It is made available under a CC-BY 4.0 International license .

Genome sequencing reveals the impact of non-canonical exon inclusions in rare genetic disease

3

- 4 Georgia Pitsava¹, Megan Hawley², Light Auriga¹, Ivan de Dios¹, Arthur Ko³, Sofia Marmolejos³, Miguel
- 5 Almalvez¹, Ingrid Chen², Kaylee Scozzaro², Jianhua Zhao², Rebekah Barrick⁶, Nicholas Ah Mew^{3,4},
- 6 Vincent A. Fusaro¹, Jonathan LoTempio¹, Matthew Taylor⁷, Luisa Mestroni⁷, Sharon Graw⁷, Dianna
- 7 Milewicz⁸, Dongchuan Guo⁸, David R. Murdock⁸, Kinga M. Bujakowska⁹, UCI-GREGoR Consortium,
- 8 Changrui Xiao⁵, Emmanuèle C. Délot¹, Seth I. Berger^{3,4}, Eric Vilain¹

9

- ¹Institute for Clinical and Translational Science, University of California, Irvine, CA, USA
- 12 ²Labcorp Genetics Inc, Burlington, North Carolina, USA
- 13 ³Center for Genetic Medicine Research, Children's National Research Institute, Washington, DC, USA
- ⁴Division of Genetics and Metabolism, Children's National Hospital, Washington, DC, USA
- ⁵Department of Neurology, University of California, Irvine, CA, USA
- ⁶Division of Metabolic Disorders, Children's Hospital of Orange County (CHOC), Orange, CA 92868,
 USA
- ⁷Cardiovascular Institute and Adult Medical Genetics Program, University of Colorado Anschutz Medical
 Campus, Aurora, CO, USA
- ⁸Division of Medical Genetics, University of Texas Health Science Center at Houston (UTHealth)
- 21 McGovern Medical School, Houston, Texas, USA
- ⁹Ocular Genomics Institute, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary,
- 23 Harvard Medical School, Boston, MA, USA
- 24
- 25
- 26 Correspondence: <u>sberger@childrensnational.org</u>
- 27
- 28
- 29
- 30
- _
- 31
- 32

It is made available under a CC-BY 4.0 International license .

33 Abstract

- 35 Introduction
- 36 Advancements in sequencing technologies have significantly improved clinical genetic testing,
- 37 yet the diagnostic yield remains around 30-40%. Emerging sequencing technologies are now
- being deployed in the clinical setting to address the remaining diagnostic gap.
- 39 Methods
- 40 We tested whether short-read genome sequencing could increase diagnostic yield in individuals
- 41 enrolled into the UCI-GREGoR research study, who had suspected Mendelian conditions and
- 42 prior inconclusive clinical genetic testing. Two other collaborative research cohorts, focused on
- 43 aortopathy and dilated cardiomyopathy, consisted of individuals who were undiagnosed but had
- 44 not undergone harmonized prior testing.
- 45 Results
- 46 We sequenced 353 families (754 participants) and found a molecular diagnosis in 54 (15.3%) of
- them. Of these diagnoses, 55.5% were previously missed because the causative variants were in
- regions not interrogated by the original testing. In 9 cases, they were deep intronic variants, 5 of
- 49 which led to abnormal splicing and cryptic exon inclusion, as directly shown by RNA
- sequencing. All 5 of these variants had inconclusive spliceAI scores. In 26% of newly diagnosed
- 51 cases, the causal variant could have been detected by exome sequencing reanalysis.
- 52 Conclusion
- 53 Genome sequencing overcomes multiple limitations of clinical genetic testing, such as inability
- 54 to call intronic variants and technical limitations. Our findings highlight cryptic exon inclusion as
- a common mechanism via which deep intronic variants cause Mendelian disease. However, they
- so reinforce that reanalysis of exome datasets can be a fruitful approach.
- 57
 58
 59
 60
 61
 62 Keywords: genome sequencing, RNA sequencing, rare disease, intronic variants, cryptic exon
 63
 64
 65

It is made available under a CC-BY 4.0 International license .

66 Introduction

The widespread application of clinical genetic testing has tremendously increased the rate at which 67 rare genetic diseases are being diagnosed and new gene-disease associations are identified. Despite 68 69 this progress, the diagnostic yield of clinical genetic testing remains 30-40% [1, 2]. There are several reasons for this plateau. For many conditions, the causal genes are still unidentified. Even 70 for conditions with known causal genes, interpreting the clinical significance of variants can be 71 72 challenging. This is because there are a large number of variants with insufficient information 73 pertinent to their pathogenicity, known as variants of unknown significance (VUS). In addition, 74 technical limitations of commonly offered clinical tests can result in missed variants, for example 75 in regions that are not represented in exome sequencing such as deep intronic and untranslated 76 regions. Epigenetic factors that affect gene expression but are not interrogated by standard testing

77 potentially add to the complexity.

Molecular sequencing technologies not traditionally used in the clinical setting are now being deployed in order to overcome these challenges. These include the increasing use of genome sequencing (GS) as well as RNA sequencing. The latter can be especially useful for directly evaluating the functional consequences of intronic variants and variants in splice regions, since despite advances in computational predictors of splicing disruption (such as SpliceAI and Pangolin [3, 4]) it often remains difficult to determine if these variants are pathogenic or not.

The University of California, Irvine (UCI) - GREGoR site, part of the GREGoR (Genomics Research to Elucidate the Genetics of Rare Diseases) Consortium, has been evaluating the diagnostic utility of these newer approaches. Our study has been enrolling participants whose clinical presentation strongly suggests a genetic cause, but who remain without a molecular diagnosis, despite having undergone conventional genetic testing (gene panels, chromosomal microarray, exome sequencing - ES).

Here, we describe our center's experience from short-read GS of a cohort of 353 such families
(754 participants). To help disambiguate previously or newly detected variants (VUS or single
heterozygous pathogenic variants in recessive disease genes), we deployed additional methods,
including RNA sequencing. We also provide an overview of our cohort and focus on lessons
learned from informative, successfully solved cases.

95

96 Methods

97 Participants

98 The Mendelian Genomics Research Center was launched in 2021, between Children's National

99 Hospital, Invitae, and more recently UCI. The study was approved by the Institutional Review

100 Board (IRB) of Children's National Hospital (Pro00015852). Study participants included

101 probands with a suspected Mendelian condition and prior non-diagnostic clinical testing, such as

102 gene panels, chromosomal microarray, or ES. Testing on additional family members was

103 performed when available. Individuals were enrolled over a three-year period, from July 2021 to

104 April 2024, through referrals by physicians and collaborators, or self-referral via our website

It is made available under a CC-BY 4.0 International license .

- 105 (https://research.childrensnational.org/labs/pediatric-mendelian-genomics-research-center).
- 106 Written informed consent was available in both English and Spanish and was obtained for all
- 107 families by study staff or through a study-specific automated chatbot [5]. Workflows for remote
- 108 enrollment and sample collection were established, eliminating the need for participants to travel.
- 109 Following consent, buccal swabs and/or peripheral blood samples were collected from probands
- and their relevant available family members. Some participants provided clinically generated
- 111 genome data for reanalysis [6]. In addition, our study population involved two collaborative
- 112 cohorts, one focusing on aortopathy and another on dilated cardiomyopathy; for these their prior
- 113 genetic testing may not have been as comprehensive or well documented. Phenotypic categories
- are described in **Table 1**.

115 Short-read Genome Sequencing

Blood and buccal samples were sent to Invitae® laboratories where they were processed and underwent genome sequencing using Illumina NovaSeq 6000. Sequencing files were subsequently aligned to the hg38 human genome assembly with bwa-mem using soft clipping enabled for supplementary alignments (-Y), processed at 120,000,000 input bases per batch for reproducibility (-K) [7] and genotyped using Google DeepVariant [8]. Structural variant calling was performed with Illumina Manta [9]. Alignments and variant call files are available on the NHGRI Analysis Visualization and Informatics Lab-space (AnVIL; <u>AnVIL Portal</u>) on the GREGoR Consortium

- 123 workspace.
- 124 Short-read RNA sequencing

125 Blood samples were preserved in PAXgene tubes processed with the WatchMaker Genomics RNA

126 library prep kit with the Polaris depletion module to create stranded and ribosomal/globin-depleted

127 libraries. They then underwent RNA sequencing using the Illumina NovaSeq 6000 S4 flowcells

generating 100-200 million 150-bp read pairs. Reads were aligned to hg38 using STAR (v2.7.10a)

129 [10] with the GENCODEv41 annotation. We employed the basic two-pass mode and allowed up

to 3 mismatches and a minimum aligned length of 100 bp. Alignments were visualized using

131 integrative genomics viewer (IGV) [11-14]. Alignments are available on AnVIL (<u>AnVIL Portal</u>).

132 *Mini gene assays*

A minigene splicing assay was performed using a mini-gene split Green Fluorescent Protein (GFP) 133 construct [15], in which N- and C-terminal parts of the GFP gene were separated by SMN1 introns 134 135 7 and 8 (NM 000344). Reference and mutated gene fragments containing 1000 bp of DBT intron 10 surrounding the c.1282-4218G>A variant flanked with 30 bp vector homology arms were 136 137 synthetized (TWIST Bioscience, USA) and cloned into the mini-gene construct (Gibson Assembly 138 Master Mix, New England Biolabs). After Sanger sequencing verification of all constructs, they were transfected into HEK293 cells (Lipofectamine 3000, Thermo Fisher Scientific). Forty-eight 139 140 hours post transfection, total RNA was extracted from the transfected cells (RNAeasy Mini Kit, 141 Qiagen) and cDNA was generated using random hexamer primers (SuperScript IV Synthesis Kit, Thermo Fisher Scientific). Subsequently, the minigene transcripts were amplified from the cDNA 142 primers specific the split **GFP** fragments (F: 5'-143 using to CACACTGGTGACAACATTTACATAC-3'; R: 5'- GAAATCGTGCTGTTTCATGTGATC-3'). 144

It is made available under a CC-BY 4.0 International license .

145 The PCR products were column-purified (DNA Clean & Concentrator-5, Zymo Research) and

analyzed with next-generation amplicon sequencing (MiSeq, Illumina, OGI Genomics Core). The

- splicing pattern analysis was performed by aligning the sequence reads to the hybrid reference of
- the split *GFP* construct containing the *DBT* intron 10 (STAR Aligner) [16] and visualizing the
- reads in (IGV) [11-14]. The same process was followed to test the effect of the *HFE* VUS found
- 150 in participant PMGRC-124-124-0.
- 151 *Variant prioritization and analysis*

152 Phenotypic data for probands was collected via a manual review of electronic medical records or 153 provided by collaborating researchers. The phenotypes of each proband were converted to Human

154 Phenotype Ontology (HPO) terms.

Variants were reviewed by expert curators using the MOONTM software. MOON implements a 155 natural language processing approach to prioritize variants in genes that are likely to be related to 156 an individual's phenotype based on published literature [17, 18]. Cases were reviewed with the 157 goal of identifying pathogenic, likely pathogenic, and VUS in known disease genes consistent with 158 the phenotype of the proband. In addition to sequence and structural variants prioritized by 159 MOON, rare sequence variants in the following categories were reviewed: those expected to result 160 in loss of function, de novo variants, compound heterozygous or homozygous variants, 161 162 hemizygous variants, variants classified as likely pathogenic or pathogenic in ClinVar, and variants in genes associated with conditions with a high clinical overlap for the patient. 163

Cases were considered "solved" when a disease-causing variant or multiple disease-causing 164 variants in a gene associated with a condition consistent with the phenotype of the proband were 165 detected. The number and phase of variants needed to be consistent with the inheritance pattern of 166 167 the condition. For example, a single likely pathogenic or pathogenic variant in an autosomal dominant condition or biallelic likely pathogenic or pathogenic variants in an autosomal recessive 168 condition were needed for a case to be considered "solved". Cases were considered "probably 169 170 solved" when one or more of the variants were classified as a VUS but there was a strong phenotypic overlap with the clinical presentation of the patient. Cases were considered "partially 171 solved" if likely pathogenic or pathogenic variants consistent with the inheritance pattern of the 172 condition were detected, but the result only explained part of the proband's phenotype. 173

Finally, we note that analysis is ongoing; the data reported on this manuscript are as of October 1,2024.

176

177 **Results**

178 Genome Sequencing leads to a molecular diagnosis in 15.3% of previously unsolved cases

179 A total of 353 families underwent GS during the designated period; demographic information is

180 shown in Figures 1a and 1b. Our study included several different family structures; 41.9%

181 (n=148) were proband-only cases, 13.3% (n=47) were duos or duos plus another family member

(duo+), 43.3% (n =153) were trios or trios with another family member (trio+) and 1.4% (n=5)

- 183 consisted of other family combinations (Figure 2a). This accounts for a total of 754 genomes184 analyzed.
- 185 A genetic diagnosis was found in 54 (15.3%) cases (solved/probably solved; Supplemental Table
- 186 1). As expected, the diagnostic yield was higher in trios/trios+ compared to duos/duos + and
- proband-only families (21% vs 13% and 10%; **Figure 2b**). This difference was statistically
- 188 significant (p = 0.03, chi-square test).
- 189 In addition, 6 cases (1.7%) were partially solved; that is, the identified variant could explain part,
- 190 but not the entirety, of the individual's phenotype. Furthermore, we found a candidate variant in
- approximately 9% of the cases that remained unsolved (27 out of the 299; Supplemental Table 2).
- 192 To better understand why the diagnosis was previously missed in the 54 solved/probably solved
- 193 cases, we examined the type of prior testing these participants had undergone (Figure 3a). In 26%
- 194 (14 out of 54) of solved cases, the causal variant had been identified by initial testing but was not
- 195 reported either because the gene-phenotype association was unknown at the time of that testing or
- 196 because the variant was not classified as pathogenic at the time (Figure 3b). Below, we focus on
- 197 cases where initial testing did not interrogate the genomic region harboring the causative variant.
- 198 Diagnoses in uninterrogated regions of original testing highlight cryptic exon inclusion as a 199 common mechanism by which deep intronic variants cause disease
- In the majority of solved/probably solved cases (55.5%; 30 out of 54 cases), the diagnosis was missed before because the original testing method was unable to call variants in the region harboring the causative variant. For example, there were 13 cases where panel testing did not include the causal gene, and 13 cases where the causative variant was non-coding. In one case, a synonymous coding-region variant was predicted by spliceAI to lead to intron retention in *HFE*. This intron retention event leading to a stop-gain was confirmed using a mini gene assay (Supplemental Figure 1).
- 207 With respect to non-coding causative variants, these were deep intronic in 9 cases. In five of those, the causative variant altered the canonical splicing pattern via the inclusion of a cryptic exon 208 (Table 2). Variant pathogenicity was revealed by RNAseq, which directly demonstrated the effect 209 210 at the transcript level. For example, one case was due to an intronic variant in PEX1, in a patient 211 with a known biochemical diagnosis of Zellweger Spectrum Disorder and a carrier of a 212 heterozygous known pathogenic variant in PEX1. The abnormal cryptic exon inclusion was 213 revealed by RNAseq (Supplemental Figure 2). Another example was a newborn female who was biochemically diagnosed with thiamine-responsive maple syrup urine disease (MSUD) based on 214 215 the same diagnosis in her sister. However, all prior genetic testing (panel testing of 9 genes, ASL 216 single-gene testing, and ES) was negative. GS revealed a homozygous deep (-4230) intronic single nucleotide variant predicted to lead to aberrant splicing of DBT, a gene known to cause MSUD 217 218 type II (OMIM# 620699), which can sometimes be thiamine-responsive. RNAseq confirmed the 219 cryptic exon inclusion, establishing the molecular diagnosis (Figure 4a). This variant was also confirmed by minigene assay (Figure 4b-e). In another case we found a deep intronic variant in a 220 case of Coffin-Siris, which we validated by episignature in long-read sequencing [19]. 221

We found that, in all five cases with a cryptic exon inclusion, both the acceptor gain and the donor gain spliceAI scores fell within a range generally considered inconclusive with regards to impact on splicing (range 0.16 - 0.43 for acceptor gain scores; 0.19 - 0.55 for donor gain scores). This observation, while preliminary, suggests that the combination of such acceptor gain and donor gain scores may be a marker for variants leading to this splicing alteration. Of note, commonly used

- pre-calculated spliceAI scores limit their search to 50 bp from the variant, and therefore in each of
- these examples the new splice acceptor would not have been detected with pre-calculated spliceAI
- scores alone. It required a direct calculation of a spliceAI score with a search of at least 500 bp
- 230 from the variant. Pangolin scores were generally higher than spliceAI scores.
- Four additional cases harbored variants in the spliceosomal non-coding RNA *RNU4-2* and contributed to the discovery of ReNU syndrome (OMIM#620851) [20]. Variants in this gene represent a new, surprisingly common etiology of neurodevelopmental disorders, explaining approximately 0.4% of such cases.

235 Finally, an informative example in which the causal variant was missed due to variant filtering parameters driven by limitations of ES was a woman in her 30s with glomuvenous malformations, 236 237 conductive hearing loss, and midline malformations. Previous testing included a cancer 38-gene 238 panel, GLA single-gene testing, ES, and mitochondrial testing; all were negative. GS revealed a known pathogenic exonic frameshift variant in GLMN (Glomuvenous Malformation Syndrome; 239 OMIM#138000). Upon review of the previous clinical ES, we discovered that this same variant 240 241 was detectable in the original data. However, the variant had not been reported as the exon was excluded from the lab's clinically validated regions due to a propensity for sequencing artifacts in 242 this exon. Clinicians ordering clinical exome sequencing may not be aware of the coverage 243 limitations of clinically relevant genes or exons important for the testing indication. 244

245 Detection of structural variants

We also identified structural variants not detected by previous testing. This includes a complex rearrangement of *OCA2* with deep intronic breakpoints [6] and deletion of the first exon of *CREBBP* in a child with features of Rubinstein-Taybi syndrome 1 (OMIM#180849) and previous negative ES. It is important to note that while ES has made strides in detection of structural variants, copy-neutral variants and single-exon deletions may still not be detected.

251 Syndromic phenotypes had the highest solve rate

252 When examining the solve rate separately for each phenotypic category, the largest number of diagnoses were obtained in individuals with syndromic phenotypes (32 solved cases out of 128 253 254 total cases; 25%), while the solve rate in non-syndromic cases was 9.8% (Figure 5A). When 255 further stratifying non-syndromic cases according to the affected organ system (Figure 5B), individuals whose phenotype was categorized as 'Cardiovascular' were the most likely to receive 256 257 a diagnosis in our entire cohort (7 out of 19, 36.8 %). All but one of these individuals who received 258 a diagnosis were affected by dilated cardiomyopathy and were part of a legacy cohort. The genes we found were not known to be associated with dilated cardiomyopathy at the time of testing, 259 which explains why they were initially missed. 260

It is made available under a CC-BY 4.0 International license .

261

262 Discussion

Our study provides a characterization of the potential of short-read GS, combined with other 263 confirmatory analyses such as RNAseq, to yield genetic diagnoses for previously undiagnosed 264 cases. GS provides a molecular diagnostic advantage over ES in that it can detect variants in 265 regions not interrogated by ES such as introns or non-coding genes, while RNAseq can assist in 266 establishing the pathogenicity of intronic splice-altering variants by directly demonstrating the 267 impact on the RNA product. Here, using a combination of GS and RNAseq we discovered cryptic 268 269 exon inclusion as a common (among intronic variants) molecular mechanism with a loss-offunction impact via perturbed splicing. 270

Regarding causative variants in non-protein coding genes, while some examples of diseasecausing non-coding RNAs were previously known, this number is now expanding thanks to the implementation of GS. Recently discovered examples include the aforementioned *RNU4-2*, encoding the U4 small nuclear RNA (snRNA) component of the major spliceosome [20, 21], and the long non-coding RNA *CHASERR*, which was shown to cause a novel syndromic neurodevelopmental disorder [22].

Going forward, we envision that improvements in our ability to evaluate the impact of variants in 277 regions traditionally missed by conventional genetic testing will continue to increase the diagnostic 278 279 yield of GS. It is important to recognize, however, that in some cases it may be cost-effective to reanalyze ES data instead of resorting to GS, especially given advances in variant interpretation 280 driven by better predictive models of variant effects and an expanded understanding of tolerated 281 genetic variation. Indeed, many causal variants in our study could have been detected by a 282 283 reanalysis of ES data, using new information provided by variant reclassification or improved analytic pipelines; a finding that is in alignment with results from previous studies [23-25]. In 284 addition, testing of other family members can also aid in variant reinterpretation by showing if a 285 286 variant is *de novo* or if it segregates with the phenotype in the family. Finally, we speculate that newer long-read sequencing technologies will help further close the diagnostic gap by capturing 287 variants not captured by short-read technologies such as certain structural variants and repeat 288 expansions [26]. 289

- 290
- 291

292 Data Availability

293 Data available in the GREGoR workspace in AnVIL (<u>AnVIL Portal</u>).

294

295 Funding Statement

296 The study was supported by the National Institutes of Health grant U01HG011745, as part of the

297 GREGoR Consortium. KMB was supported by the GREGoR Consortium Research Grant from

298 299 300	the GREGoR Data Coordinating Center [U24HG011746]; National Eye Institute [R01EY035717 (KMB) and P30EY014104 (MEEI core support)], Iraty Award 2023 (KMB), Lions Foundation (KMB) and the Research to Prevent Blindness Unrestricted Grant (KMB).
301	
302	Disclosures/Conflict of interest
303 304	M.H, J.Z. and K.S. are currently employees of Labcorp Genetics Inc, formerly known as Invitae Corp, I.C. is a former employee of Invitae Corp. All other authors declare no conflicts of interest.
305	
306	Acknowledgements
307	We thank the participants and referring physicians for participating in this study.
308	
309	Ethics Declaration
310 311 312	This study was approved by the Children's National Hospital Institutional Review Board (IRB) under protocol Pro00015852. Informed consent was obtained from all participants as required by the IRB.
313	
314	
315	
316	
317	
318	
319	
320	
321	
322	
323	
324	
326	Table 1. Definitions of Phenotypic Categories

It is made available under a CC-BY 4.0 International license .

Multisystem Syndromic Disorders	Proband presenting with symptoms affecting multiple organ systems, often accompanied by distinctive facial features.		
Non-syndromic Disorders	Proband with conditions that predominantly affect a single organ system, without significant involvement of other systems.		
Subcat	egories		
Neurodevelopmental Disorders	Probands exhibiting conditions that primarily affect the development and function of the nervous system, including the brain, spinal cord, and peripheral nerves. This category encompasses disorders impacting cognitive function, behavior, motor skills, and neurological processes.		
Cardiovascular Disorders	Proband with primary involvement of the heart and blood vessels, such as structural heart defects, cardiomyopathies, arrhythmias, and vascular diseases.		
Connective Tissue & Skeletal Disorders	Proband with symptoms affecting bones, joints, and connective tissues such as skin, tendons, and ligaments.		
Other	Proband who do not clearly fit any of the aforementioned categories.		

It is made available under a CC-BY 4.0 International license .

Participant ID	Variant	riant Gene		SpliceAI score		Distance to variant	
			Acceptor	Donor	New Acceptor	New Donor	
PMGRC-146-146-0	c.3235+700C>G	ARID1B	0.31	0.19	-143 bp	-5 bp	0.54
PMGRC-220-220-0	c.1390-515_1390- 499del	HADHB	0.27	0.27	-85 bp	27 bp	0.35
PMGRC-332-332-0	c.789+973C>G	CRPPA	0.43	0.55	118 bp	5 bp	0.46
PMGRC-403-403-0	c.1359+601A>G	PEXI	0.30	0.54	168 bp	0 bp	0.36
PMGRC-658-658-0	c.1282-4218G>A	DBT	0.16	0.20	161 bp	3 bp	0.66
338 Splice	AI scores were calculated	using the sp	liceAI lookup	tool with a	maximum distance	of 500 bp.	<u>.</u>
339							
340							
341							
342							
343							
344							
345							
346							
347							
348							
349							
350							
351							
352							
353							
354							
355							
356							
357							

337 Table 2. Participants with cryptic exon inclusion.

It is made available under a CC-BY 4.0 International license .

358 Supplemental Table 1. Solved/Probable solved cases

Participant ID	Phenotyp ic Category	Gene	Variant	Patient Phenotype	Reason diagnosis was missed on previous testing	Associated Disorder (OMIM)
PMGRC-13-13- 0	Syndromic	PTHLH	c.4C>T, p.Gln2*	Pseudohypoparathyroidism, Chiari 1 malformation, shortened metacarpals	Limited Original Testing	Brachydactyly, type E2 (#613382)
PMGRC-32-32- 0	Other	FLG	c.1297_1298del, p.Asp433fs c.2282_2285del, p.Ser761fs	Eczematoid dermatitis, numerous arcuate plaques with erythematous border, perivascular and interstitial dermatitis with neutrophils on biopsy, ichthyosiform xerosis	Limited Original Testing	Ichthyosis vulgaris (#146700)
PMGRC-43-43- 0	Syndromic	HECTD1	c.2082C>G, p.Phe694Leu	Hypotonia, oral dysphagia, macrocephaly, autism spectrum disorder, somatic overgrowth syndrome, hypothalamic obesity, tube feeding, esotropia, stereotypic movements, abnormal brain MRI, dysmorphic facial features	New Information/Reclassi fication/Candidate gene now linked to syndrome	HECTD1- neurodevelopmenta l disorder (under review)
PMGRC-46-46- 0	Syndromic	PPP1R3 F	c.554_555del, p.His185fs*66	Hypotonia, tube feeding, autism spectrum disorder, speech/language delays, developmental delay	New Information/Reclassi fication/Candidate gene now linked to syndrome	X-linked PPP1R3F neurodevelopmenta l disorder [27]
PMGRC-88-88- 0	Syndromic	NARS2	c.749G>A, p.Arg250Gln	Critically ill neonate with multisystemic disease. A few months later, new findings of interstitial lung disease and refractory seizures	Limited Original Testing	Combined oxidative phosphorylation deficiency 24 (#616239)
PMGRC-101- 101-0	Syndromic	CBL	c.1259G>A, p.Arg420Gln	Hemihypertrophy, nystagmus, club foot	Previously known	Noonan syndrome- like disorder with or without juvenile myelomonocytic leukemia (#613563)
PMGRC-114- 114-0	Connective tissue & Musculosk eletal disorders	ACAN	c.4753del, p.Asp1585fs c.757+4A>G	Severe scoliosis, spondyloepimetaphyseal dysplasia, genu valgum, short stature	Previously known	Spondyloepimetap hyseal dysplasia, aggrecan type (#612813)

PMGRC-124- 124-0	Syndromic	HFE	c.187C>G, p.His63Asp c.892G>A, p.Glu298Lys	Liver disease, hyperammonemia, encephalopathy, hyperbilirubinemia	Limited Original Testing	Hemochromatosis, type 1 (#235200)
PMGRC-146- 146-0	Syndromic	ARID1B	c.3235+700C>G	Developmental delay, gross motor delay, abnormal brain MRI, mixed receptive-expressive language disorder, dysmorphic facial features	Limited Original Testing	Coffin-Siris syndrome 1 (#135900)
PMGRC-148- 148-0	Syndromic	RNU4-2	n.64_65insT	Hypotonia, global developmental delay, speech delay, febrile seizures, optic nerve hypoplasia, tube feeding, dysmorphic facial features	Limited Original Testing	ReNU syndrome (#620851)
PMGRC-151- 151-0	Syndromic	GLMN	c.157_161del, p.Glu52_Lys53insTer	Clinical diagnosis of glomuvenous malformations	Limited Original Testing	Glomuvenous malformations (#138000)
PMGRC-158- 158-0	Syndromic	COQ2	c.421G>C, p.Val141Leu c.138dup, p.Ala47fs	Retinal atrophy, horseshoe kidney, nephrotic syndrome	New Information/Reclassi fication	Coenzyme Q10 deficiency, primary, 1 (#607426)
PMGRC-170- 170-0	Neurodevel opmental	GRIA4	c.1643G>C, p.Trp548Ser	Hypotonia, feeding difficulties, global developmental delays of motor and language skills, microcephaly, delayed visual attention, abnormal brain MRI	New Information/Reclassi fication	Neurodevelopment al disorder with or without seizures and gait abnormalities (#617864)
PMGRC-175- 175-0	Syndromic	PTPN11	c.1510A>G, p.Met504Val	Pulmonary valve stenosis, toe syndactyly, widely spaced nipples	Previously Known	Noonan syndrome 1 (#163950)
PMGRC-176- 176-0	Syndromic	SCN8A	c.2549G>A, p.Arg850Gln	Refractory seizures, epileptic encephalopathy, infantile spasms, global developmental delay, hypotonia, tube feeding, respiratory insufficiency, hypotonia	Previously Known	Developmental and epileptic encephalopathy 13 (#614558)
PMGRC-178- 178-0	Neurodevel opmental	CHD1	c.1010C>T, p.Thr3371le	Motor delay, hypotonia, stereotypic behaviors, autism spectrum disorder	New Information/Reclassi fication	Pilarowski- Bjornsson syndrome (#617682)

PMGRC-355- 355-0	Neurodevel opmental	TCF7L2	c.1156C>T, p.Arg240Cys	Walking difficulties, unsteady gait, lateral lisps, ADHD, distal weakness, hammertoes, gynecomastia, learning disabilities	New Information/Reclassi fication	TCF7L2- associated syndromic neurodevelopmenta l disorder [30]
PMGRC-332- 332-0	Neurodevel opmental	CRPPA	c.789+973C>G	Global developmental delay, hypotonia, chronic lung disease, retinopathy, severe optic atrophy, tube feeding, abnormal brain MRI	Limited Original Testing	Muscular dystrophy- dystroglycanopathy (congenital with brain and eye anomalies), type A, 7 (#614643)
PMGRC-316- 316-0	Syndromic	PTPN11	c.794G>A, p.Arg265Gln	Short stature, gross motor delays	Limited Original Testing	Noonan syndrome 1 (#163950)
PMGRC-265- 265-0	Syndromic	RNF220	c.1094G>A, p.Arg365Gln	Bilateral sensorineural hearing loss, leukodystrophy, seizures, mixed receptive-expressive language disorder, photoreceptor degeneration, intention tremor	New Info/Reclassification	Leukodystrophy, hypomyelinating, 23, with ataxia, deafness, liver dysfunction, and dilated cardiomyopathy (#619688)
PMGRC-220- 220-0	Syndromic	HADHB	c.1390-515_1390-499del	Hypoparathyroidism, LCHAD, mitochondrial trifunctional protein deficiency, pancytopenia, bone marrow deficiency, nephrotic syndrome, tube feeding	Limited Original Testing	Mitochondrial trifunctional protein deficiency 2 (#620300) [29]
PMGRC-212- 212-0	Other	OCA2	c.1465A>G, p.Asn489Asp and a complex rearrangement with deep intronic breakpoints	Oculocutaneous albinism	Limited Original Testing	Oculocutaneous albinism, type II (#203200)
PMGRC-205- 205-0	Syndromic	SLC6A8	c.1255-3_1255-2delCA	Acute liver failure, acute kidney injury, autism spectrum disorder	Limited Original Testing	Cerebral creatine deficiency syndrome 1 (#300352)
PMGRC-204- 204-0	Neurodevel opmental	FBXO31	c.1000G>A, p.Asp334Asn	Abnormal brain MRI, gross motor delay, speech delay, hypertonia, lower extremity spasticity, esotropia, mixed receptive- expressive language disorder	New Information/Reclassi fication	FBXO31-related spastic-dystonic cerebral palsy syndrome [28]

PMGRC-366- 366-0	Neurodevel opmental	DDX17	c.1077G>A, p.Trp359*	Hypotonia, global developmental delay, gross motor delay, mixed receptive-expressive language disorder, foot drop, steppage gait, pes planus, ataxic gait	New Information/Reclassi fication	DDX17- associated neurodevelopmenta l disorder [31]
PMGRC-388- 388-0	Syndromic	RNU4-2	n.64_65insT	Global developmental delay, hemiparesis, microcephaly, tube feeding, growth delays, truncal hypotonia, autism spectrum disorder, nonverbal, speech apraxia, sensory processing difficulties, abnormal brain MRI	Limited Original Testing	ReNU syndrome (#620851)
PMGRC-392- 392-0	Neurodevel opmental	COQ4	c.718C>T, p.Arg240Cys c.202+4A>C	Spastic diplegia, gross motor delays, speech articulation delay, unsteady gait, walking difficulties	New Information/Reclassi fication	Spastic ataxia 10, (#620666)
PMGRC-403- 403-0	Syndromic	PEX1	c.1359+601A>G	Zellweger Spectrum Disorder, elevated very long-chain fatty acids, decreased plasmalogen	Limited Original Testing	Peroxisome biogenesis disorder 1A (#214100)
PMGRC-418- 418-0	Neurodevel opmental	ZIC2	c.1030_1032del, p.Trp359*	Alobar holoprosencephaly	Limited Original Testing	Holoprosencephaly 5 (#609637)
PMGRC-437- 437-0	Syndromic	GL12	c.1111_1120del, p.Ile371fs	Septopreoptic holoprosencephaly, solitary median maxillary incisor syndrome, low thyroid, underdeveloped pituitary, sensory processing disorder, failure to thrive	Limited Original Testing	Holoprosencephaly 9 (#610829)
PMGRC-440- 440-0	Syndromic	ZIC2	c.1013del, p.Pro338fs	Deafness, cerebral palsy, holoprosencephaly	Previous testing information not provided	Holoprosencephaly 5 (#609637)
PMGRC-451- 451-0	Syndromic	ZIC2	c.1377_1406dup, p.Ala461_Ala470dup	Semilobar holoprosencephaly, diabetes insipidus, delayed development	Limited Original Testing	Holoprosencephaly 5 (#609637)
PMGRC-509- 509-0	Syndromic	RNU4-2	n.64_65insT	Microcephaly, hypotonia, delayed myelination, gross motor delay, brachycephaly, abnormal brain MRI, global developmental delay	Limited Original Testing	ReNU syndrome (#620851)
PMGRC-538- 538-0	Syndromic	AGO2	c.602G>T, p.Gly201Val	Hip dysplasia, congenital hypotonia, cleft palate, global developmental delay, hearing loss, Pierre Robin sequence, seizures, speech delay, cerebral palsy,	New Information/Reclassi fication	Lessel-Kreienkamp syndrome (#619149)

				scoliosis, congenital heart defects, dysmorphic facial features		
PMGRC-540- 540-0	Syndromic	KMT2C	c.5668C>T, p.Arg1890*	Hypotonia, fine motor delay, gross motor delay, sensory processing disorder, speech delay, decreased oral tone, selective mutism, ADHD, developmental coordination disorder, dysmorphic facial features	Limited Original Testing	Kleefstra syndrome 2 (#617768)
PMGRC-569- 569-0	Neurodevel opmental	STAG2	87kb deletion of chrX:123,946,386-124,003590 Exon 1-4 deletion	Holoprosencephaly, global developmental delay, scoliosis, apraxia of speech, vision problems, vertebral anomaly	Previously Known	Holoprosencephaly -13, X-linked (#301043)
PMGRC-599- 599-0	Neurodevel opmental	RNU4-2	n.69C>T	Small for gestational age, abnormal visual development/eye movement irregularity, global developmental delay, hypotonia, abnormal brain MRI	Limited Original Testing	ReNU syndrome (#620851)
PMGRC-635- 635-0	Syndromic	CDK13	c.425dup, p.Leu143fs	Congenital heart disease, dysmorphic facial features, short stature, ADHD, global developmental delay	New Information/Reclassi fication	Congenital heart defects, dysmorphic facial features, and intellectual developmental disorder (#617360)
PMGRC-658- 658-0	Syndromic	DBT	c.1282-4218G>A	Prenatal diagnosis of Argininosuccinic acid lyase deficiency and thiamine- responsive maple syrup urine disease	Limited Original Testing	Argininosuccinic aciduria, Maple syrup urine disease, type II (#620699)
PMGRC-677- 677-0	Syndromic	TPM3	c.835C>G, p.Leu279Val	Pierre Robin sequence, tube feeding, gastroparesis, mannose- binding lectin deficiency, recurrent aspiration pneumonia and sinusitis, abnormal brain MRI, hypotonia	Limited Original Testing	Congenital Myopathy 4A, Autosomal Dominant (#255310)
PMGRC-700- 700-0	Syndromic	OFD1	c.2413dup, p.Gln805fs	Semilobar holoprosencephaly, cleft lip and palate, bilateral postaxial polydactyly of hands and feet, bilateral cryptorchidism, Dandy-Walker malformation, ventriculomegaly, hypotelorism, seizures	Limited Original Testing	Joubert syndrome 10 (#300804)

PMGRC-753- 753-0	Syndromic	MSL2	c.535G>T, p.Glu179*	Gross motor delay, speech delay, hypotonia, microcephaly, frontal bossing, fine hair, ptosis, pectus excavatum, low muscle tone, Mongolian spot in lower back, global developmental delay	New Information/Reclassi fication	Karayol-Borroto- Haghshenas neurodevelopmenta l syndrome (#620985)
PMGRC-812- 812-0	Syndromic	NDST1	c.1850 C>T, p.Thr617Ile	Ankyloglossia, gross motor delays, thoracolumbar kyphosis, global developmental delay, axial hypotonia	New Information/Reclassi fication	Intellectual Developmental Disorder, Autosomal Recessive 46 (#616116)
PMGRC-817- 817-0	Syndromic	MT-TL1	n.14A>G (m.3243A>G)	Fatigue, headache, recurrent fever, tinnitus, recurrent episodes of infection, sudden loss of hearing	Limited Original Testing	Diabetes-deafness syndrome (#520000)
PMGRC-890- 890-0	Cardiovasc ular	TNN	c.59604_59607delAAAG p.Gly19871fs	Dilated Cardiomyopathy	Limited Original Testing	Dilated Cardiomyopathy, 1G (#604145)
PMGRC-897- 897-0	Cardiovasc ular	SCN5A	c.3911C>T, p.Thr1304Met	Dilated Cardiomyopathy	Previously Known	Dilated Cardiomyopathy, 1E (#601154)
PMGRC-904- 904-0	Cardiovasc ular	DMD	c.9851G>A, p.Trp3284*	Dilated Cardiomyopathy	Previously Known	Dilated Cardiomyopathy, 3B (#302045)
PMGRC-911- 911-0	Cardiovasc ular	МҮН6	c.2489C>T, p.Pro830Leu	Dilated Cardiomyopathy	Limited Original Testing	Dilated Cardiomyopathy, 1EE (#613252)
PMGRC-914- 914-0	Cardiovasc ular	TNNT2	c.517C>T, p.Arg173Trp	Dilated Cardiomyopathy	Limited Original Testing	Dilated Cardiomyopathy, 1D (#601494)
PMGRC-917- 917-0	Cardiovasc ular	RBM20	c.2497dupA, p.Arg833fs	Dilated Cardiomyopathy	Limited Original Testing	Dilated Cardiomyopathy, 1DD (#613172)
PMGRC-921- 921-0	Cardiovasc ular	TNNI3K	c.2302G>A, p.Glu768Lys	Dilated Cardiomyopathy	Limited Original Testing	Cardiac conduction disease with or without dilated cardiomyopathy (#616117)

PMGRC-991- 991-0	Connective tissue & Musculosk eletal disorders	TGFBR1	c.1355del, p.Pro452fs	Thoracic aortic aneurysm, Aortic dissection	Previous testing information not provided	Loeys-Dietz syndrome 1 (#609192)
PMGRC-1040- 1040-0	Connective tissue & Musculosk eletal disorders	FBN1	c.4096G>A, p.Glu1366Lys	Thoracic aortic aneurysm, Aortic dissection	Previous testing information not provided	Marfan syndrome (#154700)
PMGRC-1091- 1091-0	Syndromic	CREBBP	exon 2 deletion	Failure to thrive, global developmental delay, pectus excavatum, axial hypotonia, abnormal brain MRI, dysmorphic features	Limited Original Testing	Rubinstein-Taybi syndrome 1 (#180849)

3. 3	59 60	ADHD attention deficit hyperactivity disorder, LCHAD long-chain 3-hydroxyacyl-CoA dehydrogenase enzyme deficiency, MRI magnetic resonance imaging
3	61	
3	62	
3	63	
3	64	
3	65	
3	66	
3	67	
3	68	
3	69	
3	70	
3	71	
3	72	
3	73	
3	74	
3	75	
3	76	
3	77	

It is made available under a CC-BY 4.0 International license .

378 Supplemental Table 2. Candidate genes identified in unsolved cases. All genes are deposited in

379 GeneMatcher.

Participant ID	Candidate Gene	Variant
PMGRC-86-86-0	NRXN2	c.2107G>A, p.Gly703Ser
PMGRC-104-104-0	GALNT16	c.502+1G>A
PMGRC-116-116-0	ARHGAP21; PDPK1	c.3692_3693del; c.1588G>A, p.Gly530Arg
PMGRC-137-137-0	CSMD3	c.3158dup, p.Arg1530*
PMGRC-217-217-0	SLC16A13; HIVEP1; MHY7	c.410G>A, p.Arg137Gln, c.395A>G, p.Tyr132Cys; c.6212dupA, p.Tyr2071*; c.4187G>T, p.Arg1396Leu
PMGRC-239-239-0	FGD5	c.3372_3373del, p.Gly1125Glufs*54
PMGRC-255-255-0	NRXN2; STRN3	c.2605C>T, p.Arg869Trp; c.1875C>A, p.Tyr625*
PMGRC-279-279-0	VWA3B	c.59G>T, p.Gly20Val c.1737+1G>A
PMGRC-291-291-0	NSL1	c.314-2_315delAGAT
PMGRC-312-312-0	TJP1	c.3927-2_3927-1del
PMGRC-363-363-0	CEP350	c.2258del, p.Gly753Glufs*11
PMGRC-423-423-0	FAM193A; MEX3D; CLPTM1	c.1390-2A>G; c.595+1G>C; c.953A>G, p.Tyr318Cys
PMGRC-446-446-0	TP53BP2	c.40G>A, p.Val14Met c.3240del, p.Asp1080Glufs*5
PMGRC-485-485-0	HEATRI; PRR30	c.3613C>T, p.Gln1205*; c.275del, p.Pro92Glnfs*33, c 365-6C>T
PMGRC-525-525-0	PLXNC1	c.416del, p.Leu139Argfs*4
PMGRC-746-746-0	DOP1A; PCDH9	c.3559dup, p.Ile1187Asnfs*5; c.3291del, p.Ser1098Leufs*25

It is made available under a CC-BY 4.0 International license .

PMGRC-772-772-0	MUC5B	c.15477+1G>C
PMGRC-782-782-0	CD177	c.99G>A, p.Trp33*
PMGRC-832-832-0	TLN2; IL9	c.4645C>T, p.Asp1549Tyr; c.183+6T>C, p.Ser893Arg, c.202T>C, p.Cys68Arg
PMGRC-949-949-0	GNRH2	c.213_214insTGTC
PMGRC-985-985-0	FMNL1	c.1379del, p.Pro460Glnfs*19
PMGRC-992-992-0	PRR14L	c.4166del, p.Tyr318Cys
PMGRC-999-999-0	<i>SLC17A9</i>	c.287C>G, p.Tyr132Cys
PMGRC-1017-1017-0	NXF3	c.1231G>T, p.Glu411*
PMGRC-1030-1030-0	COROIC	c.474G>A, p.Trp158*
PMGRC-1048-1048-0	NEURL4	c.1606G>T, p.Glu536*
PMGRC-1050-1050-0	CULI	c.571_575del, p.Arg191Trpfs*2

It is made available under a CC-BY 4.0 International license .

Figure 1. (A), (B) Sex and race distribution of probands that underwent genome sequencing.

395

Figure 2. (A) Family structures corresponding to the participants (B). Trio/Trio+ had the highest

diagnostic yield (21%) whereas Duo/Duo+ and Proband only families reached a diagnostic yield of 13% and 10% respectively (p = 0.03, chi-square test).

399

It is made available under a CC-BY 4.0 International license .

401

Figure 3. (A) Types of prior testing undergone by participants that were deemed solved or probably
 solved. (B) Reasons diagnosis was previously missed on clinical genetic testing. Limited original testing

404 includes gene panels that lacked the causative gene or did not detect the causative variant due to its

405 location in a genomic region not covered by the test.

406

407

Figure 4. (A) RNA sequencing reads visualized with sashimi plot to indicate splicing events showing the cryptic splice inclusion in *DBT* in the proband (PMGRC-658-658-0) and the affected sibling as a result of

It is made available under a CC-BY 4.0 International license .

- a deep (-4230) homozygous intronic single nucleotide variant. (B-E) Mini-gene splicing assay for the *DBT* c.1282-4218G>A variant. B) Reference and c.1282-4218G>A variant *DBT* intron 10 fragments
- 413 were cloned into a mini-gene split *GFP* construct, in which N and C-terminal parts of the *GFP* gene were
- separated by *SMN1* introns 7 and 8 (NM 000344). The construct was expressed in HEK293 cells for 48
- 415 hours followed by mRNA extraction, cDNA generation and NGS amplicon sequencing. Black arrows on
- 416 the construct image indicate primer placement. C) RT-PCR gel electrophoresis demonstrates inclusion of
- 417 the cryptic exon in both the wild type and reference transcript. **D**) Sashimi plots of reference and variant
- 418 hybrid DBT-GFP constructs demonstrating a preferential cryptic exon (10B) inclusion in the sequences
- containing the c.1282-4218G>A variant. E) Inclusion of cryptic exon 10B leads to a premature stop
- 420 codon at the end of the exon, which most likely escapes nonsense-mediated decay and leads to a truncated

421 protein with a C-terminus different by 16-residues.

Figure 5. (A) The solve rate for syndromic versus non-syndromic cases. (B) The solve rate stratified by
 phenotypic category for the non-syndromic cases.

- 426
- 427
- 428
- 429
- 430
- 431
- 432
- 433
- 434

435		
436		
437		
438		
439		
440	Referer	nces
441		
442 443	1.	Slavotinek, A., et al., <i>Diagnostic yield of pediatric and prenatal exome sequencing in a diverse population.</i> NPJ Genom Med, 2023. 8 (1): p. 10.
444 445 446	2.	gene panels in patients with single-system diseases. Orphanet J Rare Dis, 2024. 19 (1): p. 216.
447	5.	176 (3): p. 535-548 e24.
448 440	4.	Zeng, T. and Y.I. Li, <i>Predicting RNA splicing from DNA sequence using Pangolin</i> . Genome Biol, 2022, 22 (1): p. 102
449 450	5.	Savage, S.K., et al., Using a chat-based informed consent tool in large-scale genomic research. J
451		Am Med Inform Assoc, 2024. 31 (2): p. 472-478.
452 453	6.	Berger, S.I., et al., <i>Increased diagnostic yield from negative whole genome-slice panels using automated reanalysis</i> . Clin Genet, 2023. 104 (3): p. 377-383.
454 455	7.	Li, H., <i>Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM</i> . 2013: arXiv.
456 457	8.	Poplin, R., et al., <i>A universal SNP and small-indel variant caller using deep neural networks</i> . Nat Biotechnol. 2018. 36 (10): p. 983-987.
458 459	9.	Chen, X., et al., <i>Manta: rapid detection of structural variants and indels for germline and cancer</i>
460	10.	Dobin A, et al. STAR: ultrafast universal RNA-seg aligner. Bioinformatics, 2013, 29 (1): p. 15-21.
461	11.	Robinson, J.T., et al., <i>igv.js: an embeddable JavaScript implementation of the Integrative</i> Genomics Viewer (IGV) Bioinformatics 2023 39 (1)
463	12.	Robinson, J.T., et al., Variant Review with the Integrative Genomics Viewer. Cancer Res, 2017.
464		77 (21): p. e31-e34.
465	13.	Robinson, J. I., et al., <i>Integrative genomics viewer</i> . Nat Biotechnol, 2011. 29 (1): p. 24-6.
466	14.	Inorvalosoftir, H., J. I. Robinson, and J.P. Mesirov, <i>Integrative Genomics Viewer (IGV): nigh-</i>
407		performance genormics data visualization and exploration. Brief Biomorni, 2013. 14(2). p. 178-
469	15.	Scott, H.A., et al., A high throughput splicing assay to investigate the effect of variants of
470		unknown significance on exon inclusion. medRxiv. 2023: p. 2022.11.30.22282952.
471	16.	Dobin, A. and T.R. Gingeras, <i>Optimizing RNA-Seg Mapping with STAR</i> . Methods Mol Biol, 2016.
472		1415 : p. 245-62.
473	17.	Clark, M.M., et al., Diagnosis of genetic diseases in seriously ill children by rapid whole-genome
474		sequencing and automated phenotyping and interpretation. Sci Transl Med, 2019. 11(489).
475	18.	O'Brien, T.D., et al., Artificial intelligence (AI)-assisted exome reanalysis greatly aids in the
476		identification of new positive cases and reduces analysis time in a clinical diagnostic laboratory.
477		Genet Med, 2022. 24 (1): p. 192-200.

478	19.	Negi, S., et al., Advancing long-read nanopore genome assembly and accurate variant calling for
479		rare disease detection. medRxiv, 2024.
480	20.	Chen, Y., et al., De novo variants in the RNU4-2 snRNA cause a frequent neurodevelopmental
481		syndrome. Nature, 2024. 632(8026): p. 832-840.
482	21.	Nguyen, T.H., et al., The architecture of the spliceosomal U4/U6.U5 tri-snRNP. Nature, 2015.
483		523 (7558): p. 47-52.
484	22.	Ganesh, V.S., et al., Novel syndromic neurodevelopmental disorder caused by de novo deletion of
485		CHASERR, a long noncoding RNA. medRxiv, 2024.
486	23.	Wojcik, M.H., et al., Genome Sequencing for Diagnosing Rare Diseases. N Engl J Med, 2024.
487		390 (21): p. 1985-1997.
488	24.	Palmer, E.E., et al., Diagnostic Yield of Whole Genome Sequencing After Nondiagnostic Exome
489		Sequencing or Gene Panel in Developmental and Epileptic Encephalopathies. Neurology, 2021.
490		96 (13): p. e1770-e1782.
491	25.	Alfares, A., et al., Whole-genome sequencing offers additional but limited clinical utility
492		compared with reanalysis of whole-exome sequencing. Genet Med, 2018. 20 (11): p. 1328-1333.
493	26.	Wojcik, M.H., et al., Beyond the exome: What's next in diagnostic testing for Mendelian
494		conditions. Am J Hum Genet, 2023. 110(8): p. 1229-1248.
495	27.	Liu, Z., et al., Hemizygous variants in protein phosphatase 1 regulatory subunit 3F (PPP1R3F) are
496		associated with a neurodevelopmental disorder characterized by developmental delay,
497		intellectual disability and autistic features. Hum Mol Genet, 2023. 32 (20): p. 2981-2995.
498	28.	Dzinovic, I., et al., Variant recurrence confirms the existence of a FBXO31-related spastic-dystonic
499		cerebral palsy syndrome. Ann Clin Transl Neurol, 2021. 8 (4): p. 951-955.
500	29.	Thomas Cassini, S.S., Molly Behan, Cynthia J. Tifft, May Christine Malicdan, David R. Adams,
501		Undiagnosed Diseases Network, Sun-Young Ahn, Debra S. Regier, Mitochondrial trifunctional
502		protein deficiency caused by a deep intronic deletion leading to aberrant splicing. JIMD Reports,
503		2024. 66 (1).
504	30.	Dias, C., et al., De novo variants in TCF7L2 are associated with a syndromic neurodevelopmental
505		<i>disorder.</i> Am J Med Genet A, 2021. 185 (8): p. 2384-2390.
506	31.	Seaby, E.G., et al., Monoallelic de novo variants in DDX17 cause a neurodevelopmental disorder.
507		Brain, 2024.
500		
508		