to generate distinct sentence 251 

subsets. The median macro F1 score across the five trials was then compared to the performance 252 

of the model trained on the full training set. 253 

 254 

Following the ablation study, we evaluated the optimal model on the test set to assess its 255 

generalizability and potential real-world performance. Finally, inference was conducted on the 256 

entire radiology report cohort to create an aortic measurement database. This process was limited 257 

to sentences selected according to the criteria outlined in the preprocessing phase. Measurement 258 
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extraction rates, aortic dilation rates, and aortic diameter median and interquartile range (IQR) at 259 

each measurement site were analyzed as supplementary indicators of the model's real-world 260 

performance. 261 

 262 

Computational Resources and Framework 263 

All analyses were conducted on a HIPAA-compliant virtual machine hosted by Yale’s Spinup 264 

service, utilizing Amazon Elastic Cloud Compute (EC2). The environment comprised an 265 

Amazon AWS G4 instance with 4 vCPUs, 16 GB of RAM, and an NVIDIA T4 GPU with 16 GB 266 

of GPU memory. GPU acceleration was facilitated using CUDA (v12.4). Fine-tuning and 267 

inference were performed using Python (v3.9.13) with the following key libraries: PyTorch 268 

(v2.3.0), Hugging Face Transformers (v4.43.3), and Unsloth (v2024.8). 269 

 270 

The code for data preprocessing, model fine-tuning, and evaluation is available in a GitHub 271 

repository at https://github.com/yalesurgeryresearch/RadTextExtractor. Due to the presence of 272 

protected health information in the radiology reports, the datasets generated and analyzed in this 273 

study, along with the fine-tuned models, are not publicly available. However, they can be 274 

obtained from the corresponding author upon reasonable request, in accordance with institutional 275 

policies and any applicable data access agreements. 276 

 277 

Results: 278 

Following preprocessing, the training dataset used for fine-tuning consisted of 214 out of 19,844 279 

sentences (1.08%), of which 166 (77.6%) contained at least one annotation. The training set 280 

included a total of 589 annotations, with a median of 52 annotations per measurement site 281 
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(range: 44 to 166). The validation set contained 103 out of 9,505 sentences (1.08%) selected for 282 

inference, of which 71 (68.9%) included at least one annotation. All sentences with annotations 283 

in the validation set were included in the inference subset, which had a total of 289 annotations, 284 

with a median of 25.5 annotations per measurement site (range: 20 to 76). The test set comprised 285 

91 out of 9,664 sentences (0.94%) selected for inference, with 68 (74.7%) containing at least one 286 

annotation. Similar to the validation set, all sentences with annotations in the test set were 287 

included in the inference subset, which contained 215 annotations, with a median of 18 288 

annotations per measurement site (range: 13 to 69). A summary of the annotation characteristics 289 

for the training, validation, and test datasets after preprocessing is provided in Table 2. 290 

 291 

Model Performance Comparison 292 

The performance of the baseline Llama 3.1 models, fine-tuned BERT-based models, and 293 

instruction-tuned Llama models on the validation set is summarized in Table 3. The few-shot 294 

Llama 3.1 was the best performing baseline model, besting the zero-shot model with a macro F1 295 

score of 0.838 compared to 0.663. However, both baseline models were surpassed by all fine-296 

tuned BERT-based models and instruction-tuned Llama models.  297 

 298 

The best performance among the BERT-based models was achieved by the fine-tuned 299 

PubMedBERT with [NUM] tokenization, which attained a macro F1 score of 0.945. Numeric 300 

tokenization using a [NUM] pseudo-token consistently outperformed the standard tokenization 301 

technique across all three models, and the fine-tuned PubMedBERT was the best performing 302 

model in both the standard and [NUM] tokenization.  303 

 304 
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The instruction-tuned Llama 3.1 delivered the highest overall performance, achieving a near-305 

perfect macro F1 score of 0.992, with a macro precision of 0.993 and macro recall of 0.992. The 306 

instruction-tuned Llama 3 followed closely with a macro F1 score of 0.982. Notably, the 307 

instruction-tuned Llama 2 achieved a macro F1 of 0.839, performance comparable to the few-308 

shot baseline model and significantly lower than the top-performing BERT-based models. 309 

 310 

Figure 3 compares the distributions of F1 scores across measurement sites for the few-shot 311 

Llama 3.1, PubMedBERT with [NUM] tokenization, and the instruction-tuned Llama 3.1. The 312 

few-shot Llama 3.1 and PubMedBERT models showed significant variability in F1 scores across 313 

different measurement sites. In contrast, the instruction-tuned Llama 3.1 demonstrated consistent 314 

performance, achieving an F1 score of at least 0.971 across all sites. 315 

 316 

Impact of Training Set Size 317 

Figure 4 shows the results of the ablation study, with macro F1 scores of the instruction-tuned 318 

Llama 3.1 model as a function of the number of training sentences. Performance improved 319 

rapidly with the initial increase in training sentences but slowed and eventually plateaued as the 320 

number grew. Median macro F1 scores were 0.800 with 10 training sentences, 0.880 with 20, 321 

0.903 with 50, and 0.971 with 100, compared to 0.992 when using the full training set of 214 322 

sentences. The results also highlight significant variability in performance due to the random 323 

selection of sentence subsets, which decreased as the training set size increased. 324 

 325 

Assessing Model Generalizability 326 
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The performance of the instruction-tuned Llama 3.1 model was evaluated on the test set to assess 327 

its generalizability to unseen data sampled from the same source distribution. Table 4 compares 328 

the model’s performance across aortic measurement sites between the validation and test sets. 329 

The macro F1 score on the test set was 0.970, slightly lower than the 0.992 achieved on the 330 

validation set. Measurement site F1 scores ranged from 0.923 to 1.000 on the test set, compared 331 

to 0.971 to 1.000 on the validation set. 332 

 333 

Insights from Full Dataset Extraction 334 

The complete chest CT radiology report dataset consisted of 356,690 reports from 140,645 335 

unique patients. Following preprocessing, 74,483 sentences out of 6,960,729 (approximately 336 

1.07%) were selected for extraction, consistent with the proportions observed in the labeled 337 

datasets. After extraction using the instruction-tuned Llama 3.1, 49,387 radiology reports 338 

(13.85%) contained at least one aortic measurement, showing higher rates of aortic measurement 339 

reporting in males (18.51%) compared to females (9.50%). Table 5 summarizes the extraction 340 

results by aortic measurement site. Measurement extraction rates across the aortic sites were 341 

similar to those in the labeled datasets (Table 2). 342 

 343 

The largest median diameters were observed at the mid ascending aorta and the sinus of 344 

Valsalva, measuring 39 mm (IQR 36–42) and 36 mm (IQR 32–40), respectively. Median 345 

diameters decreased distally along the aorta, measuring 31 mm (IQR 28–34) at the aortic arch, 346 

30 mm (IQR 27–34) at the proximal descending aorta, and 29 mm (IQR 25–34) at the mid 347 

descending aorta. Ascending aortic dilation of at least 40 mm was reported in 8.69% of patients 348 
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(12,228/140,645), with 2.27% (3,193/140,645) reported to have a dilation of at least 45 mm, 349 

0.66% (925/140,645) at least 50 mm, and 0.28% (393/140,645) at least 55 mm. 350 

 351 

Discussion: 352 

In this study, we describe our experiences developing a machine learning pipeline for extracting 353 

aortic measurements from chest CT radiology reports. Among the models evaluated, the 354 

instruction-tuned Llama 3.1 outperformed both the BERT-based models and the pretrained 355 

Llama 3.1 baseline, achieving macro F1 scores of 0.992 on the validation set and 0.970 on the 356 

test set. PubMedBERT achieved the best performance among the BERT-based models, 357 

suggesting that pre-training on medical literature , making it better suited for understanding and 358 

processing medical texts, such as chest CT radiology reports. The effectiveness of [NUM] 359 

tokenization is likely attributed to its consistent numerical tokenization compared as compared to 360 

the standard BERT WordPiece tokenizer, which fragments numerical expressions requiring that 361 

all fragments be correctly tagged33. Among the Llama-based models, the instruction-tuned Llama 362 

3.1 significantly outperformed the Llama 2 chat-tuned model and was marginally better than the 363 

Llama 3 instruction-tuned model. Meta attributes Llama 3.1’s superior performance to its 364 

enhanced reasoning capabilities and improved context length29. These improvements appear to 365 

have carried over in instruction-tuning, which allowed it to better handle the complexities of the 366 

dataset and achieve higher accuracy in extracting aortic measurements from chest CT radiology 367 

reports. 368 

 369 

When applied to our extensive radiology report database, the model successfully extracted aortic 370 

measurements from 13.85% of reports, a rate consistent with both our labeled subset and prior 371 
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work assessing aortic measurement reporting in CT radiology reports40. The extracted aortic 372 

measurements and dilation rates similarly aligned with findings from previous studies41,42. The 373 

resulting aortic measurement database is one of the largest of its kind, encompassing 374 

measurements from nearly 50,000 CT scans and over 28,000 patients, representing a valuable 375 

resource for advancing the study of aortic disease. 376 

 377 

Initial enthusiasm for the potential of large language models (LLMs) in named entity recognition 378 

(NER) has recently been tempered. The expectation that general-domain LLMs could achieve 379 

domain-specific NER through in-context learning has been challenged by multiple studies, where 380 

fine-tuned BERT-based models consistently outperform LLMs20,21,23. Even with instruction-381 

tuning, LLMs have, at best, matched the performance of BERT-based models—a disappointing 382 

outcome given their significantly larger parameter counts and the associated higher costs of fine-383 

tuning and inference23,25,26. Researchers have suggested that the relatively poor NER 384 

performance of LLMs may stem from the limitations of their decoder-only transformer 385 

architecture and next-token prediction pretraining objective, compared to BERT’s encoder-only 386 

architecture and masked language modeling pretraining objective43. Our findings, however, 387 

challenge this hypothesis. In our study, the instruction-tuned Llama 3.1 achieved near-perfect 388 

performance on the NER task, surpassing the fine-tuned BERT-based models by what we 389 

consider a substantial margin. In addition to its fantastic performance, Llama 3.1 offers several 390 

additional advantages over BERT, including a much larger context length for analyzing longer 391 

text segments and more human-interpretable outputs, which streamline error analysis.  392 

 393 
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Despite these excellent results, additional work is needed to discern whether instruction-tuned 394 

generative LLMs have become the new gold standard for NER. Our findings are based on a 395 

single dataset, and the observed differences might be attributed to suboptimal fine-tuning of the 396 

BERT models, rather than the inherent superiority of the Llama 3 architecture. Further studies 397 

replicating these results across additional NER datasets is essential to substantiate these claims. 398 

Nonetheless, the ability of Llama 3 models to achieve this level of performance suggests that 399 

instruction-tuned generative LLMs hold significant promise for NER and could play a valuable 400 

role in clinical NER. 401 

 402 

A significant advantage of our proposed methodology is its adaptability. The framework is 403 

agnostic to both the entities being extracted and the domain, enabling straightforward adaptations 404 

to various NER tasks. Instruction-tuning requires relatively few annotated samples, and open-405 

source annotation tools such as Label Studio facilitate efficient, collaborative annotation 406 

processes. Frameworks like Hugging Face’s Transformers library offer well-developed pipelines 407 

for instruction-tuning general-domain LLMs, making them easily adaptable to diverse tasks. 408 

However, several barriers remain to the broader adoption of these techniques. LLMs still demand 409 

substantial computational resources for training and inference. For clinical projects, the 410 

additional requirement for HIPAA-compliant hardware introduces further costs and complexity. 411 

While existing pipelines are robust, they often require advanced coding and machine learning 412 

expertise, which may be beyond the scope of many clinical researchers. As the field of LLMs 413 

continues to evolve, these barriers are likely to diminish. Companies such as Microsoft and 414 

OpenAI are actively developing HIPAA-compliant implementations of their LLMs, and costs are 415 

expected to decrease as competition increases and the technology matures. If these trends persist, 416 
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we anticipate that access to LLM instruction-tuning will become increasingly democratized, 417 

empowering clinical researchers to leverage these powerful tools. 418 

 419 

Our study has several limitations. Both the validation and test sets are relatively small, with few 420 

annotations, making the results susceptible to variability as one or two errors can significantly 421 

impact model performance. Additionally, selecting a subset of sentences for inference may have 422 

led to the omission of relevant sentences when extracting measurements from the complete 423 

radiology report dataset. The BERT-based models used in our analysis are known to be sensitive 424 

to seed values44, which may have influenced their performance. Another limitation is the 425 

potential lack of generalizability to newly collected data. The validation and test sets share a 426 

temporal distribution with the training set, and medical data is prone to domain drift over time45. 427 

This could limit the applicability of our findings to datasets collected in different time periods or 428 

settings. We believe these limitations do not detract significantly from the overall value of our 429 

findings. Replication of our study in different datasets and settings is needed to validate our 430 

results and confirm the generalizability of our approach. 431 

 432 

Conclusion: 433 

In this study, we developed and evaluated a machine learning pipeline for extracting aortic 434 

measurements from chest CT radiology reports. The instruction-tuned Llama model achieved the 435 

best performance, surpassing state-of-the-art BERT-based models. Using this pipeline, we 436 

created a large, comprehensive database of aortic measurements from radiology reports, offering 437 

a valuable resource for aortic research. Our results highlight the potential of instruction-tuned 438 

generative LLMs in the NER domain, with a generalizable workflow that requires few labeled 439 
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samples and modest computational resources. As the technology matures, this process is 440 

expected to become even more streamlined, enabling broader adoption in clinical research. 441 
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Tables: 585 

Table 1. Train, validation and test dataset radiology report characteristics  586 

 Train  Validation Test 
Radiology reports (N) 1002 504 504 

CT type (n [%]) 
  CT chest without IV contrast 
  CT chest with IV contrast 
  CTA chest (PE) with IV contrast 
  CT chest, abdomen, pelvis with IV contrast 
  CT ED chest, abdomen, pelvis with IV contrast 
  CTA chest, abdomen, pelvis with and/or without IV contrast 
  CT chest, abdomen, pelvis without IV contrast 
  CTA chest with and/or without IV contrast 
  CT chest without IV contrast, high resolution 
  CTA chest, abdomen with and/or without IV contrast 
  CTA coronary 
  CT initial lung cancer screening 
  CT cardiac scoring without IV contrast 
  CT subsequent lung cancer screening 
  CT thoracic spine without IV contrast 
  CTA chest vascular with and/or without IV contrast/gated 

 
288 [28.7] 
196 [19.6] 
172 [17.2] 
157 [15.7] 
27 [2.7] 
24 [2.4] 
22 [2.2] 
18 [1.8] 
17 [1.7] 
16 [1.6] 
16 [1.6] 
12 [1.2] 
12 [1.2] 
11 [1.1] 
7 [0.7] 
7 [0.7] 

 
144 [28.6] 
98 [19.4] 
86 [17.1] 
79 [15.7] 
14 [2.8] 
12 [2.4] 
11 [2.2] 
9 [1.8] 
9 [1.8] 
8 [1.6]  
8 [1.6] 
6 [1.2] 
6 [1.2] 
6 [1.2] 
4 [0.8] 
4 [0.8] 

 
144 [28.6] 
98 [19.4] 
86 [17.1] 
79 [15.7] 
14 [2.8] 
12 [2.4] 
11 [2.2] 
9 [1.8] 
9 [1.8] 
8 [1.6]  
8 [1.6] 
6 [1.2] 
6 [1.2] 
6 [1.2] 
4 [0.8] 
4 [0.8] 

Age (median [IQR]) 66 [55-75] 65 [54-75] 66 [54-76] 

Females (n [%]) 490 [48.9] 272 [54.0] 259 [51.4] 

Race 
  White 
  Black or African American 
  Asian 
  American Indian or Native American 
  Native Hawaiian or Other Pacific Islander 
  Other 
  Missing 

 
778 [77.6] 
117 [11.7] 
11 [1.1] 
1 [0.1] 
2 [0.2] 
67 [6.7] 
20 [2.0] 

 
384 [76.2] 
67 [13.3] 
4 [0.8] 
1 [0.2] 
3 [0.6] 
31 [6.2] 
12 [2.4] 

 
382 [75.8] 
78 [15.5] 
8 [1.6] 
2 [0.4] 
1 [0.2] 
28 [5.6] 
5 [1.0] 

  587 
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Table 2. Train, validation and test dataset annotation characteristics following 588 

preprocessing 589 

 Train  Validation Test 
Sentences in analysis (N) 214 103 91 

Sentences with at least one annotation (n [%]) 166 [77.6] 71 [68.9] 68 [74.7] 

Sentences with annotations by measurement site (n [%]) 
  Annulus 
  Sinus of Valsalva 
  Sinotubular junction 
  Mid ascending 
  Ascending proximal to brachiocephalic 
  Top of Arch 
  Proximal descending 
  Mid Descending 

 
25 [11.7] 
43 [20.1] 
27 [12.6] 
137 [64.0] 
27 [12.6] 
32 [15.0] 
34 [15.9] 
40 [18.7] 

 
13 [12.6] 
23 [22.3] 
13 [12.6] 
60 [58.3] 
13 [12.6] 
17 [16.5] 
12 [11.7] 
20 [19.4] 

 
10 [11.0] 
17 [18.7] 
9 [9.9] 
59 [64.8] 
9 [9.9] 
12 [13.2] 
12 [13.2] 
14 [15.4] 

Total annotations (N) 589 289 215 

Annotation counts by measurement site (n [%]) 
  Annulus 
  Sinus of Valsalva 
  Sinotubular junction 
  Mid ascending 
  Ascending proximal to brachiocephalic 
  Top of Arch 
  Proximal descending 
  Mid Descending 

 
49 [8.3] 
120 [20.4] 
44 [7.5] 
166 [28.2] 
44 [7.5] 
49 [8.3] 
55 [9.3] 
62 [10.5] 

 
26 [9.0] 
64 [22.1] 
22 [7.6] 
76 [26.3] 
22 [7.6] 
29 [10.0] 
20 [6.9] 
30 [10.4] 

 
20 [9.3] 
47 [21.9] 
13 [6.0] 
69 [32.1] 
13 [6.0] 
17 [7.9] 
17 [7.9] 
19 [8.8] 
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Table 3. Comparison of model performance on validation set. 591 

Model Macro-averaged evaluation metric 
 Precision Recall F1 

Baseline 

Zero-shot Llama 3.1  0.898 0.535 0.663 

Few-shot Llama 3.1 0.792 0.903 0.838 

Fine-tuned BERT 

Fine-tuned BERT 0.832 0.880 0.851 

Fine-tuned PubMedBERT 0.901 0.940 0.919 

Fine-tuned BERT-NER 0.868 0.942 0.902 

Fine-tuned BERT + [Num]  0.855 0.895 0.870 

Fine-tuned PubMedBERT + [Num]  0.940 0.956 0.945 

Fine-tuned BERT-NER + [Num]  0.923 0.944 0.931 

Instruction-tuned Llama 

Instruction-tuned Llama 2 0.826 0.853 0.839 

Instruction-tuned Llama 3 0.973 0.994 0.982 

Instruction-tuned Llama 3.1 0.993 0.992 0.992 

Numbers in bold represent best performance per evaluation metric.  592 

All rights reserved. No reuse allowed without permission. 
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for thisthis version posted December 26, 2024. ; https://doi.org/10.1101/2024.12.23.24319567doi: medRxiv preprint 

https://doi.org/10.1101/2024.12.23.24319567


 

31 

 

Table 4. Fine-tuned Llama 3.1 performance on validation and test sets by aortic 593 

measurement site. 594 

Measurement site Validation set Test set 
 Precision Recall F1 Precision Recall F1 
Annulus 1.000 1.000 1.000 1.000 1.000 1.000 

Sinus of Valsalva 1.000 1.000 1.000 1.000 1.000 1.000 

Sinotubular junction 1.000 1.000 1.000 0.857 1.000 0.923 

Mid ascending 1.000 0.973 0.986 1.000 0.985 0.992 

Ascending proximal to 
brachiocephalic 

1.000 1.000 1.000 0.929 1.000 0.963 

Top of arch 1.000 0.962 0.980 1.000 1.000 1.000 

Proximal descending 0.944 1.000 0.971 0.938 0.938 0.938 

Mid descending 1.000 1.000 1.000 0.900 1.000 0.947 

Macro- averaged 0.993 0.993 0.992 0.953 0.990 0.970 

Numbers in bold represent best performance per evaluation metric. 595 

 596 

Table 5. Complete dataset inference results by aortic measurement site. 597 

Measurement Site Reports with 
measurements  
(n) 

Percent of sentences 
analyzed with 
measurements (%) 

Max Diameter  
(mm, median [IQR]) 

Annulus 7,072  9.49% 28 [25.7-30.3] 

Sinus of Valsalva 12,620 16.94% 36 [32-40] 

Sinotubular junction 7,621 10.23% 34 [30-37] 

Mid ascending 44,472  59.71% 39 [36-42] 

Ascending proximal to 
brachiocephalic 

8,056 10.82% 35 [32-39] 

Top of arch 9,865 13.24% 31 [28-34] 

Proximal descending 8,886 11.93% 30 [27-34] 

Mid descending 13,939 18.71% 29 [25-34] 
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Figure Legends: 599 

Figure 1: Flowchart illustrating the selection and annotation process of radiology reports, divided 600 

into training, validation, and testing sets. 601 

 602 

Figure 2: Sample input and output. (A) Zero-shot prompt and (B) Few-shot prompt for Llama 603 

models, illustrating the use of XML tags to delineate aortic measurement sites. 604 

 605 

Figure 3: F1 Scores by Model. F1 scores for few-shot Llama 3.1, finetuned PubMedBERT + 606 

[NUM], and instruction-tuned Llama 3.1. 607 

 608 

Figure 4: Ablation Study. Macro F1 scores by number of training samples: 10, 25, 50, 100, 214. 609 
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