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Integrative cross-omics analysis identifies DNA methylation 
signatures associated with bilateral hippocampal volume, 

asymmetry and atrophy rate in the general population 
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Abstract 
 
The hippocampus exhibits volumetric differences between the left and right 
hemispheres (LHCV and RHCV) and asymmetry, yet the molecular mechanisms 
underlying these features remain unclear. In this study, we performed a meta-
analysis of epigenome-wide association studies (EWAS) across six population-based 
cohorts (n=8,156; 53% women; mean age: 60.7 years) to identify blood-based 
methylation signatures associated with LHCV, RHCV, and hippocampal asymmetry. 
Integrative cross-omics analyses using individual-level genetic, methylation, and 
gene expression data (n > 2,624 participants from the Rhineland Study) revealed 15 
CpG/DMR-gene expression pairs linked to LHCV and 18 pairs to RHCV, implicating 
pathways involved in neuronal differentiation and immune processes. Notably, 
baseline methylation at these loci predicted bilateral hippocampal atrophy rates, 
explaining over 10% of the variation. Four CpGs were consistently associated with 
hippocampal asymmetry cross-sectionally and longitudinally, exhibiting sex-specific 
differences. Additionally, adherence to healthy dietary patterns was associated with 
these methylation signatures, highlighting modifiable influences on hippocampal 
health and atrophy. 
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Introduction 
The human hippocampus, a bilateral brain structure within the middle temporal lobe, 
is essential for episodic memory, spatial navigation, as well as other cognitive 
functions.1 Large-scale neuroimaging analyses have revealed that the hippocampus 
is one of the most consistently and robustly altered gray matter structures involved in 
several neurodegenerative and neuropsychiatric disorders, including Alzheimer’s 
disease,2 major depressive disorder,3 schizophrenia,4,5 and attention deficit 
hyperactivity disorder.6 Previous studies have revealed both structural and functional 
hippocampal asymmetries.7-14 Specifically, in humans, left hippocampal volume 
(LHCV) is slightly smaller than right hippocampal volume (RHCV), and task-related 
activity may be localized to only one hemisphere.12,15,16 This lateralization may 
enable the left and right hippocampus to support complementary functions in human 
episodic memory and navigation. For instance, the left hippocampus tends to 
dominate when semantic information is most relevant to the task, while the right 
hippocampus takes precedence when spatial information is more important.7,10 
Additionally, prior studies have suggested that the left and right hippocampus are 
affected differently by the aging process,17 and pathological factors may induce 
further asymmetry.15,16 Nonetheless, the molecular characteristics underlying the 
(age-related) reduction of LHCV and RHCV and increase in hippocampal asymmetry 
remain largely unknown in the general population. 
 
Genome-wide association studies (GWAS) have discovered a number of genetic 
variants related to LHCV, RHCV, and hippocampal asymmetry.12,13,18 However, the 
majority of the identified genetic loci are located in non-coding genomic regions, 
suggesting they influence transcriptional regulation rather than protein-coding 
sequences. This transcriptional regulation may be significantly affected by DNA 
methylation changes,19 which involve the addition of a methyl group (CH3) to the 
genomic DNA and is responsive to both internal and external stimuli, such as 
environmental changes and aging.20 Recent studies have demonstrated that CpG 
methylation-dependent transcriptional regulation is a widespread phenomenon, 
which could provide molecular links between complex traits.20 In addition, DNA 
methylation levels may influence the binding of transcription factors to DNA, which is 
essential for tuning of gene expression levels.21,22 Thus, the interplay between 
genetics, DNA methylation, and gene expression may contribute to the variability in 
LHCV, RHCV, and hippocampal asymmetry across the adult lifespan. 
 
Indeed, a previous study of 649 Alzheimer’s Disease Neuroimaging Initiative 
participants and mouse models using CRISPR-Cas9 (epi)genome-editing techniques 
revealed a causal relationship between the presence of a single nucleotide 
polymorphism (SNP) (rs1053218) and hypermethylation of a specific CpG site 
(cg26741686), leading to higher ANKRD37 gene expression and reduction of mean 
hippocampal volume.23 An epigenome-wide meta-analysis including 3,337 samples 
found two CpGs and three DNA methylated regions, which influenced gene 
expression and were associated with mean hippocampal volume.11,24 However, 
previous investigations primarily focused on total or mean hippocampal volume from 
heterogeneous and relatively small samples (N< 3,400), which also included patients 
with neurological and neuropsychological disorders. Therefore, the DNA methylation 
signatures of LHCV, RHCV, and hippocampal asymmetry in the general population 
largely remain unknown. Moreover, previous studies utilized the 
HumanMethylation450 array (HM450K), which measures 450,000 CpGs, or 
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assessed specific CpGs, limiting their capability to detect other potentially relevant 
CpGs. In contrast, the HumanMethylationEPIC array (HM850K) encompasses a 
substantially wider unparalleled coverage of 850,000 CpGs across the genome,25 
which could help to identify novel methylation markers related to LHCV, RHCV, and 
hippocampal asymmetry separately. Importantly, few studies have comprehensively 
assessed the functional characterization of these methylation differences at the 
genetic and transcriptional levels, potentially missing key regulatory mechanisms 
that may not be apparent when studying each molecular layer in isolation. 
Additionally, it remains unexplored whether these cross-sectional changes are 
associated with hippocampal atrophy and if modifiable lifestyle factors have an 
impact on them. 
 
In this study, we meta-analyzed epigenome-wide association analyses (EWAS) from 
six population-based studies comprising 8,156 samples to uncover the methylation 
signatures of LHCV, RHCV, and hippocampal asymmetry separately. To evaluate 
whether these associations were specific to the hippocampus or due to global gray 
matter changes, we also performed EWASs of left hemisphere gray matter volume 
(LGMV), right hemisphere gray matter volume (RGMV), and global gray matter 
asymmetry. By leveraging concomitant individual-level genetics, DNA methylation, 
and gene expression data from participants of the Rhineland Study, we performed 
integrative cross-omics analyses. These analyses aimed to delineate the complex 
regulatory connectivity between genetics, methylation, gene expression, and 
transcription factor binding sites, prioritizing potential molecular mechanisms 
contributing to structural and functional differences in the hippocampus. To facilitate 
understanding of the clinical implications of the identified methylation signatures, we 
further assessed their association various dietary patterns and with longitudinal 
changes in LHCV, RHCV and hippocampal asymmetry. 
 
 
Results 
Study sample characteristics  
Our workflow to identify novel methylation signatures of LHCV, RHCV, and 
hippocampal asymmetry is presented in Fig. 1 & Fig. S1. The sample characteristics 
are presented in Table 1. Our meta-analysis included 8,156 samples from six 
population-based cohort studies. Details about the included studies are provided in 
Table S1-S3. The mean age of the participants of the Rhineland Study, SHIP-Trend, 
FHS and LLS ranged from 50.4 years to 58.5 years, while participants from 
LBC1936 and OATS were older (LBC1936 mean age: 72.6 years, OATS mean age: 
70.5 years). Sex ratios were balanced in all studies. On average, LHCV was slightly 
smaller than RHCV in all cohorts (Table 1), and both decreased with increasing age 
after adjusting for estimated total intracranial volume (eTIV) (Fig. S2). The mean 
value of hippocampal asymmetry ranged from -0.0058 in FHS to -0.0400 in 
LBC1936, and it slightly increased with age (Fig. S2). 
 
Specific methylation signatures were associated with hippocampal volume 
and asymmetry at individual CpG and differentially methylated region level 
The meta-analysis revealed that five CpGs were associated with LHCV, nine CpGs 
were associated with RHCV, and one CpG was associated with hippocampal 
asymmetry (Fig. 2A). The top CpGs remained the same after further adjustment for 
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handedness (Fig. S3). In addition, we found sex differences in single CpG 
associations with hippocampal asymmetry (p-values for z-test < 0.05) (Fig. 2B). 
Intriguingly, minimal overlap was observed in the associated CpGs and their mapped 
genes among LHCV, RHCV, and hippocampal asymmetry. Moreover, there was no 
overlap between CpGs associated with hippocampal traits and global gray matter 
traits (Fig. S4), indicating that the effects were specific to the hippocampus rather 
than due to global gray matter changes.  
 
Accounting for the joint effect of spatially correlated CpGs clustered in specific 
genomic regions, we identified 262, 246, and 16 differentially methylated regions 
(DMRs) associated with LHCV, RHCV, and hippocampal asymmetry, respectively (all 
Šidák corrected-p-value < 0.05, number of consecutive probes ≥ 2). Importantly, 
CpGs identified from the individual CpG analysis were also detected in the DMR 
analysis (Table S4). Additionally, 31.4% of DMRs overlapped between LHCV and 
RHCV, less than 10% of DMRs overlapped between hippocampal traits and global 
gray matter traits, and only two DMRs associated with hippocampal asymmetry were 
also related to LHCV and/or RHCV (Fig. S5). 
 
In silico replication  
Previous EWAS analyses identified three CpGs (cg17858098, cg26927218, and 
cg26741686) and two DMRs associated with mean hippocampal volume.24 In our 
study, these two DMRs were also associated with LHCV/RHCV (Table S5). Higher 
levels of cg17858098 methylation were previously associated with larger mean 
hippocampal volume. However, we found that higher levels of cg17858098 
methylation tended to be associated with larger RHCV, but smaller LHCV (Table S5). 
Although cg26927218 was not present in our study, the previous EWAS found it to 
be associated with BAIAP2 gene expression. Our study showed that higher 
methylation levels of the RHCV-related CpGs, cg13343932 and cg110477325, were 
associated with higher BAIAP2 gene expression and smaller RHCV.  
 
Gene set enrichment analysis for the identified methylation signatures  
These identified methylation signatures largely converged on pathways including, but 
not limited to, nervous system development, neuron differentiation, generation of 
neurons, and neuronal morphogenesis (Fig. S6 & S8). Moreover, these distinct 
CpGs/mapped genes were involved in trait-specific biological pathways (Fig. S7). 
For instance, cell function-related pathways were associated with LHCV-related 
CpGs, neuron projection regulation and post-synapse organization were associated 
with RHCV-related CpGs, whereas localization-related pathways were associated 
with hippocampal asymmetry (Fig. S7).  
 
Additionally, LHCV- and RHCV-related DMR-mapped genes have been linked to 
hippocampal volume (i.e., total and hippocampal tail volume) in previous GWAS 
analyses, confirming their (epi)genetic function in hippocampus. These DMR-
mapped genes have also been linked to a wide range of neurodegenerative and 
psychiatric disorders, as well as to CSF Aβ1-42 levels, t-tau/ Aβ1-42 ratio, and p-
tau181p levels (Table S6). Meanwhile, it is worth noting that LHCV-related DMR-
mapped genes have been previously linked to global cognition, processing speed, 
and word reading, where semantic information is more relevant, whereas RHCV-
related DMR-mapped genes have been previously linked to logical memory and 
reaction time (Table S6). 
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Integrative multi-omics analyses reveal functional implications of methylation 
differences in hippocampal volume and asymmetry 
To better understand the functional roles of the identified CpGs and DMRs, we 
performed several integrative omics analyses using indivdual-level DNA methylation, 
gene expression, and genotype data from the same participants in the Rhineland 
Study. The overview of the datasets used in the analyses is presented in Fig. S1. 
 
Associations of methylation levels of significant CpGs and DMRs with expression of 
nearby genes and corresponding phenotypes 
At the individual CpG level, 14 top CpGs were mapped to 13 genes. Nine out of 
these 13 mapped genes were present in our gene expression data, and we detected 
five significant CpG-gene expression pairs. Among the 1,543 cis-genes for the top 
CpGs, 620 genes were present in our data. All five LHCV-related CpGs showed 
associations with their cis-gene expressions, resulting in 81 significant CpG-gene 
expression pairs. Notably, the expression levels of six genes (i.e. LGALS3BP, 
CD300LB, USP36, TRAJ19, GEMIN7, and NUGGC) were also associated with 
LHCV (Fig. 3A). Similarly, all nine RHCV-related CpGs showed associations with the 
expression levels of their cis-genes, yielding 100 significant CpG-gene expression 
pairs. Among them, the expression levels of nine genes (i.e. LGALS3BP, CD300LB, 
MCOLN2, TGFBR3, SNORD89, BAIAP2, SLC16A5, SYNGR2, and CD300C gene) 
were also associated with RHCV (Fig. 3A). Interestingly, only two cis-genes of 
cg13343932, LGALS3BP and CD300LB, overlapped between LHCV and RHCV, 
indicating that different molecular pathways (CpG- gene expression- LHCV/RHCV) 
affect LHCV and RHCV. Additionally, hippocampal asymmetry-related cg06074597 
was associated with the expression of three genes; however, only SASH1 gene 
expression was borderline significantly associated with hippocampal asymmetry 
(beta: 0.042, 95%CI: -0.001 – 0.086).  
 
Out of 389 DMR-mapped genes, 183 were present in our data. The DMRs 
encompassing the top CpGs showed slightly stronger associations with gene 
expression compared to individual CpGs. We found that 55 of the 134 LHCV-related 
DMRs were associated with their mapped gene expression. Among these, 
expression levels of nine genes were also associated with LHCV (Fig. 3B). Similarly, 
46 of the 115 RHCV-related DMRs were associated with their mapped gene 
expressions, with four of these genes associated with RHCV (Fig. 3B). Additionally, 
four out of five hippocampal asymmetry-related DMRs were associated with the 
expression of their mapped genes; however, none of these genes were associated 
with hippocampal asymmetry. Interestingly, only MIR181A1HG and CORO1B 
overlapped between LHCV and RHCV, while no overlaps were observed with 
hippocampal asymmetry (Fig. 3B). 
 
Furthermore, we identified sex-specific differences in CpG–gene expression 
associations related to hippocampal asymmetry. In women, cg16747427 and 
ch.6.169008488F were associated with hippocampal asymmetry (Fig. 2B). 
cg16747427 was associated with 11 cis-gene expression levels, among which the 
expression of ABT1 gene was associated with hippocampal asymmetry in women 
(beta: -0.058, 95%CI: -0.116 – 0.0003). In men, cg04564312 and cg06074597 were 
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associated with hippocampal asymmetry (Fig. 2B), and cg04564312 was associated 
with the RGMB gene expression (beta: -0.064, 95%CI: -0.12 – 0.008).  
 
We further investigated whether gene expression mediates the relationship between 
CpGs/DMRs and their associated traits. Our analysis revealed significant mediation 
of the associations between the DMRs chr11.7597983.7598302 and 
chr1.39620300.39620625 with RHCV through the gene expression of PPF1BP2 
(25.7% mediation) and MACF1 (16.9% mediation) (Table S7). The mediation effects 
for other CpG/DMR-gene-trait pairs were not statistically significant, likely due to the 
relatively smaller sample size (n = 1,800 participants with available methylation, 
gene expression, and brain MRI data). 
 
Tissue specificity  
To assess the brain-specfic relevance of these findings, we compared the expression 
levels of the identified genes across different tissues, especially between blood and 
hippocampus (Fig. 3C). The majority of LHCV-related genes exhibited similar 
expression levels in blood and hippocampus. Likewise, most RHCV-related genes 
showed comparable expression levels between these two tissues.  
 
Hippocampus-related CpGs/DMRs are associated with putative transcription factors 
and target genes  

We found that the majority of the identified methylation signatures were located in 
the promoter regions and the gene body (Fig. S9). Importantly, almost all of them are 
gene regulatory elements, including DNase hypersensitive sites (DHSs), 
transcription factor binding sites (TFBS), or showed evidence for open chromatin 
(Table S8), supporting their dynamic interaction with transcription factors (TFs) in 
gene expression regulation.    
 
To further assess whether these methylation signatures influence the regulatory 
activities of transcription factors on target gene, we next performed an integrative 
analysis of DNA methylation, TF binding, and gene expression data to uncover 
CpG/DMR-TF-target gene triplets. At the CpG level, we discovered the cg25770783-
FOXO4 transcription factor-DHRS1 gene expression triplet, in which LHCV-related 
DNA methylation at cg25770783 appeared to attenuate the activation of the target 
gene DHRS1 by the transcription factor FOXO4. Specifically, in participants with low 
cg25770783 methylation levels, higher FOXO4 activity corresponded to higher 
activation of the DHRS1 gene (p-value = 8.13 × 10−7). Conversely, when 
cg25770783 methylation was high, the target gene was relatively independent of 
transcription factor activities (Fig. S10A).  
 
At the DMR level, several additional TFs interact with LHCV-, RHCV-, and 
hippocampal asymmetry-related DMR methylation to jointly regulate target gene 
expression. Notably, ZNF354C was affected by several DMRs across traits in 
regulating the gene expression levels of multiple genes. Among them, methylation at 
DMR chr1:174843523-174843971 and transcription factor ZNF354C jointly regulate 
GPR52 gene expression related to LHCV, and methylation at DMR chr15:31685635-
31685823 and transcription factor ZNF354C jointly regulate OTUD7A gene 
expression related to RHCV (Fig. S10B). Both DMRs are within gene regulatory 
elements (Table S8). 
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Genetic contribution to the methylation status of the identified CpGs and bidirectional 
two sample Mendelian Randomization (MR) associations  
Our GWAS analyses identified 595, 228, and 154 genome-wide significant SNPs 
associated with three LHCV-related CpGs (Fig. S11A). For the nine RHCV-related 
CpGs, we identified 3,188 genome-wide significant SNP-CpG pairs (Fig. S11B). 
After linkage disequilibrium (LD)-clumping, the independent SNPs for each CpG 
were used as genetic instrumental variables in the subsequent MR analyses.  
 
The bidirectional two-sample MR revealed a significant causal relationship between 
higher methylation at cg19045773 and smaller RHCV (inverse variance-weighted 
(IVW)-based beta = -0.945, standard error (SE) = 0.417, p-value = 0.023, Fig. 
S12A). The effect size and direction were consistent across MR models, with no 
evidence of heterogeneity (Cochran’s Q test, p-value = 0.701) or horizontal 
pleiotropy (MR Egger regression intercept p-value = 0.399). Additionally, methylation 
at cg19045773 was associated with expression levels of the cis-genes RRAGD and 
ANKRD6 (Fig. S12C).  
 
We also found evidence suggesting that higher methylation at cg02929052 was 
causally associated with larger RHCV (IVW beta = 2.063, SE = 0.956, p-value = 
0.03, Fig. S12A). There was no evidence for heterogeneity (Cochran’s Q test, p-
value = 0.331). However, since only two genetic instrumental variables were 
available, MR analysis with alternative methods could not be performed. In addition, 
higher cg02929052 methylation was associated with lower AMMECR1L and UGGT1 
gene expression (Fig. S12C).  
 
The association between diet quality scores and identified methylation signatures 

Leveraging individual-level dietary intake data from the Rhineland Study, we 
observed that higher adherence to healthy dietary patterns—such as Plant-based 
Diet (PDI), Alternate Healthy Eating Index (AHEI), Nordic, Dietary Approaches to 
Stop Hypertension (DASH), and EAT-Lancet diets—was consistently associated with 
higher methylation levels at several CpGs, specifically cg133343932 and 
cg11047325. Conversely, adherence to unhealthy dietary patterns (e.g., Dietary 
Inflammatory Index (DII) and unhealthful PDI) was linked to lower methylation levels 
at the same CpGs (Fig. 4A).  
 
Similarly, we found that greater adherence to multiple dietary patterns was 
associated with lower methylation levels at LHCV/RHCV common-related DMRs 
(Fig. 4B), particularly those mapped to MIR181A1HG or CORO1B. Moreover, PDI 
and AHEI diets were associated with a RHCV-related DMR mapped to the KLF13 
gene (Fig. 4B). 
 
Association of identified baseline methylation signatures with longitudinal changes in 
imaging measures 
Among the CpGs cross-sectionally associated with LHCV, higher baseline 
methylation at cg13343932 and cg25770783 was significantly associated with slower 
left hippocampal volume loss over time, while higher baseline methylation at 
cg18908258 was associated with faster left hippocampal volume loss over time (Fig. 
5A). For instance, the average annual LHCV change rate was -15.83 mm3 in the 
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linear mixed model for cg25770783. However, when baseline cg25770783 
methylation was one standard deviation higher, the estimated average annual 
change rate improved to -14.74 mm3, reflecting a 7.5% reduction (1.1 mm3) in yearly 
left hippocampal volume loss. Notably, these three CpGs together explained 15.6% 
of the variation in left hippocampal volume loss rates. Similarly, among the six CpGs 
cross-sectionally associated with RHCV, higher baseline methylation at cg11047325, 
cg13343932 and cg02348995 was significantly associated with slower right 
hippocampal volume loss over time, whereas higher baseline methylation at 
cg02929052 was associated with faster right hippocampal volume loss over time 
(Fig. 5A). These four CpGs together explained 10.9% of the variation in right 
hippocampal volume loss rates. 
 
Furthermore, in women, higher baseline methylation at cg16747427 and 
ch.6.169008488F, which were cross-sectionally associated with less hippocampal 
asymmetry, was significantly associated with decreased hippocampal asymmetry 
over time. These two CpGs together explained 4.4% of the variation in hippocampal 
asymmetry change rates in women. In men, higher baseline methylation at 
cg04564312 and cg06074597, which were cross-sectionally associated with more 
hippocampal asymmetry, was associated with increased hippocampal asymmetry 
over time (Fig. 5B). These two CpGs together explained 30% of the variation in 
hippocampal asymmetry change rates in men. 
 
At the DMR level, among the DMRs cross-sectionally associated with LHCV, higher 
baseline methylation at five DMRs was significantly associated with slower left 
hippocampal volume loss over time, and higher baseline methylation at one DMR 
was associated with faster left hippocampal volume loss over time. For RHCV, higher 
baseline methylation at two DMRs was associated with slower right hippocampal 
volume loss over time, and higher baseline methylation at another two DMRs was 
significantly associated with faster right hippocampal volume loss over time (Fig. 
5C). 
 
 
Discussion 
By leveraging epigenome-wide association studies across several population-based 
cohorts, we identified blood-based methylation signatures associated with LHCV, 
RHCV and hippocampal asymmetry throughout the adult lifespan. These signatures 
mainly converged on pathways involved in neuronal differentiation and development. 
Integrative cross-omics analyses using deep-phenotyping data from the Rhineland 
Study revealed 15 and 18 CpG/DMR–gene expression pairs associated with LHCV 
and RHCV, respectively, with four CpGs associated with hippocampal asymmetry 
displaying notable sex-specific differences. Importantly, various dietary patterns were 
associated with methylation levels at these loci, and baseline methylation signatures 
at these loci predicted longitudinal changes in hippocampal volume and asymmetry, 
collectively explaining >10% of the variation in bilateral hippocampal atrophy change 
rates.  
 
Our functional omics analyses revealed potential molecular mechanisms through 
which gene methylation influences bilateral hippocampal atrophy. A notable group of 
implicated genes was immune-related, while another group was involved in neuronal 
structure and synaptic function. For example, methylation changes at cg133443932 
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and cg11047325 and DMRs (chr1:198901839-198902062 and chr11:67207498-
67208062) and their associated cis-genes - LGALS3BP, CD300LB, MIR181A1HG, 
and CORO1B - were significantly associated with both left and right hippocampal 
volume. Intriguingly, baseline methylation at these loci was predictive of bilateral 
hippocampal atrophy rates, explaining a considerable proportion of the variation in 
the age-associated rates of atrophy. Moreover, adherence to healthy dietary patterns 
was strongly associated with these same methylation signatures, suggesting that 
dietary intake could modulate the rate of hippocampal atrophy through its effects on 
DNA methylation. 
 
LGALS3BP (galectin-3 binding protein) is a secreted protein that interacts with 
various members of the extracellular matrix and is highly enriched in human neural 
progenitors.26 It has been implicated in modulating the immune response, particularly 
in processes involving natural killer and lymphokine-activated killer cell cytotoxicity.27 
Notably, extracellular LGALS3BP has been shown to regulate neural progenitor 
positioning, which may contribute to the development of human cortical complexity.28 
The CD300 family of molecules regulates a diverse array of immune cell processes 
through its paired activating and inhibitory receptors. Among these, CD300LB (also 
known as TREM5 or CLM7) is an activating receptor of the immunoglobulin (Ig) 
superfamily, predominantly expressed on myeloid cells. CD300LB plays a critical role 
in modulating immune responses, frequently by interacting with lipid ligands and 
other cellular components.26 Nutritional patterns associated with reduced 
inflammation and enhanced immune resilience, such as the EAT-Lancet, AHEI, and 
Nordic diets, may influence the regulation of CD300LB. These diets might enhance 
the receptor's capacity to maintain a balanced immune response, contributing to the 
protection of neural tissue from excessive inflammation. Conversely, diets high in 
processed foods and pro-inflammatory components could dysregulate CD300LB 
activity, potentially exacerbating immune-mediated damage in the central nervous 
system.29  
 
The MIR181A1HG gene encodes microRNA-181a, which regulates key pathways 
involved in neurogenesis, synaptic plasticity, and apoptosis.30 In addition, miR-181a 
has been linked to cognitive function and has been proposed as a potential target 
against cognitive decline.31 Dietary patterns have been shown to influence miR-181a 
expression,32 particularly those that are mainly plant-based, which promote the 
intake of foods rich in antioxidants and anti-inflammatory ingredients (i.e., fruits, 
vegetables, nuts, etc.) such as the Mediterranean and EAT-Lancet diets. Higher 
methylation levels in response to these diets could potentially downregulate 
inflammatory pathways in the hippocampus, protecting against cognitive decline. On 
the other hand, pro-inflammatory diets, such as those high in processed foods (e.g., 
high DII scores), may reduce MIR181A1HG methylation, possibly amplifying 
inflammatory signals that can impair hippocampal function and brain plasticity. The 
CORO1B (Coronin 1B) gene is essential for regulating the actin cytoskeleton,33 
which is crucial for neuronal structure and synaptic function. Proper actin dynamics 
influence hippocampal architecture and synaptic plasticity—key aspects of learning 
and memory.  
 
Our findings reveal sex-specific epigenetic associations with hippocampal 
asymmetry, and point towards potential underlying molecular mechanisms. 
Specifically, in women, two CpG sites, cg16747427 and ch.6.169008488F, were 
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consistently associated with hippocampal asymmetry both cross-sectionally and 
longitudinally. Notably, cg16747427 was linked to the expression of  
ABT1 (activator of basal transcription 1), which demonstrated a significant 
association with hippocampal asymmetry in women. ABT1 plays a role in 
transcriptional regulation and may influence hippocampal structure by modulating the 
gene expression critical for neurodevelopment and neuroplasticity. In addition, ABT1 
has been linked to intelligence,34 cognitive ability,35 and depression.36 Conversely, in 
men, two distinct CpG sites, cg04564312 and cg06074597, were identified as 
consistent markers of hippocampal asymmetry. Among these, cg04564312 was 
associated with the expression of the RGMB (repulsive guidance molecule B) gene, 
which is involved in axonal guidance and neuronal connectivity, processes that may 
contribute to hippocampal lateralization. These findings suggest that sex-specific 
epigenetic regulation of key genes, such as ABT1 and RGMB, may underlie 
differences in hippocampal asymmetry and its evolution over time.  
 
We found evidence for a causal association of cg19045773 with RHCV. This CpG 
site was linked to the expression levels of the cis-genes ANKRD6 and RRAGD. 
Interestingly, a prior study found a causal relationship between cg26741686 
hypermethylation and higher ANKRD37 gene expression, resulting in the reduction 
of mean hippocampal volume. 23 The Ankyrin repeat domain (ANKRD) family is a 
widespread protein structural motif with multiple functions, including cell cycle 
regulation, developmental regulation, cytoskeleton maintenance, and intercellular 
signaling.37 ANKRD37 is involved in hypoxia, which facilitates the pathogenesis of 
late-onset Alzheimer’s disease by accelerating Aβ accumulation, increasing tau 
hyperphosphorylation, impairing the blood-brain barrier, and promoting neuronal 
degeneration. ANKRD6 is primarily expressed in neuronal proliferation zones in the 
brain and has been implicated in brain development.38 One recent study found that 
ANKRD6 gene expression is linked to sex-specific functional connectivity changes in 
depression.39 RRAGD plays a crucial role in the cellular response to amino acid 
availability through regulation of the mTOR signaling pathway and has been linked to 
kidney tubulopathy and cardiomyopathy.40 Another suggested causal CpG site, 
cg02929052, whose methylation was associated with RHCV, was associated with 
lower UGGT1 and AMMECR1L gene expression. UGGT1 is an enzyme involved in 
the quality control of glycoprotein folding within the endoplasmic reticulum. 
Dysregulation of these proteins may contribute to the accumulation of toxic protein 
aggregates. Studies have found that UGGT1 and other N-glycan modification 
enzymes are colocalized with Aβ plaques and neurofibrillary tangles in AD brains, 
suggesting a role in driving glycoprotein remodeling and AD pathogenesis.41  
 
Our integrative analysis of methylation, transcription factors and gene expression 
revealed several TFs that interact with LHCV/RHCV-associated CpGs to co-regulate 
target gene expression. These findings provide insights into how interactions 
between the methylome and other molecules contribute to observed phenotypes. 
Importantly, TF-target associations for these methylation-sensitive TFs often appear 
only in a subset of samples with high (or low) methylation levels, potentially being 
overlooked in analyses that aggregate all samples. Recent studies have consistently 
demonstrated that CpG methylation has a major effect on TF-DNA binding in gene 
expression regulation.21,22 While many of these TFs have been previously linked to 
neurodegeneration or aging, our integrative analysis offers novel insights into their 
specific roles in transcriptional regulation. Additionally, we identified target genes for 
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these TFs in the hippocampus, highlighting potential TF-target gene interactions 
mediated by DNA methylation. For instance, we identified that methylation at 
cg25770783 and the transcription factor FOXO4 jointly regulate DHRS1 gene 
expression related to LHCV. DHRS1 encodes a member of the short-chain 
dehydrogenases/reductases (SDR) family, which catalyzes the reduction of steroids 
as well as prostaglandin E1, satin and xenobiotics, participating in steroid and/or 
xenobiotic metabolism.42 FOXO4 is one of the fundamental anti-stress signaling 
molecules involved in metabolic regulation, cell survival and proliferation 
differentiation, DNA damage repair and resilience. In humans, FOXO family and their 
downstream effectors are thought to be critical in reducing inflammation and is a 
potential nutraceutical approach to healthy aging and lifespan extension.43  
In addition, we found that two DMRs and TF ZNF354C jointly regulate GPR52 and 
OTUD7A gene expression, which was associated with hippocampal volume. 
Previous studies have found that ZNF354C was highly expressed in the brain, 
including prefrontal cortex, hippocampus and amygdala, and its high expression in 
hippocampus has been linked to the onset of depression.44 GPR52 plays important 
roles in signal transduction from the external environment to the inside of the cell, 
and may impact locomotor activity trough modulation of dopamine, NMDA and 
ADORA2A-induced locomotor activity.45 OTUD7A protein acts on TNF receptor 
associated factor 6 to control nuclear factor kappa B expression and is an is an 
emerging independent psychiatric and neurodevelopmental disorders risk gene.46,47 
 
While this study provides novel insights into the molecular pathways underlying 
hippocampal volume and asymmetry, several limitations should be considered. First, 
our omics data were derived from blood samples, which may not comprehensively 
capture brain-specific methylation patterns. Although brain tissue is ideal for studying 
brain-related phenotypes, it is not currently feasible to obtain large-scale methylation 
data from brain tissues from living human subjects. To address this, we extrapolated 
our findings by assessing the expression of the identified genes across brain tissues, 
however, direct comparisons between blood and brain DNA methylation patterns 
remain limited. Second, while we employed MR analyses to investigate causal 
relationships, MR has its limitations. For example, it assumes that genetic 
instruments are independent of confounders and that there is no horizontal 
pleiotropy,48 which can be difficult to fully ensure when assessing in complex traits 
like brain volumetric measures. Third, each cohort used different brain imaging 
segmentation algorithm, which could introduce bias. Nevertheless, the quantified 
brain volumetric measures remained comparable across cohorts, supporting the 
robustness of our findings. Fourth, our study population was predominantly from 
European descent, which may limit the generalizability of our findings to other ethnic 
groups.  
 
In conclusion, our findings provide compelling evidence that DNA methylation 
signautures in peripheral blood are associated with hippocampal volume, asymmetry 
and rate of atrophy, underscoring the critical role of epigenetic regulation in brain 
structure. The methylation signatures identified in this study may serve as potential 
blood-based biomarkers or therapeutic targets for age- or neurodegeneration-related 
hippocampal atrophy.  
 
 
 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 21, 2024. ; https://doi.org/10.1101/2024.12.20.24319418doi: medRxiv preprint 

https://doi.org/10.1101/2024.12.20.24319418
http://creativecommons.org/licenses/by-nc-nd/4.0/


 14 

Methods 
Study participants and analytical overview 
The sample included 8,156 participants of European ancestry (EA) from six 
population-based cohort studies: the Rhineland Study, the Study of Health in 
Pomerania (SHIP-Trend), the Framingham Heart Study (FHS) offspring study, the 
Lothian Birth Cohort (LBC) 1936, the Leiden Longevity Study (LLS), and the Older 
Australian Twin Study (OATS). Participants with known dementia, Parkinson's 
disease, prevalent stroke, intracranial tumors, a history of severe head injury, 
seizures beginning before the age of 25, epilepsy, or multiple sclerosis at the time of 
MRI scanning were excluded. Details about the included studies and study-specific 
ethics statements are provided in Table S1. Each study obtained written informed 
consent from all participants and was approved by the appropriate institutional 
review boards. 
 
Brain image acquisition and segmentation 
Brain MRI acquisition was taken in the same or the closest subsequent visit to the 
visit in which DNA methylation sample was taken. In each study, MRI scans were 
acquired and post-processed using standardized procedures without reference to 
demographic or clinical information. The field strength of the scanners used ranged 
from 1.5 to 3.0 Tesla. T1- and/or T2-weighted, and/or FLAIR scans were obtained for 
all participants. All studies used fully automated segmentation methods to quantify 
brain imaging phenotypes (i.e. LHCV, RHCV, LGMV, RGMV and estimated total 
intracranial volume (eTIV)). Hippocampal asymmetry and global gray matter 
asymmetry were defined as the differences between left and right volumes dived by 
their sums. MRI procedures and quantification in each study are detailed in Table 
S2. 
 
DNA methylation profiling  
Genomic DNA was extracted from blood in each cohort according to standard 
protocols. Levels of DNA methylation were quantified using the Illumina Infinium 
MethylationEPIC or Methylation450K BeadChip array. Each cohort performed the 
quality control for DNA methylation data independently, complying with the agreed 
quality control guidelines (Table S3). The methylation level at each site was 
represented and analyzed as a β-value, defined as the intensity of the methylated 
signal/(intensity of the unmethylated signal + intensity of the methylated signal + 
100). A β-value of 0 represents a completely unmethylated CpG site and a β-value 
approaching 1 represents a fully methylated CpG site.  
 
Statistical analysis 
Our workflow to identify novel methylation signatures of LHCV, RHCV, and 
hippocampal asymmetry is presented in Fig. 1. The integrative multi-omics analyses 
(step 3) and follow-up analyses (step 4) were performed using individual-level data 
from the Rhineland Study. The overview of the datasets used in the analyses is 
presented in Fig. S1. 
 
Cohort-level epigenome-wide association analyses (EWAS) 
We quantified the association between DNA methylation level (β-value, independent 
variable) and each brain imaging-derived endophenotype (outcome) using 
multivariable linear regression models. Model 1 was adjusted for age, sex, estimated 
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or measured blood cell type proportions (%), ancestry-specific genetic principal 
components (PCs) and technical covariates (i.e. chip, chip position, and control 
probe PCs). When hippocampal volumes were outcomes, we additionally adjusted 
for eTIV. Model 2 was additionally adjusted for smoking status and education. We 
further adjusted for handedness as a sensitivity analysis (Model 3). To explore 
whether sex modifies the relationship between DNA methylation and imaging-derived 
endophenotypes, we also performed sex-stratified analyses. Covariates assessment 
in each cohort is detailed in Table S3. 
 
Epigenome-wide meta-analysis  
We combined EWAS results based on the sample size-weighted random-effect 
method with the METAL software.49 We additionally performed sex-stratified meta-
analyses. Study-specific results were corrected for genomic inflation during meta-
analysis if the genomic inflation factor (λ) was larger than one. An association was 
considered as epigenome-wide significant 50,51 if the p-value < 1.0 x10-7. CpGs on 
sex chromosomes and cross-reactive CpGs were removed from the results post hoc. 
 
Differentially methylated regions analysis 
DNA methylation clusters at regions formed by spatially correlated CpGs, namely 
differentially methylated regions (DMRs), often occur within regulatory regions in the 
genome and are powerful means to control gene expression.52 To account for this, 
we performed a DMR analysis to identify a group of methylation sites that collectively 
influence imaging measures using the Comb-p method.53 Briefly, Comb-p detects 
regional enrichment of low p-values at varying distance using the Stouffer-Liptak-
Kechris correction for adjacent p-values. A DMR was considered significant if the 
Šidák corrected p-value < 0.05.  
 
Gene set enrichment analysis of identified CpGs/DMRs 
To explore the biological pathways underlying the effects of methylation on brain 
imaging measures, the identified methylation signatures were examined for 
enrichment in gene sets from the gene ontology (GO) and KEGG databases using 
missMethyl R package.54 The analyses were performed for each imaging measure 
separately.  
 
Look-up analysis of identified CpGs in previous EWASs and GWASs  
To identify whether the differential CpGs were associated with other traits, we looked 
up CpGs showing associations with each imaging measure at epigenome-wide 
significance level using the EWAS Catalog (http://ewascatalog.org/). We also 
performed a look-up of known associations of the mapped gene for each CpG and 
DMR in previously published GWAS using the GWAS catalog 
(https://www.ebi.ac.uk/gwas).  
 
Effects of identified CpGs/DMRs on gene expression levels 
Effects of identified CpGs on gene expression for mapped genes and cis-genes (± 
5Mb)55 were investigated in 2,624 participants of the Rhineland Study for whom DNA 
methylation and gene expression data were available. Detailed gene expression 
quantification and the QC procedure is described in the Supplementary methods. 
We investigated the association of identified CpGs with their mapped genes and cis-
gene expression levels using linear regression models adjusted for age, sex, the first 
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10 genetic PCs, and methylation and gene expression batch effects. We set the 
statistical significance threshold at p-value < 0.05. The analysis of DMRs was 
performed similarly, except by replacing CpG methylation levels with the median 
methylation level of all CpGs located within the DMR.56 As the DMR analysis already 
took the nearby regions into account, we restricted the gene expression analysis to 
the DMR-mapped genes. 
 
Association of gene expression with corresponding imaging measures and mediation 
analysis  
For the genes whose expression levels were associated with CpGs/DMRs, we also 
quantified the association between gene expression levels and the corresponding 
imaging measures. Additionally, we evaluated to what extent gene expression levels 
mediated the effects of CpGs/DMRs on the respective imaging measures.  
 
Tissue specificity 
To investigate whether our findings were relevant for the brain, we examined the 
tissue specificity of genes significantly associated with both CpGs or DMRs and the 
corresponding imaging measures using the Functional Mapping and Annotation 
(FUMA) of Genome-Wide Association Studies tool.57  
 
Integrative analysis of identified CpGs/DMRs with putative transcription factors and 
target genes  
Transcription factors (TFs) are proteins that bind to DNA to facilitate transcription, 
and their binding to DNA can be affected by DNA methylation levels.21 To better 
understand the regulatory roles of the identified CpGs/DMRs on gene expression, 
we next performed an integrative analysis of DNA methylation, TFs, and gene 
expression data. We prioritized CpG/DMR-TF-target gene triplets in which regulatory 
activities of the TFs on target gene expression are most likely influenced by 
methylation using the MethReg R package (v.1.14.0).58 Analysis details are 
described in the Supplementary methods.  
 
Genome-wide association analysis of identified CpGs and bidirectional two sample 
Mendelian Randomization analysis  
To determine the relationship between genetic variation and methylation levels, 
known as methylation quantitative trait loci (meQTLs), we performed GWASs of the 
identified CpGs in 6,723 participants of the Rhineland Study in whom both genetic 
and methylation data were available. Detailed genetics quantification and the QC 
procedure are described in Supplementary methods. The GWAS of each identified 
CpG was adjusted for age, sex, methylation data batch effects, smoking status and 
the first ten genetic PCs to account for population structure. The genome-wide 
significance level was set at p-value < 5e-8.  
 
Next, we performed bidirectional two-sample Mendelian Randomization (MR) 
analyses to explore potential causal relationships between the identified CpGs and 
LHCV/RHCV. In the forward MR analysis, genetic proxies for the identified CpGs 
were used as the exposure, while genetic proxies for LHCV/RHCV served as the 
outcome. In the reverse MR analysis, genetic proxies for LHCV/RHCV were used as 
the exposure, with genetic proxies for the identified CpGs as the outcome. For the 
CpGs, our GWAS summary statistics were used. For LHCV and RHCV, the UK 
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Biobank GWAS summary statistics (n=39,691 samples) were used.59 The inverse 
variance-weighted (IVW) method was used as the primary approach for causal 
inference. Other MR methods including the weighted median and MR Egger method 
were applied to assess the robustness of the IVW-based MR estimates. The 
presence of pleiotropy was assessed through the MR Egger intercept test (p-value 
<0.05). Analysis details are described in the Supplementary methods.  
 
Association between diet quality scores and identified CpGs/DMRs 
As lifestyle factors are one of the main determinants of methylation changes, we also 
assessed the association between ten diet quality scores and the identified 
methylation signatures in 5,768 participants of the Rhineland Study in whom both 
dietary and methylation data were available. We included the following diet quality 
scores in the analysis: Mediterranean-style diet score (MDS), Dietary Approaches to 
Stop Hypertension (DASH), Mediterranean–DASH Intervention for 
Neurodegenerative Delay (MIND) diet, the Alternate Healthy Eating Index (AHEI), 
the Nordic diet score, EAT-Lancet, plant-based diets as assessed by Plant-based 
Diet Indexes (i.e. overall PDI, healthful PDI, and unhealthful PDI) and Dietary 
Inflammatory Index (DII). We used a semi-quantitative Food Frequency 
Questionnaire (FFQ) to assess participants' dietary intake, which served as the basis 
for estimating adherence to the diet quality scores. Further details are provided in the 
Supplementary Methods. 
 
Association of identified baseline CpGs/DMRs with longitudinal change in imaging 
measures 
To investigate whether the identified baseline methylation signatures were 
associated with longitudinal changes in brain imaging measures, linear mixed-effect 
models were applied to data from 2892 Rhineland Study participants who had 
complete baseline methylation and follow-up imaing data. Analysis details are 
provided in the Supplementary methods.  
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Data availability  
The data supporting the findings of this study are included in this manuscript. The 
complete EWAS summary statistics will be publicly available upon publication. 
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Table 1: Characteristics of the participating cohorts  
 

Cohort Rhineland 
Study 

SHIP-Trend FHS LBC1936 LLS* OATS 

Sample size, N 4568 451 2317 560 173 87 

Age (years), mean (SD) 54.4 
(13.4) 

50.4 
(13.4) 

57.7 
(13.1) 

72.6 
(0.7) 

58.5 
(6.6) 

70.5 
(5.4) 

Age range (years) 30 - 92 22 - 79 25 - 90 71 - 74 40 -79 65 - 83 

Women, % 57.4 55.5 47.1 46.6 56.7 58.6 

Estimated total intracranial volume 
(cm3), mean (SD) 

1550.00 
(148.00) 

1573.29 
(160.01) 

1289.19 
(132.60) 

1451.20 
(143.54) 

1426.61 
(125.43) 

1442.510 
(171.671) 

Left hippocampal volume (cm3), 
mean (SD) 

3.84 
(0.44) 

3.88 
(0.42) 

3.36 
(0.39) 

3.07 
(0.44) 

5.17 
(0.59) 

3.66 
(0.42) 

Right hippocampal volume (cm3), 
mean (SD) 

4.00 
(0.48) 

4.04 
(0.43) 

3.40 
(0.38) 

3.33 
(0.44) 

5.29 
(0.53) 

3.75 
(0.44) 

Hippocampal asymmetry index, 
mean (SD) 

-0.0195 
(0.0276) 

-0.0200 
(0.0254) 

-0.0058 
(0.0290) 

-0.0400 
(0.0400) 

-0.0112 
(0.0497) 

-0.0118 
(0.0304) 

Left hemispheric gray matter 
volume (cm3), mean (SD) 

256.00 
(26.60) 

257.51 
(26.91) 

267.65 
(28.18) 

201.54 
(18.77) 

- 193.62 
(19.13) 

Right hemispheric gray matter 
volume (cm3), mean (SD) 

257.00 
(26.20) 

258.51 
(27.08) 

267.37 
(27.88) 

202.95 
(19.04) 

- 195.15 
(18.98) 

Hemispheric gray matter 
asymmetry index, mean (SD) 

-0.00136 
(0.00536) 

-0.00196 
(0.00458) 

0.00047 
(0.0077) 

-0.0030 
(0.0100) 

- -0.0040 
(0.0072) 

Methylation arrary type HM850K HM850K HM450K HM450K HM450K HM450K 

 
Abbreviation: SHIP-Trend, the Study of Health in Pomerania; FHS, the Framingham Heart Study; LBC1936, the Lothian Birth Cohort 1936; LLS, the Leiden Longevity Study; OATS, the Older 
Australian Twin Study; HM850K, Illumina Infinium MethylationEPIC BeadChip array; HM450K, Illumina Infinium Methylation450K BeadChip array; SD, standard deviation.  
*Gray matter volumes are not available in LLS. 
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Fig.1 Workflow for identifying DNA methylation signatures associated with bilateral hippocampal volume and asymmetry 

 
The integrative multi-omics analyses and follow-up were performed using individual level genetics, DNA methylation, gene expression, dietary and longitudinal brain imaging data measured in the 
same participants from the Rhineland Study. Abbreviations: EWAS, epigenome-wide association study; DMR, differentially methylated region; GWAS, genome-wide association study. 
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Fig.2 Manhattan plots of the epigenome-wide meta-analyses of bilateral hippocampal volume and asymmetry 
 

A. Methylation signatures of bilateral hippocampal volume and asymmetry in the whole sample  

 
                              Left hippocampal volume                                                           Right hippocampal volume                                                         Hippocampal asymmetry 
 

B. Sex difference in single CpG associations with hippocampal asymmetry 

                                                                    
                                                                            Women                                                                                                                              Men 
 
Results were plotted as negative log-transformed p-values (y-axis) across the genome (x-axis). The red horizontal line represents the epigenome-wide significance at 1.0 x10-7.  
Linear models were adjusted for age, sex (not for panel B), batch effects, blood cell proportions, first ten genetic principal components (to account for population stratification), smoking status, and 
education. Models for bilateral hippocampal volumes were additionally adjusted for estimated total intracranial volume. All the epigenome-wide significant CpGs were annotated. 
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Fig. 3 The associations between identified methylation signatures, gene 
expression, and bilateral hippocampal volume 

A. CpG – Gene Expression – LHCV/RHCV 

 

B. DMR – Gene Expression – LHCV/RHCV 

 
     C. Tissue specificity  

 
(A) Forest plots showing the associations between identified methylation signatures and the mapped or cis-genes and the 
associations between these candidate genes and LHCV/RHCV. The dot represents the mean effect and the horizontal line 
shows the 95% CI. Genes overlapping between LHCV and RHCV are shown in red. (B) Forest plots showing the associations 
between identified DMR signatures and the mapped genes and the associations between these candidate genes and 
LHCV/RHCV. The dot represents the mean effect and the horizontal line shows the 95% CI. Genes overlapping between LHCV 
and RHCV are shown in red. (C) Heatmaps showing the expression of candidate genes across different tissues. The heatmaps 
were generated using FUMA v1.6.1 and gene expression data from GTEx v8 54 tissue types.  
Abbreviations: CI, confidence interval; LHCV and RHCV, left and right hippocampal volumes; DMR, differentially methylated 
region. 
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Fig.4 The association between dietary patterns and identified methylation 
signatures  
 

A. Identified CpGs 

 
B. Identified DMRs 

 
 
(A) Forest plots showing the associations between dietary patterns and the identified individual CpGs. The dot represents the 
mean effect and the vertical line shows the 95% CI. Color indicates different dietary patterns.  
(B) Forest plots showing the associations between dietary patterns and the identified DMR signatures. The dot represents the 
mean effect and the vertical line shows the 95% CI. Color indicates different dietary patterns. 
Abbreviations: MDS, Mediterranean Diet Score; DASH, Dietary Approaches to Stop Hypertension; MIND, Mediterranean-DASH 
Intervention for Neurodegenerative Delay; AHEI, Alternate Healthy Eating Index score; PDI, Plant-based Diet Index; hPDI, 
Healthful Plant-based Diet Index; uPDI, Unhealthful Plant-based Diet Index; DII, Dietary Inflammatory Index.
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Fig.5 Association between identified baseline methylation signatures and 
longitudinal change in imaging measures 
A. Identified baseline CpGs with bilateral hippocampal volume loss 

B. Sex-stratified associations of CpGs with longitudinal hippocampal asymmetry change 

 
 

C. Identified baseline DMRs with bilateral hippocampal volume loss 

 
The dot represents the mean annual change rate in imaging measures per standard deviation increase in baseline methylation, 
while the vertical line indicates the 95% confidence interval. The dashed line in each plot indicates the yearly change rate of 
each measure when CpG expression was equal to the population mean, averaged across all CpGs included in the plot. To 
facilitate plotting, different axis scales have been used for hippocampal volume change, and asymmetry change. 
Abbreviations: LHCV and RHCV, left and right hippocampal volumes; DMR, differentially methylated region; CI, confidence 
interval. 
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