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Abstract 13 
Hepatitis, a leading global health challenge, contributes to over 1.3 million deaths annually, with hepatitis 14 
B and C accounting for the majority of these fatalities. Intensive care unit (ICU) management of patients is 15 
particularly challenging due to the complex clinical care and resource demands. This study focuses on 16 
predicting Length of Stay (LoS) and discharge outcomes for ICU-admitted hepatitis patients using 17 
machine learning models. Despite advancements in ICU predictive analytics, limited research has 18 
specifically addressed hepatitis patients, creating a gap in optimizing care for this population. Leveraging 19 
data from the MIMIC-IV database, which includes around 94,500 ICU patient records, this study uses 20 
sociodemographic details, clinical characteristics, and resource utilization metrics to develop predictive 21 
models. Using Random Forest, Logistic Regression, Gradient Boosting Machines, and Generalized 22 
Additive Model with Negative Binomial Regression, these models identified medications, procedures, 23 
comorbidities, age, and race as key predictors. Total LoS emerged as a pivotal factor in predicting 24 
discharge outcomes and location. These findings provide actionable insights to improve resource 25 
allocation, enhance clinical decision-making, and inform future ICU management strategies for hepatitis 26 
patients. 27 
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 30 
1. INTRODUCTION 31 
Hepatitis, an inflammatory liver disease, remains a significant global health challenge, claiming an 32 
increasing number of lives each year. According to the World Health Organization (WHO) 2024 Global 33 
Hepatitis Report, viral hepatitis is the second leading infectious cause of death globally, responsible for 34 
1.3 million deaths annually. This number has risen from 1.1 million in 2019, with 83% of these deaths 35 
attributed to hepatitis B and 17% to hepatitis C (WHO, 2024). Every day, approximately 3,500 people die 36 
due to hepatitis B and C infections worldwide. Despite advancements in diagnostic tools and treatment 37 
options, testing and treatment coverage rates have plateaued, signaling a growing public health crisis 38 
(WHO, 2024). In the United States, the most common forms of viral hepatitis are hepatitis A, B, and C, 39 
each impacting the liver differently and predominantly affecting distinct populations (CDC, 2024). Hepatitis 40 
B and C pose severe health risks, often leading to chronic conditions such as cirrhosis and liver cancer. 41 
These diseases are also the primary contributors to liver-related mortality globally (WHO, 2023). 42 
Managing intensive care unit (ICU) - admitted patients with hepatitis is particularly challenging due to the 43 
treatment complexities and the resource-intensive nature of care required for severe cases. 44 
 45 
One critical issue in ICU settings is the unpredictability of a patient's length of stay (LoS), a key metric 46 
influencing hospital resource management, patient care quality, and healthcare efficiency. Prolonged ICU 47 
stays are closely linked to increased hospital costs and heightened resource strain (Peres et al., 2020). 48 
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Research also indicates that longer ICU stays correlate with increased long-term mortality rates, 49 
underscoring the need for precise LoS predictions (Moitra et al., 2015). Beyond LoS, discharge outcomes 50 
and locations serve as vital metrics for assessing patient recovery, readmission risks, and the burden on 51 
healthcare systems (Hickman, 2018). Sociodemographic and clinical factors—including race, gender, 52 
marital status, insurance type, age, and type of hepatitis—significantly influence hospitalization outcomes, 53 
particularly for ICU-admitted hepatitis patients. These factors also play a crucial role in determining 54 
hospital stay duration and discharge outcomes (Arnab Kumar Ghosh et al., 2021; Hayes et al., 2016; 55 
Dubin et al., 2024; Eskandari et al., 2022; Ng et al., 2024). 56 

Recent years have seen the growing application of machine learning (ML) in healthcare, particularly for 57 
predictive modeling. ML algorithms provide several advantages over traditional statistical approaches, 58 
including their ability to analyze large, complex datasets and identify subtle patterns that conventional 59 
techniques may overlook (An et al., 2023). Predictive models using ML have been successfully applied in 60 
ICU settings to improve forecasts related to patient outcomes, treatment responses, and resource needs 61 
(Choi et al., 2022; Levin et al., 2020). However, there is a noticeable lack of ML models tailored to 62 
hepatitis patients and their unique clinical profiles. 63 

The objective of this research is to explore and develop ML models to predict the length of stay, discharge 64 
location, and discharge outcomes for ICU-admitted hepatitis patients. These models will incorporate 65 
sociodemographic and clinical variables from ICU admission records as key predictors. By addressing 66 
this gap, the study aims to provide actionable insights for healthcare providers, enhancing resource 67 
planning and improving hepatitis patient outcomes in ICU settings. 68 

2. MATERIALS AND METHODS 69 
2.1. Data 70 
The data set used for this study was sourced from the Medical Information Mart for Intensive Care 71 
(MIMIC-IV), version 3.0, a comprehensive and deidentified repository of patient records (Johnson et al., 72 
2024; Johnson et al., 2023; Goldberger et al., 2000). MIMIC-IV comprises data collected from patients 73 
admitted to the emergency department (ED) or intensive care units at the Beth Israel Deaconess Medical 74 
Center (BIDMC) in Boston, MA. It includes over 364,000 unique patient records, with a total of 546,000 75 
hospital admissions and nearly 94,500 ICU stays, providing a rich source of information for developing 76 
predictive models in healthcare. MIMIC-IV is organized into two main data modules: hosp and icu. The 77 
hosp module captures information from the hospital-wide electronic health record (EHR), detailing 78 
hospitalizations, patient demographics, laboratory results, medication administration, billing data, and 79 
more. In contrast, the icu module contains highly detailed clinical data from the ICU, sourced from the 80 
MetaVision clinical information system, including treatment plans, and monitoring data (Johnson et al., 81 
2024; Johnson et al., 2023; Goldberger et al., 2000). 82 

 83 
Data collection spans from 2008 to 2022, and the records are meticulously de-identified following Health 84 
Insurance Portability and Accountability Act (HIPAA) guidelines. Patient identifiers, such as names and 85 
social security numbers were removed to protect privacy. Additionally, dates of death are available up to 86 
one-year post-discharge and are derived from hospital and state records. Ethical approval for data 87 
collection and the creation of this research resource was obtained from the Institutional Review Board at 88 
the BIDMC. The dataset was made accessible through a data use agreement, ensuring compliance with 89 
all ethical and legal guidelines for data usage. With this agreement in place, the database is available for 90 
researchers and academics. 91 
 92 
2.2. Variables  93 
The independent variables for this study include socio-demographic, clinical, and resource utilization 94 
data. Socio-demographic variables cover gender, age, race, marital status, and type of insurance. 95 
Admission characteristics include the type of admission and admission location. Clinical variables 96 
included the number of comorbidities, as well as indicators for Hepatitis A, B, C, D, and E, and Hepatic 97 
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Coma. Resource utilization variables include counts of medications, procedures, and drugs dispensed 98 
before ICU admission. Additional ICU-specific measures capture the volume of fluids prescribed and the 99 
number of procedures performed within the ICU. This study aims to predict three primary outcomes: Total 100 
Length of Stay, measured as the days spent in the ICU or hospital; Discharge Location, detailing the 101 
destination upon discharge, such as home, hospice, or skilled nursing; and Discharge Outcome, a binary 102 
variable indicating discharge status (death or alive). 103 

 104 
2.3. Data Processing and Preparation 105 
Given the extensive and diverse nature of the MIMIC-IV dataset, specific steps were undertaken using 106 
MySQL to refine and tailor the data for this study on hepatitis patients admitted to the ICU (Oracle, 2021). 107 
Figure 1 illustrates the data pre-processing workflow, detailing the sequential steps taken to create the 108 
final dataset. 109 
 110 
 111 

 112 
 113 
Figure 1. Data preprocessing workflow for extracting and refining hepatitis patient records from the114 
MIMIC-IV database. 115 
 116 

a) International Classification of Diseases (ICD) Code Filtering and Data Integration: To isolate 117 
hepatitis-related hospital admissions, ICD codes specific to viral hepatitis were identified and 118 
filtered from a comprehensive table of diagnostic codes. These filtered ICD codes were then 119 
linked with a table containing hospital admission identifiers to extract records corresponding to 120 
hepatitis diagnoses. Subsequently, the table was merged with another table containing patient 121 
demographic information and total length of stay, resulting in a hepatitis-specific patient cohort. 122 

b) Feature Engineering: To enrich the dataset, several additional variables were calculated. Pre-123 
ICU and post-ICU medication counts, as well as procedure counts, were derived by aggregating 124 
respective records. For patients with multiple hepatitis diagnoses, individual indicator columns for 125 
Hepatitis A, B, C, D, and E were created, facilitating detailed analysis of co-infections. A 126 
comorbidity count was also computed by excluding hepatitis-related ICD codes and counting the 127 
remaining diagnoses. 128 
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c) Data Cleaning and Validation: The combined dataset initially consisted of 4,409 patient records. 129 
A rigorous data validation process identified 534 records with inconsistencies between discharge 130 
outcomes and discharge locations. These records were excluded to ensure data integrity, 131 
resulting in a final dataset of 3,875 hepatitis patient records. Patients included in this analysis 132 
were those admitted to the ICU at Beth Israel Deaconess Medical Center and diagnosed with any 133 
form of hepatitis. 134 

d) Data Transformation: The data transformation phase involved preparing categorical variables for 135 
ML by converting them into factor data types and recategorizing the race variable to address 136 
sparsity and improve interpretability. Subcategories with similar characteristics were grouped 137 
under broader categories, such as combining all Asian subcategories (e.g., "Asian - Chinese," 138 
"Asian - Indian") into "Asian" and all Black subcategories (e.g., "Black/African," "Black/Caribbean 139 
Island") into "Black." Hispanic/Latino and White subcategories were similarly merged, while 140 
categories with low counts, such as "South American," "Native Hawaiian or Other Pacific 141 
Islander," and "Multiple Race/Ethnicity," were consolidated into an "Other" category.  142 

e) Handling Missing Values: To address missing values, a thorough check was conducted across 143 
all variables, revealing the following counts of missing values per variable: marital status (296), 144 
insurance type (64), number of procedures in the ICU (237), number of pre-ICU procedures 145 
(642), and medications (248), total length of stay (1), and discharge location (18). Multiple 146 
Imputation by Chained Equations (MICE) was employed to impute the missing values (Azur et al., 147 
2011). Predictive Mean Matching (PMM) was used for numeric columns, while Polytomous 148 
Logistic Regression (Polyreg) was applied to categorical variables with more than two levels. The 149 
imputation process was repeated five times, and the results were pooled to produce a single, 150 
complete dataset for analysis. 151 

f) Handling Imbalanced Data: The discharge outcome variable, which indicates whether patients 152 
were alive or deceased upon discharge, displayed a significant class imbalance, with 3,353 153 
records for the alive category and 522 for death. To address this, the Synthetic Minority 154 
Oversampling Technique (SMOTE) was used to balance the classes (Pradipta et al., 2021). This 155 
resulted in a revised dataset with 2,088 records labeled as alive and 1,566 as death, ensuring a 156 
more equitable representation of both classes for model training. 157 

g) Training and Test Data: After data cleaning and preprocessing, the records were partitioned for 158 
subsequent modeling tasks. An 80:20 split was used to separate the data into training and testing 159 
sets, a crucial step for evaluating model performance. 160 

I. For the Discharge Outcome, after applying SMOTE to address class imbalance, a total of 161 
3,654 records were obtained. Of these, 2,923 records (80%) were used for training, and 162 
731 records (20%) were allocated for testing. The training set was used to train the 163 
models, while the testing set was reserved to evaluate predictive performance. 164 

II. For Length of Stay and Discharge Location, 3,875 records were available. The same 165 
partitioning strategy was applied, with 3,100 records (80%) used for training and 775 166 
records (20%) for testing. This partition ensured that models could be appropriately 167 
trained and assessed for their predictive ability across different outcomes. 168 
 169 

2.4. Machine Learning Models 170 
For predicting the discharge outcome (death or alive), the discharge location variable was not used as 171 
predictor for the analysis. This decision was made because certain discharge location categories 172 
overlapped with death records, providing redundant information. The following models were considered: 173 

a) Model 1: Logistic Regression: It is a statistical model used for binary classification, estimating 174 
the probability of one of two possible outcomes (in this case alive or death) based on a set of 175 
predictor variables. This model uses the logistic function to transform predictions into probabilities 176 
between 0 and 1 (Stoltzfus, 2011). Logistic Regression was chosen for its interpretability, 177 
providing clear insights into how each clinical and socio-demographic feature influences 178 
discharge outcome. This characteristic is especially valuable in this research, where 179 
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understanding the relative impact of individual predictors on patient survival is crucial for making 180 
informed inferences about patient care. 181 

b) Model 2: Random Forest Classification: This model was applied to enhance the accuracy of 182 
predicting discharge outcome. The model constructs multiple decision trees using random data 183 
samples, with each tree voting for a class. The final prediction is determined by the majority vote 184 
across all trees. This ensemble approach captures complex, non-linear relationships among 185 
variables, offering strong predictive performance and minimizing the risk of overfitting (Wrld, 186 
2024). Although it does not offer the interpretive insights of Logistic Regression, Random Forest’s 187 
capability to handle heterogeneous data makes it well-suited for maximizing predictive power in 188 
clinical scenarios (Couronné et al. 2018). 189 

To predict LoS for ICU-admitted hepatitis patients, we considered two scenarios. In the first case, we 190 
considered LoS as a count variable (Fernandez & Vatcheva, 2022), and as a continuous variable (Xu et 191 
al., 2022) in our second case, allowing for a comprehensive exploration of different modeling approaches. 192 

a) Model 1: Generalized Additive Model (GAM) with Negative Binomial (NB) Distribution: For 193 
the discrete case, a GAM with a NB distribution was utilized to address overdispersion, where the 194 
variance in the count data exceeds the mean (Zeileis et al., 2015). By incorporating smooth 195 
functions, the GAM framework allowed for modeling potential non-linear relationships between 196 
predictors and LoS. This approach provided the necessary flexibility to capture complex patterns 197 
in the data, ensuring a robust and accurate analysis (Hastie & Tibshirani, 2014). 198 

b) Model 2: Random Forest Regression: For the continuous case, Random Forest Regression 199 
was employed. This ensemble method constructs multiple decision trees and averages their 200 
predictions to capture non-linear relationships and interactions among predictors (Wrld, 2024). 201 
Using Random Forest provided an alternative view, enabling a performance comparison between 202 
the count-based and continuous modeling approaches. 203 

To predict the discharge location of ICU-admitted hepatitis patients, models were trained after excluding 204 
discharge outcome variable which is not relevant to this analysis. 205 

a) Model 1: Gradient Boosting Model (GBM): Gradient Boosting is an ensemble learning 206 
technique that builds multiple decision trees sequentially, with each new tree correcting errors 207 
made by the previous ones. This model focuses on reducing bias and improving predictive 208 
performance through boosting. GBM was chosen for its strong ability to handle complex, non-209 
linear relationships and provide high accuracy (Zhang et al. 2019), which is critical in predicting 210 
discharge locations, a multi-class categorical outcome. 211 

b) Model 2: Multinomial Logistic Regression: Multinomial Logistic Regression is an extension of 212 
logistic regression used when the dependent variable has more than two categories (Kwak & 213 
Clayton-Matthews, 2002). It models the probability of each class as a function of the predictors, 214 
providing a straightforward and interpretable approach to multi-class classification. This model 215 
was included to establish baseline and offer a simpler, interpretable model for understanding the 216 
impact of predictor variables on different discharge locations. 217 
 218 

2.5. Model Evaluation 219 
The models were evaluated using appropriate performance metrics based on the type of outcome 220 
variable: 221 

• Regression Models: For LoS, regression models were evaluated using Root Mean Squared 222 
Error (RMSE), R-squared (R²), and Mean Absolute Error (MAE). RMSE measures the average 223 
magnitude of error between predicted and actual values, penalizing larger deviations more 224 
heavily, making it particularly sensitive to outliers. R² quantifies the proportion of variation in the 225 
dependent variable explained by the model, offering an overall measure of fit. MAE, unlike 226 
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RMSE, calculates the average of the absolute errors, providing an intuitive measure of model 227 
accuracy by treating all errors equally (Zwanenburg, 2022). 228 

• Multiclass Classification Models: These were assessed using Accuracy, the Kappa statistic, 229 
the Brier Score, and the Area Under the Receiver Operating Characteristic Curve (ROC AUC). 230 
Accuracy reflects the percentage of correctly classified instances, while the Kappa statistic 231 
accounts for agreement by chance, providing a more robust evaluation of model performance. 232 
The Brier Score measures the mean squared difference between predicted probabilities and the 233 
actual class, with lower scores indicating better calibration. ROC AUC quantifies a model's ability 234 
to distinguish between classes, with values closer to 1 denoting superior performance 235 
(Zwanenburg, 2022). 236 

• Binary Classification Models: For binary outcomes, Logistic Regression and Random Forest 237 
Classification models were evaluated using Brier Score, Accuracy, Kappa, ROC AUC, Sensitivity, 238 
and Specificity. Sensitivity, also known as recall, indicates the proportion of true positives 239 
correctly identified by the model, while Specificity measures the proportion of true negatives 240 
correctly identified. These metrics provide insights into the model's ability to balance false 241 
positives and false negatives. The Brier Score evaluates the accuracy of probabilistic predictions, 242 
with lower values reflecting better performance. ROC AUC measures the discriminatory power of 243 
the model across thresholds, while Accuracy and Kappa offer overall measures of correctness, 244 
with Kappa adjusting for chance agreement (Zwanenburg, 2022). 245 
 246 

2.6. Resampling Techniques 247 
To ensure the robustness and generalizability of the models, 10-fold cross-validation was employed. This 248 
approach divides the dataset into 10 subsets (or folds). The model is trained on 9 folds and validated on 249 
the remaining fold in each iteration. This process is repeated 10 times, with each fold serving as the 250 
validation set once, and the average performance across all iterations is reported. The choice of K=10 is 251 
supported by experimental analysis and observations, as it provides a balance between computational 252 
efficiency and reliability (Verma et al., 2024). K-fold cross-validation is critical for mitigating the risk of 253 
overfitting, as it ensures that the model is tested on diverse subsets of the data, not just a single train-test 254 
split. This approach provides a more reliable estimate of the model's performance on unseen data by 255 
leveraging all data points for both training and validation at different stages. Particularly for complex 256 
datasets, such as the one used in this study, 10-fold cross-validation enhances the reliability and 257 
generalizability of the results, making it a robust validation strategy for machine learning applications 258 
(Wilimitis & Walsh, 2023). 259 
 260 
2.7. Software 261 
Data analysis was conducted in RStudio (R Core Team, 2024; RStudio Team, 2022) using various 262 
packages to streamline data manipulation, model development, and visualization. MySQL (Oracle, 2024) 263 
was used to extract and manage data from the MIMIC-IV database. In RStudio, data processing was 264 
performed using the tidyverse (Wickham et al., 2019), while missing data were imputed with mice (Buuren 265 
& Groothuis-Oudshoorn, 2011), and class imbalance was addressed using DMwR (Torgo, 2024). Model 266 
development and evaluation were facilitated by MachineShop (Smith, 2024), enabling a streamlined 267 
approach to implementing and comparing various predictive models. Statistical modeling was conducted 268 
using MASS (Venables & Ripley, 2002), which supported the fitting of Negative Binomial regression 269 
models, and mgcv (Wood, 2011), which was utilized for constructing Generalized Additive Models (GAMs) 270 
to capture nonlinear relationships. Random Forest modeling was implemented using the randomForest 271 
package (Liaw & Wiener, 2002). Data visualizations were created with ggplot2 (Wickham, 2016), while 272 
descriptive statistics and baseline characteristics were summarized using tableone (Yoshida & Bartel, 273 
2022). 274 
 275 
 276 
 277 
 278 
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3. RESULTS 279 
3.1. Demographic and Descriptive Statistics 280 
The study included a total of 3,875 patients admitted to the ICU with hepatitis-related conditions. The 281 
gender distribution was predominantly male, accounting for 68.2% (n = 2,644) of the sample, while 282 
females constituted 31.8% (n = 1,231). The average age of the participants was 53.26 years (SD = 283 
12.77). The racial composition was primarily White (57.3%, n = 2,220), followed by Black (16.9%, n = 284 
653), Hispanic/Latino (6.3%, n = 245), and Asian (6.0%, n = 234). Other racial groups, such as 285 
Indian/Alaska Native and Portuguese, made up a smaller proportion of the population, each representing 286 
less than 1% of the sample. These demographic characteristics, along with details on marital status, 287 
insurance type, clinical and admission characteristics, are summarized in Table 1. The distribution of 288 
hepatitis types is shown in Figure 2, which reveals that Hepatitis C was the most prevalent condition, 289 
affecting 82.2% (n = 3,186) of the total sample. Hepatitis B was the second most common condition at 290 
19.3% (n = 746), while Hepatitis A (1.0%, n = 37), Hepatitis D (9.2%, n = 357), and Hepatitis E (0.1%, n = 291 
3) were less frequent. Additionally, 8.0% (n = 311) of patients experienced hepatic coma.  292 

Table 1. Baseline demographic, clinical, and admission characteristics of study participants 293 

N 3,875         

GENDER = Male (%)                                            2644 (68.2)           

AGE (MEAN (SD)) 53.26 (12.77)     

RACE (%)    
INDIAN/ALASKA NATIVE 10 (0.3)          

ASIAN     234 (6.0)    

BLACK    653 (16.9)   

HISPANIC/LATINO                                        245 (6.3)   

OTHER    120 (3.1) 

PORTUGUESE                                    29 (0.7)            

UNKNOWN          364 (9.4) 

WHITE 2220 (57.3)    

MARITAL STATUS (%)                                                    
DIVORCED    398 (10.3)   

MARRIED      1106 (28.5)      

NA    296 (7.6)      

SINGLE 1873 (48.3)   

WIDOWED    202 (5.2)      

INSURANCE (%)                                                         
MEDICAID      1542 (39.8)     

MEDICARE 1472 (38.0)    

NA                                             64 (1.7)    

OTHER          123 (3.2)     

PRIVATE           674 (17.4)   

TYPE OF ADMISSION (%)                                                    
DIRECT EMERGENCY                                  230 (5.9)         

DIRECT OBSERVATION 10 (0.3)         

ELECTIVE    50 (1.3)         
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EU OBSERVATION                            5 (0.1)          

EMERGENCY WARD                                           2296 (59.3)      

OBSERVATION ADMIT                                    548 (14.1)    

SURGICAL SAME DAY ADMISSION 155 (4.0)   

URGENT   581 (15.0)     

ADMISSION LOCATION (%)                                                
EMERGENCY ADMISSIONS                                  1998 (51.6)   

               INTERNAL TRANSFERS                                  45 (1.2)       

REFERRALS 927 (23.9)    

                TRANSFER FROM OTHER FACILITY                      898 (23.2)     

UNKNOWN 7 (0.2)    

No. of COMORBIDITIES (MEDIAN [IQR])               18.00 [12.00, 24.00]    

HEPATITIS_A = 1 (%)                                      37 (1.0)     

HEPATITIS_B = 1 (%) 746 (19.3)        

HEPATITIS_C = 1 (%)   3186 (82.2)       

HEPATITIS_D = 1 (%) 357 (9.2)     

HEPATITIS_E = 1 (%) 3 (0.1)    

HEPATIC_COMA = 1 (%)                                 311 (8.0)        

PRE-ICU MEDICATIONS COUNT (MEDIAN [IQR])   82.00 [36.00, 140.25] 

PRE-ICU PROCEDURES COUNT (MEDIAN [IQR])              3.00 [2.00, 6.00]   

DISPENSED MEDICATIONS COUNT (MEDIAN [IQR])    65.50 [33.00, 118.50]   

ICU MEDICATIONS COUNT (MEDIAN [IQR])   54.00 [20.00, 154.00] 

ICU PROCEDURES COUNT (MEDIAN [IQR])             7.00 [3.00, 14.00] 

TOTAL LENGTH OF STAY (MEDIAN [IQR])                2.00 [1.00, 4.00]     

DISCHARGE_LOCATION (%)                                              
                AGAINST MEDICAL ADVICE                                170 (4.4)     

DEATH 522 (13.5)         

HOME-BASED CARE                                    1997 (51.5)      

HOSPICE CARE                                       100 (2.6)       

NA   18 (0.5)     

OTHER HEALTHCARE FACILITY                           110 (2.8)      

PSYCHIATRIC CARE                               83 (2.1)         

REHABILITATION                                    191 (4.9)      

                SKILLED NURSING/LONG-TERM CARE  684 (17.7) 

 DISCHARGE OUTCOME = 1 (%)                    522 (13.5)    

 294 
The distribution of hepatitis types across racial groups is depicted in Figure 3. Hepatitis C was the most 295 
prevalent condition across all racial groups, with White patients contributing the largest proportion. Among 296 
Black and Hispanic/Latino patients, Hepatitis C was also the most common condition but showed slightly 297 
smaller proportions compared to White patients, while Hepatitis B was notably more prevalent among 298 
Asian patients compared to other racial groups. In addition, Hepatitis B disproportionately affects non- 299 
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White individuals compared to Whites. Hepatitis A, D, and E were observed in smaller proportions across 300 
all racial groups, with Hepatitis E being particularly rare. Hepatic Coma was most common among White 301 
patients, with smaller contributions from other racial groups. 302 

Figure 2. Distribution of hepatitis types among study 
participants 

 

Figure 3. Distribution of hepatitis across racial groups 

 

The distribution of total length of stay for hepatitis patients was highly skewed as commonly seen in 303 
hospital records, with most patients having a short hospital stay (Figure 4). The median total length of 304 
stay was 2 days (IQR: 1–4 days) as stated in Table 1, with some patients having an extended stay of over305 
30 days. Variations in length of stay were also observed based on admission location (Figure 5). For 306 
instance, patients admitted from emergency admissions had shorter median stays compared to those 307 
transferred from other facilities. Notably, patients transferred from other facilities exhibited a wider range 308 
of lengths of stay, including outliers with significantly extended hospitalizations. These trends highlight 309 
how admission pathways may influence the duration of ICU stays. 310 
 311 

 
 
Figure 4. Distribution of total LoS for hepatitis patients 

 

 
 

Figure 5. Length of stay by admission location 
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The boxplot in Figure 6 illustrates the relationship between the total length of stay and discharge 312 
outcome. Patients with longer lengths of stay were more likely to have died, as indicated by the higher 313 
median and wider range of LoS in the "Died" group compared to the "Survived" group. Figure 7 highlights 314 
the distribution of discharge locations among patients. The majority (51.5%, n = 1,997) were discharged 315 
to home-based care. Skilled nursing or long-term care facilities accounted for 17.7% (n = 684) of 316 
discharges, while 13.5% (n = 522) of patients died. Other notable discharge destinations included 317 
rehabilitation centers (4.9%, n = 191), hospice care (2.6%, n = 100), psychiatric care (2.1%, n = 83), and 318 
other healthcare facilities (2.8%, n = 110). A small proportion of patients left the hospital against medical 319 
advice (4.4%, n = 170). 320 

 321 
 322 
 323 

 
 

Figure 6. Discharge outcome based on total LoS  

 
 

Figure 7. Distribution of discharge locations among 
patients 

 
 

 324 
3.2. Model Results and Performance 325 
Discharge Outcome (Died/Alive) 326 
The Logistic Regression and Random Forest models were developed and evaluated to predict discharge 327 
outcomes (died/alive) for ICU-admitted hepatitis patients. These models were tested on test data and 328 
through cross-validation. Performance metrics for both models are presented in Table 2. On the test data, 329 
Logistic Regression yielded a Brier Score of 0.1302, an accuracy of 0.818, a Kappa of 0.622, and an 330 
ROC AUC of 0.887. Sensitivity and specificity were 0.73 and 0.87, respectively. The Random Forest 331 
model demonstrated a Brier Score of 0.0875, an accuracy of 0.87, a Kappa of 0.742, and an ROC AUC of 332 
0.95. Sensitivity and specificity for the Random Forest model were 0.78 and 0.94, respectively. Cross-333 
validation results are also shown in Table 2, indicating the mean and standard deviation for each metric 334 
across repeated samples. The mean Brier Score for Random Forest was 0.089 (±0.010), while Logistic 335 
Regression had a mean Brier Score of 0.129 (±0.011). The Random Forest model had a mean accuracy 336 
of 0.87 (±0.017) and a mean Kappa of 0.729 (±0.037), compared to Logistic Regression's mean accuracy 337 
of 0.82 (±0.02) and mean Kappa of 0.629 (±0.043). Moreover, statistical comparisons were conducted to 338 
evaluate differences in performance metrics between the Logistic Regression and Random Forest 339 
models. The results indicated statistically significant differences (p < 0.001) for all key metrics, including 340 
Brier Score, accuracy, Kappa, ROC AUC, sensitivity, and specificity. These findings demonstrated that the 341 
Random Forest model consistently outperformed Logistic Regression across all evaluated criteria. 342 
Figures 8 and 9 display the variable importance for the Logistic Regression and Random Forest models, 343 
respectively. The top predictors in the Logistic Regression model (Figure 8) were pre-ICU medications 344 
count, ICU medications count, and ICU procedures count, with sociodemographic factors such as race 345 
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and age also ranking among the top 10 variables. For the Random Forest model (Figure 9), ICU 346 
medications count, ICU procedures count, and total LoS were identified as the most influential variables, 347 
with race and age again appearing among the top 10 predictors. These findings highlight the consistent 348 
importance of race and age as predictors, emphasizing the need to consider both clinical and 349 
sociodemographic factors when analyzing discharge outcomes.  350 

Table 2. Performance metrics of Logistic Regression and Random Forest models on test and cross-validated data 351 

    
    Metrics 

Logistic Regression Random Forest 
Test data Cross-validation Test data Cross-validation 

Brier Score 0.1301607 0.129 ± 0.011   0.08772361 0.089 ± 0.010 

Accuracy 0.8166895 0.821 ± 0.020   0.87551300 0.870 ± 0.017 
Kappa 0.6220590 0.629 ± 0.043 0.74208369 0.729 ± 0.037   

ROC AUC 0.8865039 0.889 ± 0.017   0.94999924 0.948 ± 0.012   
Sensitivity 0.7350158 0.736 ± 0.040   0.78233438 0.780 ± 0.033   

Specificity 0.8792271 0.884 ± 0.019   0.94685990 0.937 ± 0.016   

 352 

 353 
Figures 8: Variable importance for Logistic Regression 354 

 355 

Figure 9. Variable importance for Random Forest classification  356 
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The calibration curves shown in Figure 10 depict the relationship between predicted probabilities and 357 
observed outcomes. Figure 10a illustrates the calibration curve for the Logistic Regression model, which 358 
showed reasonable alignment, with minor deviations at the extremes. While Figure 10b represents the 359 
calibration curve for the Random Forest model, which demonstrated closer alignment to the diagonal line, 360 
indicating better calibration. 361 

 362 

(a) (b) 

Figure 10. Calibration curves: (a) Logistic Regression, (b) Random Forest. 363 

Table 3 summarizes the confusion matrix results for both models. The Logistic Regression model showed 364 
an agreement of 0.443 for observed class 0 and 0.2974 for class 1, with sensitivity and specificity values 365 
of 0.773 and 0.696, respectively. The Random Forest model had higher agreement, with 0.483 for class 0 366 
and 0.326 for class 1, a sensitivity of 0.844, and a specificity of 0.763. 367 

Table 3. Confusion matrix metrics for Logistic Regression and Random Forest models 368 

 
Metric 

                 Logistic Regression 
 

Random Forest 

Class 0 Class 1 Class 0 Class 1 
Observed 0.5726993  0.4273007 0.5726993  0.4273007 
Predicted 0.5729394  0.4270606 0.5847769  0.4152231 
Agreement 0.4431088  0.2974701 0.4836014  0.326125 
Sensitivity 0.7737198  0.6961610 0.8444246  0.7632218 
Specificity 0.6961610  0.7737198 0.7632218  0.8444246 
PPV (Precision) 0.7733956  0.6965524 0.8269844  0.7854216 
NPV 0.6965524  0.7733956 0.7854216  0.8269844 

Figures 11 and 12 illustrate the confusion matrix results for the Logistic Regression and Random 369 
Forest models, respectively. In Figure 12, the Random Forest model demonstrates a stronger alignment 370 
along the diagonal, indicating higher agreement between predicted and observed classes. The color 371 
gradients in both Figures 11 and 12 represent the predicted probabilities, with darker shades reflecting 372 
higher probabilities of correct classification. Overall, the Random Forest model exhibits improved 373 
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sensitivity and specificity compared to the Logistic Regression model, aligning with the numerical results 374 
presented in Table 3. 375 

 
Figure 11. Confusion matrix for Logistic Regression 

 

 
 

Figure 12. Confusion matrix for Random Forest 
 

 
Total Length of Stay 376 
While the previous models focused on classification outcome, the Generalized Additive Model (GAM) with 377 
Negative Binomial distribution and the Random Forest Regression model were utilized to predict total 378 
length of stay as discrete and continuous outcome respectively in the test data and through cross-379 
validation. The Generalized Additive Model (GAM) with a Negative Binomial family was applied to predict 380 
LoS, as the mean in the dataset for LoS was 3.69, with a variance of 42.54, indicating overdispersion. On 381 
the test data, the model achieved a Root Mean Squared Error (RMSE) of 2.9619, a Mean Absolute Error 382 
(MAE) of 1.4237, and an R-squared (R²) of 0.7594, demonstrating its ability to explain 75.94% of the 383 
variance in the LoS (Table 4). The deviance for the model was 2772.78, and the Akaike Information 384 
Criterion (AIC) was 10410.0, reflecting the model's goodness-of-fit and complexity. Cross-validation was 385 
conducted with 10 folds to assess the model's robustness. The cross-validated RMSE was 5.5212, while 386 
the mean R-squared (R²) was 0.7601, and the mean MAE was 1.5634. These cross-validation results 387 
highlight slightly higher variability and prediction errors compared to the test data, likely due to the 388 
presence of extreme values or overdispersion in the data. Furthermore, as shown in Figure 13, the 389 
majority of predictions are closely aligned with actual values, deviations are observed at higher LoS, 390 
indicating potential challenges in predicting extended stays. 391 

Table 4. Performance metrics of General Additive Model with Negative Binomial 392 

Metric Test Data Cross-Validation 

Root Mean Squared Error 2.9619 5.5212 

Mean Absolute Error 1.4237 1.5634 

R-squared 0.7594 0.7601 
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 393 

Figure 13: Predicted vs. Actual Length of Stay for the Generalized Additive Model (GAM) 394 

 395 

Table 5. Performance Metrics of Random Forest Regression Models 396 

Metric Test Data Log Transformed Test Data Cross-Validation 

Root Mean Squared Error 3.271 0.3144 0.295 (±0.020) 

Mean Absolute Error 1.360 0.2377 0.229 (±0.014) 

R-squared 0.755 0.821 0.838 (±0.021) 

The Random Forest model was subsequently applied after log-transforming the total Length of Stay 397 
(LoS), which resulted in improved performance, achieving an RMSE of 0.3144, an R-squared (R²) of 398 
0.821, and an MAE of 0.2377 on the test data. Cross-validation further confirmed the model's 399 
consistency, with a mean RMSE of 0.295 (±0.020), a mean R² of 0.838 (±0.021), and a mean MAE of 400 
0.229 (±0.014). However, when back transformed to the original scale, the performance metrics were: 401 
RMSE of 3.271, R² of 0.755, and MAE of 1.360 (Table 5). 402 

Figure 14 illustrates the variable importance of the Random Forest Regression model for predicting 403 
length of stay. The most influential predictors were the number of ICU medications and procedures, 404 
comorbidities count, and pre-ICU procedure count. While clinical factors were most prominent, 405 
sociodemographic variables such as age and race also emerged as notable predictors, highlighting their 406 
potential impact on length of stay alongside clinical characteristics. The scatter plots in Figure 15 407 
illustrate the relationship between predicted and actual Length of Stay values for the Random Forest 408 
Regression model. Figure 15a presents the scatter plot for the log-transformed data, where a strong 409 
linear relationship is observed, with predictions closely aligning with the actual values. In contrast, Figure 410 
15b displays the scatter plot for the original Length of Stay data, where greater dispersion is evident, 411 
particularly for higher values. 412 
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 413 

Figure 14. Variable Importance for Random Forest Regression Model 414 
 415 

416 

(a) (b) 

Figure 15: Predicted vs. Actual Length of Stay for the Random Forest Regression Model: (a) Log-417 
Transformed Data and (b) Normal Data. 418 

 419 
 420 
 421 
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Discharge Location 422 
Building on the evaluation of model performance for previous outcomes, the focus now turns to predicting 423 
discharge location. The Gradient Boosting Model (GBM) was evaluated on test data, achieving a Brier 424 
Score of 0.589, an accuracy of 0.558, a Kappa of 0.2110, and an ROC AUC of 0.740 (Table 6). Cross-425 
validation analysis showed a mean Brier Score of 0.5950 (±0.0206), a mean accuracy of 0.559 (±0.227), 426 
and a mean Kappa of 0.2077 (±0.0391), indicating stable performance across folds. The Multinomial 427 
Regression Model produced an accuracy of 0.5639 (95% CI: 52.81% - 59.91%) on the test data, with a 428 
Kappa value of 0.2037 (Table 6). The decay tuning parameter during cross-validation yielded consistent 429 
results, with accuracy values around 0.5658 (±0.153) and Kappa values near 0.2335 (±0.30). Significant 430 
predictors (p < 0.05) identified in this model included gender, marital status, insurance type, type of 431 
admission, number of comorbidities, and number of ICU procedures and medications. Figure 16 432 
illustrates the variable importance of the Gradient Boosting Model, highlighting the number of ICU 433 
medications, comorbidities, age, total length of stay and race as the most influential predictors. 434 

Table 6. Performance metrics of Gradient Boosting and Multinominal Regression model on test and cross-validated 435 
data 436 

 
Metric 

            Gradient Boosting Model 
 

Multinominal Regression 

Test Data Cross Validation Test Data Cross Validation 
Accuracy 55.87% 0.5591 (±0.227) 0.5639 0.5658 (±0.153) 

Kappa 0.2110 0.2077 (±0.0391) 0.2037 0.2335 (±0.30) 

Brier Score 0.5898 0.5950 (±0.0206) - - 

ROC AUC 0.7407 0.7319 (±0.0282) - - 

 437 

 438 

            Figure 16. Variable importance for Gradient Boost model 439 
 440 
 441 
 442 
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4. DISCUSSION 443 
Despite significant advancements in critical care for hepatitis-related conditions, this study highlights the 444 
complexities associated with ICU LoS, discharge outcomes (died/alive), and discharge locations. 445 
Leveraging ML models, we successfully predicted these outcomes and identified key predictors, including 446 
ICU procedures, medication counts, comorbidities, and sociodemographic factors such as age and race. 447 
Notably, race consistently emerged as one of the top predictors across all models, underscoring its critical 448 
role in influencing health outcomes for hepatitis patients. This finding is particularly significant as it aligns 449 
with observed racial disparities in the raw data, suggesting systemic inequities. Additionally, Hepatitis C 450 
emerged as the most prevalent condition in our cohort, aligning with global epidemiological trends that 451 
underscore its significant burden on critical care systems (Brunner & Bruggmann, 2021; Petruzziello et 452 
al., 2016). These findings emphasize the potential of predictive analytics in not only identifying key drivers 453 
of health outcomes but also in addressing disparities, optimizing resource allocation, improving patient 454 
outcomes, and reducing healthcare costs. 455 
 456 
This study investigated the prediction of ICU LoS for hepatitis patients using ML models, including the 457 
Generalized Additive Model (GAM) with a Negative Binomial distribution and Random Forest regression. 458 
Random Forest demonstrated superior predictive accuracy, particularly after applying a log transformation 459 
to stabilize variance. The log-transformed Random Forest model achieved an R² of 0.821 and an RMSE 460 
of 0.3144 on test data, effectively capturing complex interactions among predictors. By comparison, GAM 461 
with a Negative Binomial distribution achieved an R² of 0.7594 and RMSE of 2.9619, effectively 462 
addressing overdispersion but yielding higher errors. The key predictors for LoS included ICU medication 463 
counts, ICU procedure counts, comorbidities, pre-ICU procedures, and patient age. These findings align 464 
with prior studies, such as Gwynn et al. (2019), which demonstrated that higher procedural and 465 
pharmacological interventions often correlate with disease severity and resource intensity, leading to 466 
longer ICU stays. Similarly, Tola Getachew Bekele et al. (2024) emphasized that prolonged ICU stays are 467 
associated with complications, readmissions, and sedative use, underscoring the importance of clinical 468 
management strategies to optimize LoS. Although the models performed well for shorter stays, predicting 469 
longer LoS posed challenges due to increased variability and extreme values, as reflected in scatter plot 470 
(Figures 13). Xu et al. (2022) observed similar challenges, reporting that ML models often struggle to 471 
predict longer stays due to the inherent variability of extended ICU durations. This study reflects these 472 
findings, with greater error dispersion observed in the upper range of LoS predictions. The performance of 473 
Random Forest in predicting LoS aligns with Iwase et al. (2022), who reported high predictive accuracy 474 
for ICU stays using Random Forest. Ensemble methods such as Random Forest excel in capturing 475 
nonlinear interactions and handling heterogeneous predictors, as further evidenced by Alghatani et al. 476 
(2021), who achieved 65% accuracy for LoS predictions in ICU datasets. While GAM with Negative 477 
Binomial distribution effectively addressed overdispersion, its higher cross-validation errors indicate that 478 
variability in extended LoS remains a challenge. Future research could incorporate additional clinical 479 
variables or hierarchical modeling techniques to enhance predictions for longer LoS. 480 

 481 
The prediction of discharge outcomes (alive vs. death) was conducted using Logistic Regression and 482 
Random Forest models. Random Forest outperformed Logistic Regression across all metrics, achieving 483 
an accuracy of 87.5%, a Kappa of 0.742, and an ROC AUC of 0.95 on test data. Logistic Regression 484 
achieved slightly lower metrics, with an accuracy of 81.67%, a Kappa of 0.622, and an ROC AUC of 0.89. 485 
These results highlight the robustness of ensemble methods like Random Forest in handling complex 486 
interactions among clinical and demographic predictors. Statistically significant predictors for discharge 487 
outcomes included ICU medication counts, ICU procedure counts, and total LoS, all of which reflect 488 
disease severity and the intensity of care and key variables in predicting LoS. Prolonged LoS has been 489 
linked to increased mortality, consistent with Moitra et al. (2016), who found that each additional ICU Day 490 
beyond seven days significantly raises mortality risk. Similar findings were reported by Lingsma et al. 491 
(2018) and Tola Getachew Bekele et al. (2024), who highlighted the correlation between extended LoS 492 
and mortality, emphasizing its role as both a predictor and consequence of severe illness.  493 
 494 
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Sociodemographic factors also played a crucial role in predicting discharge outcomes. Race, for instance, 495 
emerged as a significant predictor in our study, aligning with Olanipekun et al. (2021), who found 496 
disparities in ICU mortality among demographic groups. Age was another critical variable, consistent with 497 
Saadatmand et al. (2022), who identified age and Lactate dehydrogenase (LDH) levels as significant 498 
determinants of mortality. While LDH levels were unavailable in our dataset, the inclusion of demographic 499 
and clinical predictors supported robust outcome predictions. 500 

 501 
The prediction of discharge location presented unique challenges, primarily due to the small dataset of 502 
3,875 records and eight discharge categories. Gradient Boosting Model (GBM) and Multinomial 503 
Regression yielded moderate performance, with accuracies of 55.87% and 56.39% and Kappa values of 504 
0.2110 and 0.2037, respectively. These results highlight the complexities of multi-class prediction in 505 
critical care settings with limited data. The Synthetic Minority Oversampling Technique (SMOTE) was 506 
applied to address class imbalance but resulted in data loss, which limited the model’s performance. Abad 507 
et al. (2021) addressed similar challenges using hierarchical classifiers and SMOTE to manage 508 
imbalanced multi-class datasets, suggesting that advanced techniques and larger datasets are critical for 509 
improving predictive accuracy. Additionally, as noted by Abad et al. (2021), discharge decisions are 510 
influenced by subjective factors such as caregiver preferences, resource availability, and social support, 511 
which may not be fully captured by clinical and demographic data alone. Top predictors for discharge 512 
location included gender, marital status, insurance type, admission type, number of comorbidities, and 513 
ICU procedures and medications. These findings align with Mickle and Deb (2022), who highlighted the 514 
importance of clinical and patient characteristics in discharge planning. The association of ICU 515 
procedures and medications with discharge location reflects the intensity of care required, further 516 
emphasizing their relevance in critical care contexts. Future studies should explore hierarchical 517 
classifiers, minimize the number of discharge categories, and incorporate additional variables such as 518 
functional status and physiological scores to enhance predictive performance. As highlighted by Mickle 519 
and Deb (2022), integrating larger datasets and advanced modeling techniques can provide more 520 
clinically actionable insights. 521 

 522 
This study has several limitations that warrant further consideration. First, the reliance on the MIMIC-IV 523 
database, which reflects a single institution's patient population and care practices, may limit the 524 
generalization of the findings to other healthcare settings with differing demographics or protocols. 525 
Second, the imbalanced distribution of outcomes, particularly for rare discharge destinations (e.g., 526 
hospice, against medical advice), may have reduced model stability and predictive accuracy. While ML 527 
models like Random Forest demonstrated strong performance, their limited interpretability compared to 528 
simpler models like Logistic Regression poses challenges for clinical adoption. Future research should 529 
focus on validating these findings across diverse datasets to enhance generalizability. Addressing 530 
outcome imbalances through advanced techniques without data loss will be critical for better prediction of 531 
rare outcomes like hospice discharge or leaving against medical advice. Moreover, future studies could 532 
explore fitting a Generalized Additive Model with a Zero-Inflated Negative Binomial (ZINB) distribution to 533 
account for overdispersion and zero inflation in LoS data. Expanding this work to include real-time 534 
predictive tools integrated into Clinical Decision Support Systems (CDSS) could provide dynamic insights 535 
for resource allocation and care optimization. 536 
 537 
5. CONCLUSION 538 
This study highlights the potential of machine learning in advancing critical care for hepatitis patients. The 539 
models identified key predictors of LoS, discharge outcomes, and discharge locations, with clinical factors 540 
such as pre-ICU and ICU procedures and medication counts playing a significant role in determining 541 
these outcomes. Additionally, sociodemographic factors, including age and race, were consistently 542 
identified as important predictors, highlighting the presence of racial disparities among ICU-admitted 543 
patients diagnosed with hepatitis. These findings highlight the importance of addressing such disparities 544 
while using predictive analytics to optimize resource allocation, improve patient outcomes, and guide 545 
targeted interventions. Despite its strengths, the study also revealed challenges such as variability in 546 
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extended LoS and limited data for multi-class predictions, underscoring the need for further 547 
advancements in predictive modeling strategies. 548 
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