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Abstract

Breast  cancer  research  benefits  from  a  substantial  collection  of  gene  expression 

datasets that are commonly integrated to increase analytical power. Gene expression 

batch  effects  arising  between  experimental  batches,  where  signal  differences 

confound true biological variation, must be addressed when integrating datasets and 

several  approaches  exist  to  address  these  technical  differences.   This  brief 

communication study clearly demonstrates that popular batch correction techniques 

can  significantly  distort  key  biomarker  expression  signals.  Through  the 

implementation of ComBat batch correction and evaluation of integrated expression 

values, we profile the extent of these distortions and consider an additional mitigatory 

batch correction step. We demonstrate that leveraging a priori knowledge of sample 

molecular subtype classification can optimally remove batch effect distortion while 

preserving key biomarker expression variation and transcriptional legitimacy. To the 

best of our knowledge, this study presents the first analysis of the interplay between 

dataset molecular composition and the  concomitant robustness of integrated, batch-

corrected biological expression signal.
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Main text 

The  reliability  and  robustness  of  oncology  gene  expression  profiling  studies  are 

affected by the size and quality of available sample data. Sample count has a major 

impact on the reliability of clinical gene expression analyses, yet the size of most 

previous  studies  has  been  driven  by  sample  availability  and  cost.   Nonetheless, 

enhanced biological insight can be empowered by integrating discrete datasets into a 

larger  meta-dataset.  The  improved  statistical  power  of  downstream  integrated 

analysis has been demonstrated1–6 and leveraged to identify and categorise molecular 

events within both breast cancer7 and the wider oncological research landscape7–10 that 

may be  miscategorised or  undetectable  in  smaller  datasets.   Direct  integration of 

probe or transcript-level expression data from multiple studies is therefore potentially 

very  powerful  but  technical  batch-effects,  manifesting  both  within  and  between 

studies, must be addressed before initiating integrated analysis1–3,11–14.  Several groups 

have investigated optimal  batch correction approaches,  where expression data  are 

augmented to remove batch effects while ensuring the maximal retention of signals 

representative of true biological variation.  To this end, ourselves and others have 

previously stated that breast cancer datasets should only be integrated where they are 

suitably  ‘similar’2,  but  enhanced  understanding  of  these  fundamental  issues  still 

appear elusive many years later. Additionally, we have cautioned that the molecular 

composition of breast cancer expression data does not accurately reflect breast cancer 

heterogeneity  at  the  population  level15,  and  have  previously  highlighted  that 

integrating  datasets  with  vastly  varying  molecular  compositions  can  dramatically 

reduce the accuracy of prognosis predictions2.  

Batch-effect correction has gained acceptance as a necessary dataset integration 

step  but  there  remains  little  focus  on  the  potential  interplay  between  sample 

molecular  subtype composition and batch correction robustness.  In this  study,  we 

explore  the  effect  of  ComBat16 batch  correction  on  fidelity  of  key  breast  cancer 

biomarker expression signals, and show that consideration of molecular heterogeneity 

is required to ensure the optimal preservation of vital gene expression signal integrity. 
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 METABRIC data were collected between 1977 and 2005 from five centres in the UK 

and  Canada  and  packaged  as  two  stand-alone  discovery  (n=997)  and  validation 

(n=995)17  annotated expression datasets.  The potential  integration of these into a 

single 1992 sample dataset is of obvious analytical benefit in downstream molecular 

subtype  and  novel  biomarker  discovery  pipeline  workflows18,19.   However,  the 

existence of strong batch effects between the discovery and validation datasets has 

been cautioned against in published studies18,20,21. 

As described, effective batch correction removes technical differences without 

undesirable  further  modification  of  the  biological  signal.   In  this  brief 

communication,  we  evaluate  the  performance  of  several  different  ComBat 

implementations  on  expression  values  of  the  ILMN_1678535  (ESR1)22, 

ILMN_2352131  (ERBB2)23and ILMN_1680955  (AURKA)24  probes.  These  genes 

comprise the SCMGENE subtype classification model25 and are recognised as key 

breast cancer biomarkers of hormonal signalling and proliferation25,26.  To investigate 

and illustrate the augmentation of these expression values during batch correction, we 

compare  biomarker  expression  within  the  canonical  PAM50  molecular  subtypes 

(Basal, Luminal A, Luminal B, Her2+ and Normal Breast-like) between METABRIC 

discovery and validation datasets.   Significant expression differences are expected 

between uncorrected  data  given the  acknowledged presence  of  batch  effects  and, 

recognising sample variation as a sum of technical and biological differences,  insight 

into the relative effectiveness of each ComBat approach is gained by comparing post-

correction expression within each molecular subtype class.  Substantial inter-sample 

molecular  differences  are  encapsulated  within  PAM50  subtype  assignment,  and 

minimisation  of  significant  variation  within  subtype  classes  therefore  acts  as  an 

appropriate proxy for assessing and comparing batch correction efficacy.

In this study, we compare the effect of four different ComBat implementations 

on biomarker expression.  ComBat implements a location-scale (LS) method, which 

models expression mean and variance within each batch, before adjusting expression 

according to these models. Default parametric correction assumes that the location 

batch effect variables originate from the same normal distribution and  scale effect 
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variables  from  the  same  inverse  gamma  distribution.  Non-parametric  correction, 

which uses a Monte Carlo integration-based technique to estimate the location and 

scale batch effect parameters27 is also evaluated.  In addition to these parametric and 

non-parametric  corrections,  we  include  two  approaches  that  account  for  dataset 

molecular  heterogeneity  by leveraging  a priori  PAM50 subtype  assignment.   We 

investigate including PAM50 molecular subtype as a defined covariate in the model 

used by ComBat and additionally introduce a further approach that leverages a pre-

correction  subtype  stratification  of  samples.   Subtype-stratified  batch  correction 

involves pooling samples of each molecular subtype from each batch and correcting 

each PAM50 molecular subtype group separately.

Transcriptome  biomarker  fidelity,  represented  as  a  minimisation  of  within-

subtype sample expression difference following correction,  is clearly enhanced when 

sample molecular heterogeneity is considered during batch correction.  Statistically 

significant  (two-sided Mann-Whitney-Wilcoxon test  followed by Holm-Bonferroni 

correction) Aurora Kinase A (AURKA) expression (figure 1A) differences persists in 

both  Luminal  A  (parametric  p=.001,  non-parametric  p=.001)  and  Luminal  B 

(parametric p<.001, non-parametric p<.001) samples following both parametric and 

non-parametric ComBat correction. In contrast, both a priori PAM50 batch correction 

approaches  remove  technical  differences  and  result  in  no  significant  population 

expression differences between discovery and validation sample groups. The benefit 

of leveraging molecular subtype assignment is further demonstrated with Oestrogen 

receptor alpha (ESR1) expression (figure 1B).  Rather disturbingly, uncorrected basal 

samples display no significant population difference but have significant population 

expression  differences  introduced  through  parametric  (p<.001),  non-parametric 

(p<.001) and PAM50 covariate correction (p<.001).  HER2 samples retain differences 

following all  four parametric (p<.001), non-parametric (p<.001), PAM50 stratified 

(p=.019) and PAM50 covariate  (p<.001) correction approaches.  Within luminal  A 

samples,  parametric  (p<.001)  and  non-parametric  (p<.001)  perform poorly,  while 

both  a priori  PAM50 approaches remove significant  ESR1 expression differences 

between sample populations. Similarly, both parametric (p<.001) and non-parametric 
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(p<.001) fail to resolve population differences in Luminal B samples, with PAM50 

stratified correction retaining statistical significance between batches (p=.019) and 

only  PAM50  covariate  correction  removing  statistical  significance.  Parametric 

(p<.001) and non-parametric (p<.001) correction additionally performs poorly with 

normal-like  samples,  with  both  PAM50-based  approaches  removing  significant 

population differences, a prerequisite for accurate post-integration analysis. 

The  third  and  final  biomarker  evaluated  is  expression  of  erbb2  receptor 

tyrosine kinase 2 (ERBB2).  Significant expression difference between batches are 

introduced  to  HER2 PAM50 samples  by  parametric  (p=.011)  and  non-parametric 

(p=.014) correction. Luminal A samples have between-batch significance removed by 

all correction techniques except PAM50 covariate correction (p=.046).

Leveraging  the  METABRIC  discovery  and  validation  datasets,  we  have 

outlined  the  importance  of  considering  molecular  subtype  when  batch-correcting 

before  dataset  integration.   An  additional  interesting  scenario  arises  when  an 

individual  dataset  is  produced  at  various  time-points  or  by  multiple  laboratories, 

introducing  potential  batch  effect  manifestation.   To  investigate  this  premise,  we 

consider  a  within-dataset  evaluation  of  GSE653228,  a  published  dataset  used  in 

multiple studies29–31 that has been identified as displaying technical batch effects32. 

Samples  within  GSE6532  were  ComBat  corrected  using  the  four  approaches 

previously described. 

Following  batch  correction,  augmentation  of  GSE6532  ESR1  expression 

(figure  2)  displays  a  similar  outcome  to  METABRIC  correction,  with  fewer 

significant differences following PAM50 covariate and stratified approaches.  Basal 

samples, located only in batches one and two within this dataset, have significant 

population expression differences introduced following parametric (p=.006) and non-

parametric (p=.022) correction.  Luminal B samples display significant population 

differences following parametric correction  (batches 2&3, p=.024 and batches 1&3, 

p=.024),  non-parametric  (between  batches  2&3,  p=.011  and  1&3,  p=.011)  and 

PAM50  covariate  ComBat   (batches  2&3,  p=.05),  with  only  PAM50  stratified 

correction  displaying  no  significance  between  corrected  batches.  Normal-like 
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samples  continue  to  display  significant  differences  following  parametric  (batches 

1&3, p<.001 and batches 1&3, p=.014) and non-parametric (batches 1&3, p<.001 and 

batches 2&3, p=.023) ComBat.

The data presented herein illustrate often underappreciated subtleties in batch

effect  correction.  Despite  being  a  vital  prerequisite  for  powerful  data  integration 

analysis, undesirable augmentation of molecular signal has the potential to seriously 

impact  integrated  analysis.   Departures  in  molecular  expression  measurements 

between  batches  can  be  reasoned  as  composites  of  technical  batch  effects  and 

biological,  demonstrated  by  sample  molecular  subtype  composition,  structured 

differences.   While  the  goal  of  batch  correction  is  to  address  the  former  while 

retaining the latter,  and acknowledging that no method will  ever perfectly dissect 

these  components,  within  this  brief  communication  we  highlight  that  additional 

consideration must be given to potential sub-optimal expression differences persisting 

following  correction.  The  popular  ComBat  algorithm  typically  assumes  identical 

distribution of gene expression across batches, but this assumption can be violated by 

divergent sample transcriptome profiles characteristic of molecularly heterogeneous 

cancers  such  as  breast.   To  investigate  this  effect,  we  compared  both  standard 

parametric  and  non-parametric  ComBat  with  PAM50-leveraged  correction 

approaches.  Our results show that encapsulation of molecular heterogeneity can help 

optimise the desired removal  of  technical  effects  while  preserving true biological 

signal.  It  is  perhaps  reasonable  and  logical  that  incorporating  molecular  subtype 

classes within batch correction pipelines provide an effective shielding of molecular 

heterogeneity but, to our knowledge, this has not been elucidated until now.  Within 

this article we purposefully refrain from definitively suggesting a particular batch 

correction approach.   Rather,  we invite  consideration of  an often overlooked,  but 

potentially serious,  feature of molecularly heterogeneous gene expression analysis 

that has the potential to seriously impact analysis and resulting scientific inference33.
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Figure 1.  Effect of  various ComBat batch correction implementations on METABRIC 
biomarker expression.
Comparison of sample expression values before and after 5 batch corrections in AURKA (A), ESR1 
(B) and ERBB2 (C).  Expression values are compared between METABRIC discovery and 
validation batches within PAM50 molecular subtype classifications, allowing visualisation of  
potential batch correction signal augmentation. Standard non-parametric and parametric correction 
appear worse at minimising between-batch differences within each PAM50 molecular subtype. The 
addition of PAM50 molecular subtype as a covariate can improve correction while a stratified 
PAM50 approach removes batch effects most effectively.  Pairwise comparisons between batches 
were performed with a two-sided Mann-Whitney-Wilcoxon test followed by Holm- Bonferroni 
correction. Non-significant (p > .05) comparisons are unlabelled while * denotes p <= .05, ** 
denotes p <= .01, *** denotes p <= .001 and **** denotes p <= .0001. 
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Figure 2. Effect of various ComBat batch correction implementations on GSE6532 ESR1 
biomarker expression.
Comparison of sample ESR1 expression values before and after 5 batch corrections. Samples were 
identified as belonging to three batches based on original sample processing date and stratified 
according to PAM50 molecular subtype class. Expression values are compared between batches 
within each subtype class following batch correction to visualise correction effects. ComBat non-
parametric and parametric correction introduces significant signal difference between batches in 
Basal samples and performs poorly in Luminal B and Normal samples. Recognition of molecular 
subtype improves performance, with PAM50 stratified correction removing batch effects most 
effectively.  Pairwise comparisons between patient groups were performed with a two-sided Mann-
Whitney-Wilcoxon test followed by Holm- Bonferroni correction.Non-significant (p > .05) 
comparisons are unlabelled while * denotes p <= .05, ** denotes p <= .01, *** denotes p <= .001 
and **** denotes p <= .0001. 

Data availability

METABRIC  datasets  are  available  via  committee  approval.  GSE6532  is  freely 

available at https://www.ncbi.nlm.nih.gov/geo.
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Additional Information

Our colleague Dr.  Andrew H.  Sims  sadly  passed away during the  course  of  this 

project. He was instrumental in both  the conceptualisation and supervision of this 

study. 
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