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Abstract: 
Background: Measuring and estimating alcohol consumption (AC) is important for individual 
health, public health, and Societal benefits. While self-report and diagnostic interviews are 
commonly used, incorporating biological-based indices can offer a complementary approach.  
Methods: We evaluate machine learning (ML) based predictions of AC using blood and urine-
derived biomarkers. This research has been conducted using the UK Biobank (UKB) Resource. 
In addition to the prediction of the number of alcoholic Drinks Per Week (DPW), four other 
related phenotypes were predicted for performance comparison. Five ML models were assessed 
including LASSO, Ridge regression, Gradient Boosting Machines (GBM), Model Boosting 
(MBOOST), and Extreme Gradient Boosting (XGBOOST). 
Results: All five ML methods achieved moderate prediction of DPW (r2=0.304-0.356) with 
biomarkers significantly increasing prediction above using only known covariates and liver 
enzymes (r2=0.105). XGBOOST achieved the best prediction performance (r2=0.356, 
MAE=5.214) at the expense of increasing model complexity and training resources compared to 
other ML methods. All ML models were able to accurately predict if subjects were heavy 
drinkers (DPW>8 for women and DPW>15 for men) and produced explainable models that 
highlighted the role of biomarkers in predicting DPW. While phenotype correlations were 
similar across methods, XGBOOST produced similar heritability estimates for observed 
(h2=0.064) and predicted (h2=0.077) DPW. The estimated genetic correlation between observed 
and predicted DPW was 0.877. 
Conclusions: Predicting AC from ML-based biological measures provides an opportunity to 
identify individuals at increased risk of heavy AC, thereby offering complementary avenue for 
risk assessment beyond self-report, screening instruments, or structured interviews, which have 
some known biases. In addition, explainable AI tools identified a constellation of biomarkers 
associated with AC. 
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Introduction 
The ability to measure alcohol consumption (AC) across multiple contexts is important, 
including research, individual health [1], public health [2], and social policy [3]. Alcohol 
consumption also has a complex relationship with mental health outcomes and psychiatric 
disorders [4]. While the impact of excessive consumption and alcohol use disorder (AUD) on 
health is well documented and causally linked to liver damage, cardiovascular issues, 
pancreatitis, and more [5], the role of lower levels of consumption contributing to adverse 
outcomes is still debated. Recently, moderate drinking has not been shown to be protective [6] 
and the WHO concluded there is no safe level of alcohol consumption. Given this context, the 
accurate measurement or estimation of AC across the full range of consumption is increasingly 
important to researchers, clinicians, and public health officials. Identifying associations and 
patterns of alcohol consumption, particularly on the higher end, is crucial for designing targeted 
interventions and prevention programs that allow for better allocation of resources for treatment, 
education, and support services [7].  
 
Structured interviews and self-report 
While surveys and structured interviews are considered a standard method for assessing alcohol 
consumption, alcohol problems, and diagnosing Alcohol Use Disorder (AUD) [8] [9], they have 
limitations including relying on the accuracy of self-report. Responses can be influenced by 
factors such as memory biases, social desirability, or reluctance to disclose certain information 
leading to potential underreporting or misdiagnosis, among others. Biological-based indices or 
biomarkers may offer complementary information to self-report based measures and diagnoses 
since biomarkers can reflect physiological or neurobiological changes associated with specific 
conditions [10].  
 
Utility and need for biomarker-based estimations of alcohol consumption 
There are a variety of avenues to assess alcohol consumption without biomarkers. However, the 
estimates of average consumption as well as the prevalence of heavy consumption, binge 
drinking, and AUD can vary greatly depending on the method and dataset. The National 
Epidemiologic Survey on Alcohol & Related Conditions (NESARC-III) is a large representative 
sample of US adults. NESARC conducted face-to-face interviews and deep assessments of 
alcohol and drug use, related risk factors, and associated physical and mental disabilities in 
36,309 participants [11]. While NESARC represents a high-quality assessment, reported drinks 
per day can differ between last year versus lifetime maximum within the same individual. 
Studies using structured interviews, such as NESARC-III, show lifetime AUD prevalences of 
~29% [12]. The recently reported prevalence of AUD in All of Us is 1.88% when using an EHR-
based ascertainment approach [13] indicating that standard surveying incorporated into routine 
medical care may not accurately reflect alcohol-related behaviors. This discrepancy may 
significantly impact alcohol-related research since misclassification reduces the statistical power 
of both epidemiological and genetic discovery of risk. Since structured interviews may not be 
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feasible in large biobanks, there is a need to assess if available objective biological measures can 
be used to augment EHR and self-report variables describing alcohol-related outcomes. 
 
Known biomarkers of alcohol consumption 
While ethanol can be measured directly in serum, plasma, blood, and urine, this measurement 
only reflects recent acute ethanol consumption and is not an index of regular or heavy 
consumption. In contrast, other blood-based measures are correlated with frequent and persistent 
heavy consumption [14], including ethyl glucuronide, ethyl sulfate, phosphatidylethanol (PEth), 
and liver enzymes [15]. Many other biomarkers have been proposed and evaluated [16], 
however, there is no consensus regarding the best set of markers, and there are no well-
established algorithms to predict alcohol consumption, problems, or use disorder using objective 
biological measures. However, established and commonly assessed alcohol-related biomarkers 
such as aspartate aminotransferase (AST), alanine aminotransferase (ALT), and gamma-glutamyl 
transferase (GGT) may still be useful [17]. In patients being treated for AUD, these measures 
provide converging evidence that self-reported alcohol consumption is consistently under-
reported [18]. To our knowledge, there are no validated biomarkers that can quantitatively 
estimate lower levels of AC, which may still impact health outcomes. This highlights the need 
for reliable tools for the estimation of alcohol consumption across its full range.  
 
Introduction Summary 
We have previously demonstrated that the Alcohol Use Disorders Identification Test (AUDIT) 
can be predicted using a large number of variables with complex patterns of missingness [19]. 
This research sought to determine if objective biological measures beyond self-reporting can 
predict alcohol consumption using machine learning (ML) algorithms. A successful prediction 
model would facilitate the development of a complementary screening tool for alcohol 
consumption where self-report may not be available or reliable. Specifically, we applied a series 
of ML algorithms to predict alcoholic drinks per week (DPW) using panels of urine and blood 
chemistry markers (hereafter referred to as “biomarkers”) in a sample from the UK Biobank 
(UKB.) These predictions are validated using genetic correlation (rG) estimates between 
observed, measured phenotypes, and ML-predicted phenotypes.  
 
Predictive models for AC offer several advantages across various contexts, including imputing 
missing alcohol consumption variables and predicting alcohol consumption from biological 
markers in cases where AC may not be directly assessed in the clinical encounter and/or where 
true consumption habits may be underreported. Where appropriate, such predictions can increase 
sample sizes and improve the power of epidemiological and genetic association discovery. 
Furthermore, ML models facilitate the creation of interpretable models, enabling the 
identification and interpretation of biomarkers and other variables linked to AC, and could 
enable further investigations.  
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Methods 
Sample 
This research has been conducted using the UK Biobank (UKB) Resource (application number 
30782). For phenotype predictions, the input variables included 249 Nuclear Magnetic 
Resonance (NMR) biomarkers from plasma, 30 blood biochemistry measures, 31 blood count 
measures, 25 infectious disease blood measures, and 3 urine assay measures for a total of 338 
initial predictors (Supplementary Tables T1 and T2). The NMR biomarkers consist of lipoprotein 
lipids, fatty acids, and small molecules such as amino acids, ketones, and glycolysis metabolites 
[20]. Age, sex, and statin use were included as covariates in all analyses. The data consists of 
193,627 (53.8%) females and 166,281(46.2%) males, and the age of participants ranged from 
~40 to ~73 years old. The distribution of DPW across sex is shown in supplementary Figure F1. 
Statin use was included as a covariate since many of the predictors are lipid-related, and statins 
have a profound effect on lipid measures in most people [21]. For this analysis, only first-
instance measures were included. Primary ML analysis included only the subset of European-
ancestry, unrelated subjects, with subjects of other ancestries reserved for a validation set. 
 
Outcomes 
The primary outcome of interest for prediction from these biomarkers is the number of alcoholic 
Drinks Per Week (DPW), a quantitative variable. Details of the derivation of this metric in the 
UKB are described in the supplementary section S1. DPW ranged from 0 to 168 drinks, with a 
median of 8.6 drinks. Heavy alcohol use, a dichotomous outcome, is defined as consuming ≥15 
per week for males or ≥8 per week for females, as defined by the National Institute on Alcohol 
Abuse and Alcoholism [22]. Additional outcomes investigated included height (Field 50), body 
mass index (BMI, Field 21001), body fat percentage (BF%, Field 23099), and major depressive 
disorder (MDD) symptom sum (Category 138). These outcomes were included to serve as 
benchmark comparisons against which the performance of biomarkers for predicting DPW could 
be usefully compared. Height was chosen since it is a quantitative measure, stable in adulthood, 
and any prediction with current biomarker measurements is likely due to biological processes 
that occurred in the past. BMI and BF% are quantitative anthropomorphic traits that are 
associated with disease risk and all cause mortality and have a complex relationship with alcohol 
consumption. In contrast to height, current BMI and BF% represent a mixture of recent and 
previous biological processes. Finally, major depression symptom count was chosen as an 
example pseudo-quantitative ordinal variable for a psychiatric disorder. 
 
Pipeline for ML and GWAS analysis 
Figure 1 provides an overview of the data analysis pipeline including data processing, ML 
methods, GWAS, and post-GWAS analyses. High-performance ML models provide predictions 
that contribute significantly toward evaluating and interpreting the results as well as subsequent 
stages of GWAS, heritability estimates, and genetic correlations. In this analysis, we examine 
seven DPW sets: unfiltered, filtered, and five predicted sets. 
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Data Preparation, demographics, and prevalence 
All phenotype predictions and downstream genetic analyses were performed using 359,980 
unrelated participants of European ancestry from the UK Biobank. Details of sample filtering for 
genetic analyses have been previously described [23]. Within the working subset, DPW, Height, 
BMI, and BF% had little missing data with 359,564 (DPW), 359,118 (height), 358,720 (BMI), 
and 353,397 (BF%) participants with observations. However, only 117,560 participants had 
major depressive disorder (MDD) symptom scores since ~157k subjects completed the mental 
health questionnaire [UKB Category 138]. In contrast, Nuclear Magnetic Resonance (NMR) 

§ 359,908	individuals	from	UKB	data	
§ Predictive	Measures:	

o NMR	metabolites	(N	=	249)	
o Blood	count	(N	=	31)	
o Blood	biochemistry	(N	=	30)	
o Infectious	diseases	(N	=	25)	
o Urine	assays	(N	=	3)	
o Adjusting	for	effects	of	age,	sex,	
and	statin	use	

§ Outcomes	(Un?iltered	Observed	
Sets):	
o DPW					
o Height		
o BMI							
o BF%,						
o MDD					

 

Data filtering and preprocessing 
§ Subjects	 with	 the	 missing	
outcome	were	dropped.		

§ Subjects	 missing	 NMR	
metabolite	data	were	dropped.	

§ Predictor	 variables	 missing	 in	
10%	or	more	were	dropped.	

§ 	Any	 subjects	 with	 missingness	
in	the	remaining	predictors	were	
dropped.	

 

Training ML Models 
§ LASSO	
§ Ridge	
§ MBOOST	
§ GBM	
§ XGBOOST	

 

Data Splitting (Filtered Observed 
Sets) 
§ Sample	size	for	training	and	
testing	
o DPW				(63,058)	
o Height	(63,018)	
o BMI						(62,955)	
o BF%,					(62,030)	
o MDD				(20,578)	

§ K-Fold	CV	=	5	

Models evaluation and explanations 

Applying GWAS 
§Un#iltered	Observed	DPW	
§Filtered	Observed	DPW	
§Predicted	DPW	(LASSO)	
§Predicted	DPW	(Ridge)	
§Predicted	DPW	(MBOOST)	
§Predicted	DPW	(GBM)	
§Predicted	DPW	(XGBOOST)	

 

 

Heritability and genetic 
correlation 
§Un#iltered	Observed	DPW	
§Filtered	Observed	DPW	
§Predicted	DPW	(LASSO)	
§Predicted	DPW	(Ridge)	
§Predicted	DPW	(MBOOST)	
§Predicted	DPW	(GBM)	
§Predicted	DPW	(XGBOOST)	

 

Figure 1. The pipeline is used to train ML models and perform GWAS analysis. The pipeline consists of seven 
stages. The stages include 1) selecting biomarker variables that are necessary for phenotype prediction, 2) data 
preprocessing and filtering, 3) data splitting for ML training, 4) training five ML models, 5) ML models evaluation 
and explanation to provide insight into the role of biomarkers toward final predictions, 6) applying GWAS to the 
observed and predicted phenotypes, 7) post-GWAS analysis (heritability and genetic correlation) to evaluate the gene 
discovery capability of ML predictions. 
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based biomarkers [category 220] measures were available in 118,019 participants with 112,767 
having complete NMR data. 
 
Data filtering 
Primary prediction and evaluation were restricted to unrelated participants of European ancestry 
since ancestry may influence some biomarkers. After filtering relatives and participants of non-
European ancestry, 82,750 participants remained with complete NMR measures, independent of 
outcome phenotype. Complete data was retained for 63,058 (DPW), 63,018 (height), 62,955 
(BMI), 62,030 (BF%), and 20,578 (MDDsx) subjects. Four independent groups of non-European 
ancestry participants, as defined by panUKB [24], were used as holdout sets for replication. Four 
data filtering stages were used in this work. These filtering stages are necessary to prepare data 
for training. More details about data filtering and sample counts are given in the supplementary 
Table T3.  
 
Data Splitting 
Data splitting involves dividing the dataset into different subsets intended for training, validation, 
and testing. The whole dataset is initially separated into a test set and a training set, using a 20% 
test and 80% training division. Further data splitting within the training set is required to 
determine the optimal ML model for each implementation. This is done using K-Fold Cross-
Validation (CV), a popular technique in machine learning and statistical modeling that evaluates 
a model's predictive performance and generalizability. The supplementary Table T3 shows 
details of the sample counts resulting from the data splitting process. 
 
ML Evaluation, and Explanation 
Five ML models were implemented to predict each outcome, including LASSO [25], ridge 
regression [26], Gradient Boosting Machines (GBM) [27], Model Boosting (MBOOST) [28], 
and Extreme Gradient Boosting (XGBOOST) [29]. Models were fit in R (version 4.1.1), using 
packages glmnet [30], mboost [31], gbm [32] , and xgboost [33]. Model optimization parameters 
are described in the supplementary section S2. To evaluate ML model performance, we used 
Mean Absolute Error (MAE), Mean Squared Error (MSE), Adjusted R-squared, Accuracy, F1 
score, Sensitivity (Recall), Specificity, Positive predictive Value (Precision), and Negative 
Predictive Value. For the ML model explanation, we used feature importance [34] and SHapley 
Additive exPlanations (SHAP) [35] [36]. More details about model evaluation and explanations 
are given in supplementary section S3.  
 
GWAS in Observed and Predicted Traits 
GWAS analyses were performed using BGENIE (version 1.3) [37] on the observed and 
predicted outcomes from all five predictive models for each phenotype. Standard genotype 
filtering was performed including removing variants with Minor Allele Frequency (MAF) < 
0.5%, INFO score < 0.8, and Hardy-Weinberg Equilibrium (HWE) p-value < 10−6. All GWAS 
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included age, biological sex, and first 20 ancestry principal components as covariates. Primary 
analyses were restricted to unrelated individuals of European ancestry. Due to small sample sizes 
(168-1248), no GWAS for h2 and rG were performed for the non-European ancestry groups as 
defined by panUKB. 
 
Heritability and Genetic Correlation Analyses 
Genome-wide Complex Trait Analysis (GCTA, version 1.93.2) [38] was employed for 
computing heritabilities and genetic correlation (rG) between observed and predicted DPW using 
measured genotypes within the same individuals where DPW was measured. Additionally, 
LDSC (version 1.0.1) [39] [40] was employed to assess heritabilities and rG between observed 
and predicted scores using GWAS summary statistics. LDSC allows for the estimation of rG in 
either independent or overlapping samples by leveraging a reference set of genetic correlations 
as measured by linkage disequilibrium. 
 
Results 
Non-independence of biomarkers 
Correlation, cluster, and principal component (PC) analyses of the biomarker variables showed 
extensive non-independence and clustering as illustrated in Figure 2. The first ten PCs explained 
at least >0.01 of variance each and 0.856 of the variance in aggregate. This pattern is notable 
since there may be many alternative proxy variables to those that may be retained in the best-
fitting ML model. Creating a dendrogram for these biomarkers is beneficial in representing 
hierarchical relationships among the biomarkers based on their similarities. Biomarkers that are 
close to each other on the dendrogram are more similar, indicating potential relationships. A 
dendrogram plot of all biomarkers used to predict DPW is available in the supplemental Figure 
S2.  
 
ML-based prediction performance 
Across five phenotypes, we performed three sets of analyses including (1) a base linear 
regression model limited to only age, sex, and statin use as predictors, (2) an expanded model 
adding four liver enzymes (alkaline phosphatase (ALP), ALT, AST, and GGT) to the base 
model, and finally (3) five ML approaches which included the full set of covariates plus 338 
biomarkers. The base model accounted for 0.071 of the variation in DPW. The addition of liver 
enzymes increased the correlation with observed and predicted DPW to an adjusted R2 of 0.105. 
The five ML approaches utilizing the full set biomarkers increased the adjusted R2 to between 
0.304 and 0.356. Comparatively, the addition of biomarkers to height prediction did not 
significantly improve performance in comparison to the base model. In contrast, the inclusion of 
biomarkers improved BMI and BF% predictions. Finally, MDD symptoms were not well 
predicted across any of the models tested. A summary of the performance as assessed by MAE 
and adjusted R2 across the 5 phenotypes, 3 models, and 5 ML approaches is shown in Figure 3.  
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Figure 3. ML model evaluation by Mean Absolute Error (MAE) and adjusted R-squared (R²), for 
predicting DPW alongside four reference phenotypes. This assessment includes three models: 1) a linear 
regression model retained only on age, sex, and statin use; 2) a linear ML model trained on four additional 
liver enzymes (AlkPhos, ALT, AST, and GGT); and 3) five machine learning methods applied to the 
complete set of covariates alongside 338 biomarker features. 

Figure 2. A heatmap of the biomarker variables shows significant correlations, indicating a lack of 
independence and a tendency to cluster. The observation of extensive correlations suggests there are  
alternative proxy variables that could potentially be included in the best-fitted ML model. 

All rights reserved. No reuse allowed without permission. 
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for thisthis version posted December 24, 2024. ; https://doi.org/10.1101/2024.12.22.24319486doi: medRxiv preprint 

https://doi.org/10.1101/2024.12.22.24319486


 9 

Further details for ML assessment across different phenotypes in terms of adjusted R2 and MAE 
are shown in supplemental Tables T4 and T5, respectively. Inspection of the distributions of 
observed and predicted DPW showed differences beyond MAE and adjusted R2. As shown in 
Figure 4, the density of DPW predicted by XGboost is the most similar to the observed density, 
by visual inspection.  
 
 
 
 
 
Sample sets for genetic analysis. Seven GWAS were performed including two with observed 
DPW using a) participants with DPW (unfiltered, n= 359,564) and those with both 2) DPW and 
NMR measures (filtered, n=63,058). The remaining five GWAS were performed using DPW 
predicted from LASSO, RIDGE, MBOOST, GBM, and XGBOOST, respectively. (See 
Supplementary Section S2 for details of each method). The sample sizes for the filtered set and 
all predicted sets were equivalent since the predictions used non-missing data and effectively 
were reduced to participants with NMR metabolites. The unfiltered set contains additional 
participants with measured DPW but not NMR metabolite measures. These independent samples 
are useful in evaluating the heritability and genetic correlations with both the filtered and 
predicted sets.   
 
 
 
 
Heritability results 
The subset of participants with NMR measures showed higher observed DPW heritability 
(h2=0.0748) than the unfiltered set of participants (h2= 0.0643). For the predicted measures, all 
ML models showed increased h2 (delta h2 0.0591-0.0896) compared to the unfiltered set with the 
exception of XGBOOST (delta h2=0.0133) as shown in Figure 5A. More details are given in the 
supplementary Table T6.  
 
Genetic correlations between observed and predicted 
In addition to evaluating ML predictions using phenotype correlations, datasets with measured 
genome-wide genotypes allow the estimation of genetic correlations (rG) as shown in Figure 5B. 
The unfiltered versus filtered sets showed a rG below unity of 0.9434, as expected. Overall, the 
ML models with increased h2 above observed DPW showed lower rG. DPW predicted by 
XGBoost showed both the closest h2 to observed as well as the highest rG (0.877) of any of the 
ML models while MBOOST showed the lowest performance (rG=0.4911). The pairwise rG 
comparisons among the non-XGBoost ML models (LASSO, RIDGE, MBOOST, and GBM) 
were similar (rG > 0.97). rG between XGBoost and other methods were still high, albeit 
attenuated (rG 0.863-0.903). While XGBoost predictions were the most similar to observed DPW 

Figure 4. Density plots for observed DPW against predicted DPW across five ML methods: LASSO, Ridge, 
GBM, MBOOST, and XGBOOST. 
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(similar h2 and highest rG), the method is more complex to implement and requires additional 
compute resources (benchmarking not shown). LDSC estimated genetic correlation values for 
observed and predicted DPW are shown in the supplementary Table T7. 
 

 

 
 
Assessing predicted heavy use using thresholds applied to predicted values  
Predicted DPW was used to classify participants as heavy drinkers based on sex-specific 
WHO/CDC thresholds, which are 8 and 15 DPW for females and males, respectively. For each 
of the five ML methods, several classification metrics were calculated, including accuracy, 
sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), and F1 
score. The accuracy of classifying all individuals, regardless of sex, was lower for DPW>8 (69.9-
85.6%) in comparison to DPW>15 (86.0-91.9%) across models. For sex specific classifications, 
all ML methods showed high specificity for both males (89.9% -94.3%) and females (80.5-
93.0%) but moderate sensitivity. As shown in Figure 6, XGBoost performed better as measured 
by PPV, F1 score, and sensitivity. Sex specific PPVs were relatively low (PPVmale=63.5%-
81.5%, PPVfemale=49.8%-77.5%) while NPVs were higher (NPVmale=82.5%-91.2% , 
NPVfemale=84.6%-90.9%). The full details of performance metrics are given in the supplementary 
Tables T10 and T11. 

 
Replication in participants of non-European ancestry 
We also assessed the prediction performance in five independent holdout sets representing 
participants with genetic ancestry similar to reference population sets including African (AFR, N 
= 706), Admixed Americas (AMR, N = 168), central Asia (CSA, N = 1248), east Asia (EAS, N 
= 420), and the Middle East (MID, N = 242). Sample sizes for each replication set are based on 
participants with complete NMR and DPW data. Replication was limited to the XGBoost model 

Figure 5. LDSC estimated A) heritabilities and B) genetic correlations.  
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due to its higher performance across multiple prediction metrics. MAE across these ancestry 
groups was similar to the EUR test set (MAE = 5.2, range = 4.3 - 5.1). In comparison to the EUR 
test set, accuracies, specificities, and NPV were higher for the non-EUR sets, while sensitivity 
and PPV were generally lower. 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6. Summary of gender specific heavy drinker classification performance using predicted DPW by six 
evaluation metrics including accuracy, F1 score, sensitivity, and specificity, PPV, and NPV. For males (Figure 
6a), DPW greater than 15 is considered heavy drinking while for females (Figure 6b), DPW greater than 8 is 
considered heavy drinking. These metrics summarize the prediction performance of five ML methods for 
classifying heavy drinkers in males and females.  
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ML model interpretation 
While a variety of ML approaches are available to predict outcomes like DPW, interpreting the 
contribution of different biomarkers is important for several reasons including evaluating 
plausibility, generalizability, and identifying confounders or artifacts. Figure 7 shows the top 20 
biomarkers by feature importance that contribute to the prediction of DPW across the boosting-
based ML models. The markers are arranged in descending order and the scores of each marker 
represent the median across ML models. In addition to examining feature importance, SHAP 
analyses help in interpreting the local and global contributions of each variable to the prediction 
of a given ML model. Details regarding the estimation and interpretation of SHAP values are 
given in supplemental section S3.3. Figure 8 shows the Shapley values from the best-performing 
XGBOOST model for DPW and includes the top 20 biomarkers. The cloud of points shown for 
each predictor represent each observation (in this case participants) and the relative importance 
of that biomarker for predicting the outcome for that observation. Higher absolute SHAP values 
indicate a stronger effect of the biomarker on the prediction, while values towards zero indicate a 
less of an impact. For instance, males tend to have higher DPW compared to females, and sex 
shows significant variance, leading to the highest average absolute SHAP values. Another 
example is citrate: as citrate levels increase (bluer color), SHAP values become negative 
(indicating low DPW), while as citrate decreases (yellower color), SHAP values turn positive 
(indicating high DPW). 

 
 
 
 

Figure 7. Top 20 biomarkers influencing DPW prediction across boosting-based machine learning 
models. These markers are listed in descending order, with their respective scores representing the 
median feature importance across all boosting ML models. 
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Discussion 
To our knowledge, this study represents the first of its kind to utilize a wide array of biological 
markers for ML prediction of alcohol consumption in an agnostic fashion. In total, five different 
ML models were applied to predict DPW and demonstrated strong predictive performance, as 
measured by multiple standard metrics (Radj2, MAE, MSE) as well genetic based measures 
including heritability (h2) and genetic correlation (rG), both in hold-out test sets of European 
ancestry and in independent test sets of various diverse ancestries. This proof-of-concept 
experiment confirms the viability of ML for predicting alcohol consumption accurately from lab-
based metrics, suggesting potential for future clinical screening applications. 
 

Figure 8. Shapley values for the top 20 biomarkers from XGBOOST based prediction of DPW. Each 
data point corresponds to a measurement from an individual participant. Blue dots signify higher 
values, while yellow dots represent lower values. A higher SHAP value indicates a positive impact 
on the DPW, whereas a lower SHAP value suggests a negative impact. 
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Implications of DPW Prediction 
Important predictors. This analysis identified various biological measures associated with 
DPW and useful for predicting this outcome, including some which have been previously 
identified in the literature, such as sex, HDL, and GGT. The relationship between sex and 
alcohol consumption is complex and influenced by various factors including biological 
differences, social, cultural, and psychosocial factors, as well as hormonal influences [41]. 
Alcohol consumption has been associated with changes in lipid metabolism, including effects on 
HDL cholesterol levels. Moderate alcohol intake has also been linked to an increase in HDL 
cholesterol. However, the relationship between alcohol and HDL is complex, and the effects may 
vary depending on factors such as the type and amount of alcohol consumed, individual 
characteristics, and overall health [42]. Alcohol is known to increase GGT levels, which is 
considered a sensitive marker for alcohol-induced liver damage. Elevated levels of GGT in the 
blood can be associated with various conditions, including liver diseases, biliary obstruction, and 
certain medications. One of the significant factors contributing to elevated GGT levels is 
excessive alcohol consumption [43]. As shown in this experiment, age, sex, and liver enzymes 
explain a modest amount of variation in DPW (Radj2~0.11). 
 
DPW predictions for AUD screening. Improved screening to identify heavy alcohol drinkers is 
important since progression to AUD and related health and psychosocial problems is a process 
that occurs over time. Identification of heavy drinking using objective biomarkers may represent 
an additional complementary tool to established screening instruments. Interventions and 
treatments are likely more effective in at-risk individuals prior to progression to AUD or when 
AUD is still mild [44]. Additionally, most people with AUD do not seek treatment. Identifying 
and offering empirically supported treatment to non-treatment seeking individuals with AUD 
offers the potential to reduce the significant negative personal, societal, and economic impact of 
AUD [45]. 

While we demonstrated the current predictions are useful to screen for heavy drinking, 
there is a significant opportunity for improved performance for low to moderate consumption. 
Dramatic improvements using other ML methods and the same set of biomarkers are unlikely 
and will require additional predictors. Improved prediction at the lower end of the scale could 
allow healthcare professionals to track changes in alcohol consumption over time and allow 
earlier interventions. While individual level predictions may have errors, biomarker-based 
predictions are useful in genetic research as effective sample size is increased and may have 
applications in population-level research on alcohol consumption patterns. As predictions 
improve, this information will be valuable for public health initiatives, policy development, and 
the allocation of resources for prevention and treatment programs.  
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Machine Learning Considerations and Limitations 
Distribution of alcohol consumption and implications on ML predictions. One potential 
challenge to ML models is non-normal distributions as seen in DPW, where most of the 
participants are relatively light drinkers (majority class), but there are a significant number of 
heavy drinkers (minority class), resulting in a long tail. This can lead to biased models that 
perform well on the majority class but poorly on the minority class. Right-skewed distribution 
(RSD) causes high specificity values since the majority of the data is concentrated toward light 
drinkers. At the same time, RSD causes lower sensitivity because the tail of the distribution 
(heavy drinkers) contains fewer data points. Boosting techniques such as MBOOST, GBM, and 
XGBoost can be adjusted to handle class imbalance by focusing more on the minority class and 
this is an important area for future development.  
 
Evaluating predictions. Although five different ML models were evaluated, the performances 
were similar across methods and outcomes as assessed by Radj2, MAE, and MSE. However, 
genetics-informed evaluation of model performance showed XGBoost to perform the best with 
the most similar h2 and highest rG with observed DPW. These analyses also demonstrated that 
while the subset of participants with NMR measures showed higher heritability (h2=0.0748) 
when compared to everyone with measured DPW (h2=0.0643), the difference was not significant 
and the genetic correlation was high (rG=0.94). The high observed rG supports the use of 
predictions even if the variance explained is modest (Radj2~0.35).  
 
ML predictions using highly correlated data. We also demonstrate that all ML models tested 
are able to produce predictions from a large set of highly non-independent predictors (Figure 2). 
Due to this non-independence, caution in interpretation of variable importance across models is 
warranted. While the LASSO model performs variable selection, all predictors are retained in the 
final models for the other methods and their relative importance can vary greatly. Given the non-
independence of predictors, the relative rank of predictors across models is not necessarily 
meaningful. However, many of the most important predictors by SHAP analysis have a known 
relationship to alcohol consumption including the top three; sex, phospholipids in medium HDL, 
and GGT. Additional details of the relationship between correlated predictors are described in 
the supplementary Figure S2. A full list of all SHAP values for all biomarkers including 
covariates is shown in the supplementary Table T12 ranked in descending order. 
 
Figure 8 illustrates that different markers display varying SHAP value distributions, revealing 
unique insights into the role of markers in predicting alcohol consumption. For example, markers 
that are highly connected with high alcohol consumption are GGT enzyme (high values), 
followed by mean corpuscular volume (high values), saturated fatty acid to total fatty acid 
percentage (high values), phospholipid in medium HDL (high values), etc. In contrast, markers 
that are highly connected with low alcohol consumption are citrate (high values),  followed by 
GGT enzyme (low values), IGF-1 (high values), etc. While some markers have bidirectional 
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effects on alcohol consumption (low vs high), others have unidirectional effects. For example, 
low values of phospholipid in medium HDL are not important in predictions compared to high 
values which show a potential relationship with high alcohol consumption. 
 
MAE and prediction interpretation. While metrics such as R² are good summaries of overall 
model performance, they are open to subjective interpretation. Importantly, how the predictions 
will be used can influence interpretation. The observed MAE of 5.2 in this study implies 
prediction at the lower end of the DPW scale (0-5) is less useful. However, this MAE is less 
problematic at the higher end of the scale (DPW>20). We demonstrated empirically that 
predicted DPW with this level of imprecision is still useful in classifying heavy drinkers using 
established thresholds. The observed sensitivities and specificities may be useful in some 
screening strategies. 
 
Limitations of UKB 
The UK Biobank represents an important resource for biomedical research, but research findings 
using this sample do come with several important limitations for generalizability. Participants in 
the UKB are, on average, healthier and of higher socio-economic status than the general UK 
population. Of particular relevance for genetic analyses, participants are largely of white, British 
ancestry. Furthermore, all participants are UK residents and cultural, environmental, legal, and 
healthcare system differences must be considered when attempting to generalize results to 
populations across different geographical regions. 
 
Conclusion 
The development of efficient tools for measuring and/or predicting AC is important for both 
research and future clinical applications. The combination of ML and biomarkers presents an 
opportunity to predict alcohol consumption patterns. These predictions could be particularly 
valuable in large-scale genetic studies lacking self-report or structured interviews related to AC 
but with available biomarkers. This study demonstrates that ML methods can predict AC using a 
large set of biomarkers and that genetic analyes are useful in evaluating prediction performance 
beyond standard approaches using subsets of the data as holdouts. The findings indicate that all 
ML models produced useful predictions of AC in the context of classifying heavy drinking. 
Genetic analysis revealed similar heritability estimates and high genetic correlation between 
observed and predicted DPW using XGBOOST in this sample. By design, the ML methods used 
here yielded interpretable models where the relationship between important biomarkers and AC 
can be further evaluated. Finally, the ML models produced by this work for predicting DPW 
and/or heavy drinking may provide the basis of complementary tools for alcohol related 
screenings in clinical applications with continued development. 
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