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Abstract 

 

Objective: Current methods for early detection of hypoxic–ischemic encephalopathy (HIE) 

are limited by lack of specificity, cost, and time constraints. Blood tau protein concentrations 

reflect neuropathology in adults. This study examines tau as a potential HIE biomarker in 

neonates by relating cord blood levels to short-term fetomaternal outcomes. 

Design: Prospective cohort study. 

Setting: Royal Prince Alfred Hospital—a large Australian tertiary referral centre. 

Population: 107 maternal participants. 

Methods: Simoa analysis of umbilical cord blood pTau217 and brain-derived (BD)-tau.  

Main Outcome Measures: Primary: association of BD-tau with non-reassuring fetal status. 

Secondary: 1) correlations between cord blood tau and other biomarkers; 2) associations 

between tau levels and risk factors for fetomaternal morbidity; 3) associations between tau 

levels and short-term fetomaternal outcome. 

Results: Of 509 deliveries, cord blood was analysed in 107/110 recruited maternal 

participants. BD-tau correlated with non-reassuring fetal status (OR=3.0;95%CI=1.6–

5.7;p=0.001), though not when adjusting for mode of delivery and gestational age. BD-tau 

was higher in vaginal deliveries, and positively associated with pTau217, NfL, and lactate 

(p<0.001), and negatively associated with pH and base excess. pTau217 was higher in 

preterm neonates and was associated with neurofilament light chain (Spearman’s 

rho=0.44,p<0.001). BD-tau and pTau217 were associated with maternal hypertension and 

placental abnormalities.  
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Conclusions: Cord blood BD-tau correlates with markers of fetal hypoxia, whilst pTau217 

levels may indicate broader neurodevelopmental vulnerability. Further studies could explore 

whether these findings translate to clinical use of tau as an HIE biomarker. 

Funding: US National Institutes of Health (grant:R01AG063849-01). 

 

Keywords: tau; asphyxia; hypoxic–ischemic encephalopathy; HIE. 
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Introduction 

 

Hypoxic–ischemic encephalopathy (HIE)—a subtype of neonatal encephalopathy—is a 

syndrome of central nervous system dysfunction caused by abnormalities in cerebral blood 

flow and impaired gas exchange perinatally, resulting in multiple organ failure.1–4 

Approximately 40–60% of affected infants will experience mortality or severe 

neurodevelopmental disability by two years of age.520/12/2024 19:15:00 

 

Risk factors for HIE can broadly be categorised into antepartum (including baseline fetal and 

maternal characteristics) and intrapartum factors. Understanding of antepartum risk factors 

can complement intrapartum monitoring techniques to direct decision-making regarding 

urgency of delivery. Current intrapartum monitoring—including fetal heart rate monitoring 

and fetal scalp blood sampling—is limited by lack of specificity for pathological neurological 

damage, measurement difficulties, and lack of inter-user reliability.6,7  

 

Post-delivery, diagnosis of HIE is based on clinical signs, using scoring systems such as Sarnat 

grading,7 electrophysiological monitoring, and neuroimaging studies including MRI and 

cranial ultrasound.6,8,9 These tools are limited by time and cost constraints, require expert 

interpretation, and may be difficult to access in emergency situations.6,8–10 These limitations 

limit diagnostic sensitivity, especially for milder forms of HIE, and can severely impede 

access to treatment of HIE—therapeutic hypothermia (TH).11–15 This indicates an ongoing 

need for objective, cost-effective, and rapid measures of identifying HIE in order to 

appropriately identify subgroups of HIE patients that could benefit from early intervention. 
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Real-time physiological biomarkers could address this gap in diagnosis and prognostication 

by providing objective point-of-care testing. Current cord or whole blood markers such as 

pH, lactate, and base excess remain non-specific for neurological injury.11,12 Tau is a 

promising biomarker of poor neurological outcome in adult cohorts with acute and chronic 

neurological disease.16–22 Studies of tau in neonates has, to date, focused on correlation of 

total blood tau and cerebral injury-related outcome measures. However, compared to total 

blood tau, specific tau subtypes—in particular pTau217 and ‘brain-derived tau’ (BD-tau)—

have  demonstrated greater specificity for adult neurological injury.21–28 This is the first study 

to examine tau subtypes in a neonatal cohort.  

 

Given the paucity of evidence addressing tau subtypes and fetomaternal outcome, we 

conducted a prospective cohort study with the following aims: 

1. Address feasibility of neonatal cord blood tau level measurement in an 

Australian cohort. 

2. Assess the correlation between BD-tau and non-reassuring fetal status. 

3. Assess correlations between cord blood tau—BD-tau, pTau217—and other 

cord blood biomarkers, maternal and neonatal risk factors for 

encephalopathy, and adverse outcome. 
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Methods 

 

Study Population and Design 

 

We performed a prospective cohort study of maternal and neonatal patients at the Royal 

Prince Alfred Hospital (RPAH), a tertiary referral centre in Sydney, Australia. Maternal 

participants of any age who birthed at RPAH were eligible for study recruitment, as well as 

all modes of delivery including all live and stillbirths delivered vaginally or via Caesarean 

section. Recruitment occurred prospectively from October 2022 at any time from 4 weeks 

prior to estimated date of delivery to the immediate post-partum period (with the option of 

retrospective consent). Trained recruiters obtained written, informed consent in English for 

all maternal participants in antenatal visits or on the birthing unit. Maternal participants 

were excluded if they were non-English speaking (could not provide consent after 

appropriate counselling in English) or had a history of psychological illness or other 

conditions that may interfere with capacity to provide informed consent.  

 

Recruitment was undertaken as part of the BABBies (Benefits of Analysing Brain Biomarkers 

in perinatal care) Study—a prospective observational cohort study exploring the biomarkers 

neurofilament light chain (NfL), BD-tau, and pTau217. Data were stored in Sydney Local 

Health District (SLHD) REDCap electronic database. Ethics approval was obtained from SLHD 

Research and Ethics Committee (RPAH zone) (approval number: 2022/ETH01100). Our study 

was performed according to the National Statement on Ethical Conduct in Human Research 

(2007)29 and the CPMP/ICH Note for Guidance on Good Clinical Practice.30 Data reporting 
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adhered to Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) 

guidelines.31 

 

Cord Blood Collection and Analysis 

Umbilical venous cord blood was collected by the attending midwife in the immediate 

postpartum period, either on the birthing unit or in operating theatres. 1–3mL samples were 

collected and centrifuged in the RPAH Department of Anaesthetics laboratory, and plasma 

samples were then stored in deidentified cryovials. 

 

All the tau markers were measured on the Simoa HD-X platform with two-fold dilution factor 

in plasma. Plasma pTau217 and BD-tau were measured with previously validated assays.25,27 

Signal variations within and between analytical runs were assessed using three internal 

quality control samples at the beginning and the end of each run. 

 

Outcome Data Collection 

RPAH electronic and paper medical records of maternal and neonatal participants were used 

to obtain demographic and outcome data, including baseline characteristics, antenatal 

history, intrapartum monitoring, and adverse antenatal, intrapartum, and postpartum 

events. Mode of delivery was classified categorically: vaginal delivery, emergency caesarean 

section, and elective caesarean section. Placental abnormalities were defined as any 

abnormality detected on placental ultrasound, on examination in the birth unit or in the 

operating theatre, or histopathology. The composite term ‘histopathological placental 

abnormality’ refers to only abnormalities detected on anatomical or histopathological 

examination following placental delivery as per the 2014 Amsterdam Working Group 
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nosology for classification of placental clinicopathological disorders.32 ‘Non-reassuring fetal 

status’ was defined as fetal blood sampling showing a pH �7.20 or lactate >4.7,33–35 or 

intrapartum cardiotocography (CTG) changes identified as ‘red zone’ criteria according to 

NSW Health electronic fetal monitoring guidelines.36 Our definition of non-reassuring fetal 

status did not include participants incidentally found to have abnormal umbilical cord blood 

values without meeting other criteria for non-reassuring fetal status. 

 

Outcomes 

Our primary outcome was the association of BD-tau with non-reassuring fetal status. We 

adjusted this analysis for gestational age and mode of delivery, given these variables have 

previously been associated with both non-reassuring fetal status and cord blood 

concentrations of other biomarkers of acidosis and anaerobic metabolism.13,34 Secondary 

outcomes included the association of BD-tau and pTau217 with antenatal factors 

(gestational age, head circumference, birthweight), other cord blood biomarkers, maternal 

factors, delivery factors, and perinatal outcome. Resuscitation at birth was defined as 

cardiorespiratory support required following drying, warming, and mechanical stimulation.37  

 

Power Analysis 

Our power analysis was based on the association of NfL with non-reassuring fetal status, 

which is reported separately.38 We used the previously reported baseline incidence of non-

reassuring fetal status of 16%.34 Based on a two-sided t-test with α = 0.025, a sample size of 

110 participants provides 80% power to detect a Cohen’s d of 0.8 (i.e., a large effect size). 

The power analysis would also apply for the primary outcome of this study, with a preserved 
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type 1 error rate of α = 0.05, as this value was halved a priori for the power calculation to 

account for additional analysis.  

 

Statistical Methods 

Primary outcome 

Both BD-tau and pTau217 concentrations showed a strong positive skew, hence were log10-

transformed for all analyses. To determine the association of BD-tau with non-reassuring 

fetal status after adjusting for other variables, we used logistic regression (binomial family 

with logit link) with maximum likelihood estimation of the model parameters. The 

parametric G-formula was used to compute the mean risk difference from logistic regression 

models.39 We included a BD-tau*mode of delivery interaction in our model, as the 

relationship between neuronal biomarkers and fetal outcome would likely vary by birth 

route. To provide interpretable effect measures, we calculated the risk difference for the 

outcome per increase in BD-tau by its interquartile range (Q3 – Q1). The relative association 

of cord biomarkers with non-reassuring fetal status was quantified using the area under the 

receiver operator curve (AUROC). The 95% confidence interval for the AUROC was calculated 

using 2000 stratified bootstrap replicates.  

 

Secondary outcomes 

Bivariate biomarker correlations were assessed using rank-based nonparametric methods. 

The relative strength of biomarker correlations was tested using the method described by 

Meng, Rosenthal, and Rubin.40 For continuous secondary outcomes, we used linear 

regression with the ordinary least squares estimator for the model parameters. Associations 

between biomarker concentrations and placental abnormalities were adjusted for low birth 
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weight (defined as birth weight <2.5kg, per World Health Organisation definition).41 Binary 

secondary outcomes were tested for linearity, and analysed in the same fashion as our 

primary outcome.  

 

We used a p-value <0.05 to denote statistical significance. No adjustments for multiple 

comparisons were made in this preliminary study. All analyses were conducted in R using 

RStudio (Version 2024.04.0; R Foundation for Statistical Computing, Vienna, Austria). The 

‘stats’ package was used for linear and generalised linear models. The ‘cocor’ package was 

used to compare the strength of bivariate biomarker concentrations.42 The ‘plotROC’ and 

‘pROC’ packages were used for calculation and plotting of the AUROC.43–45  

 

Results 

 

Over the study period 24th October 2022 to 9th December 2022, 110 maternal study 

participants were recruited from a total of 509 deliveries at RPAH. Cord blood was sent for a 

total of 108 participants, of which 107 had either BD-tau or pTau217 levels available; 105 

had BD-tau values and 106 had pTau217 values (STROBE diagram: Figure S1). Cohort 

demographic information is summarised in Table S1.  

 

Primary outcome 

 

Increased BD-tau was associated with a higher risk of non-reassuring fetal status; each IQR 

increase in BD-tau was associated with an increased odds of fetal distress (OR = 3.0; 95% CI: 
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1.6, 5.7; p = 0.001). However, this relationship was no longer observed when adjusting for 

mode of delivery and gestational age (OR = 1.1; 95%CI = 0.6, 1.2; p = 0.667) (Table S2). BD-

tau was not associated with non-reassuring fetal status when stratifying within each 

individual mode of delivery (Table S2). Comparative performances of BD-tau pH, lactate, and 

base excess in predicting non-reassuring fetal status are displayed in Figure 1. There was no 

association demonstrated between pTau217 and non-reassuring fetal status (Wilcoxon p = 

0.62). 
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Figure 1: 

Receiver–operator curve (ROC) analysis of BD-tau, pH, base excess, and lactate in predicting 

binary non-reassuring fetal status. (A) ROC for the generalised linear model predicting non-

reassuring fetal status and including the regressors: biomarker, mode of delivery, and 

gestational age. (B) ROC for the generalised linear model predicting non-reassuring fetal 
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status and including the regressors: biomarker and mode of delivery. ROC for the biomarkers 

only, including (C) all births, (D) excluding preterm births, (E) excluding elective caesarean 

section, and (F) excluding elective CS and preterm birth. 

 

Secondary outcomes 

 

Antenatal Factors 

 

Relationship between tau and fetal factors 

 

pTau217 was negatively associated with gestational age (Spearman’s rho = –0.25, p = 

0.0096). pTau217 was also negatively associated with birthweight (Spearman’s rho = –0.23, p 

= 0.019) and head circumference (Spearman’s rho = –0.24, p = 0.016), however, these 

associations were not significant when controlling for gestational age (Table S3). BD-tau did 

not demonstrate evidence of association with fetal parameters (Figure 2).  
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Figure 2: 

Correlation between BD-tau and pTau217 and fetal factors—birthweight, head 

circumference, and gestational age. Spearman correlation coefficients are shown. Red dot: 

elective Caesarean section (CS); blue dot: emergency CS; green dot: vaginal delivery.  
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Relationship between tau and maternal factors 

 

A total of 8 participants were classified as having maternal hypertension—either chronic 

hypertension, gestational hypertension, or pre-eclampsia. Both BD-tau and pTau217 were 

positively associated with maternal hypertension (median BD-tau: 81.0 vs. 54.9pg/mL, 

Wilcoxon p = 0.026; median pTau217: 10.3 vs. 7.7pg/mL, Wilcoxon p = 0.029), but were not 

associated with other maternal health conditions (Figures S2 and S3). 

 

Relationship between tau and intrapartum factors 

 

BD-tau was associated with mode of delivery (Kruskal–Wallis p < 0.001) (Figure 3), with BD-

tau levels being higher with vaginal delivery compared to CS. On pairwise comparisons, no 

statistically significant difference was detected in BD-tau level between elective and 

emergency CS (median 48.4 vs. 53.6pg/mL, Wilcoxon p = 0.22). pTau217 did not 

demonstrate a significant association with mode of delivery (Kruskal–Wallis p = 0.420). 

pTau217 was negatively associated with the duration of the second stage of labour 

(Spearman rho = –0.4, p = 0.042), whilst BD-tau and other biomarkers were not (Figure S4). 
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Figure 3: 

Correlation between tau and mode of delivery. A: Correlation between Log10 BD-tau and 

mode of delivery. Wilcoxon p-values are shown for comparisons between individual modes 

of delivery. B: Correlation between Log10 pTau217 and mode of delivery. Red dot: elective 

caesarean section (CS); blue dot: emergency CS; green dot: vaginal delivery. 

 

 

Correlation between tau and other biomarkers 

 

Correlations between cord blood tau and other biomarkers are demonstrated in Figure 4. 

BD-tau demonstrated a positive association with pTau217 (Spearman’s rho = 0.66, p <0.001), 

NfL (Spearman’s rho = 0.58, p < 0.001), and lactate (Spearman’s rho = 0.34, p <0.001), and a 

negative association with cord pH (Spearman’s rho = –0.29, p = 0.003) and base excess 

(Spearman’s rho = –0.35, p <0.001). pTau217 demonstrated a positive correlation with NfL 

(Spearman’s rho = 0.44, p <0.001), but was not associated with other biomarkers. We did 
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not observe evidence of a difference between pTau217 and BD-tau in the strength of the 

positive correlation with NfL (z = 1.48, p = 0.140) (Table S4). 
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Figure 4:  

Correlation between cord blood biomarkers. Association of BD-tau with Neurofilament light 

chain (NfL) (n=105), pH (n=104), base excess (n=94), and lactate (n=103); association of 

pTau217 and NfL (n=106), pH (n=105), base excess (n=95), and lactate (n=104). Red dot: 

elective caesarean section (CS); blue dot: emergency CS; green dot: vaginal delivery. 

 

Relationship between tau and fetoplacental outcome 

 

A total of 11 participants had reported placental abnormalities, 6 of which were defined as 

histopathological placental abnormalities (Appendix 1). Adjusting for low birth weight, the 

presence of histopathological placental abnormalities was positively associated with BD-tau 

and pTau217 (Table S5). 

 

pTau217 levels were associated with preterm birth (median 7.7 in term participants vs. 

12.2pg/mL in preterm participants; Wilcoxon p = 0.010). In addition, pTau217 levels were 

positively associated with respiratory complications (median 7.6 vs. 10.4pg/mL; Wilcoxon p 

= 0.012) and resuscitation requirement at birth (median pTau217: 7.6 vs. 10.2pg/mL; 

Wilcoxon p = 0.027), however these associations were not observed when adjusting for 

preterm birth (Table S6).  
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Discussion 

 

Main findings 

 

Our study adds credence to the use of cord blood tau as a biomarker in the study of 

neurodevelopment, perinatal hypoxia, and central nervous system injury. This is the first 

study to examine associations between fetomaternal outcomes and cord blood subtypes of 

tau—BD-tau and pTau217. We observed a correlation between BD-tau and surrogate 

markers of hypoxia, including serum biomarkers of anaerobic metabolism and non-

reassuring fetal status. Additionally, we found associations between tau and maternal and 

fetoplacental factors that could contribute to increased baseline risk of encephalopathy, 

including preterm birth, placental abnormalities, and maternal hypertension. Understanding 

the relationship between the pathogenesis of hypoxic brain injury, neuron-specific 

biomarkers, and clinically observed outcome could aid diagnosis, prognosis, and treatment 

of patients suffering from HIE.  

 

Clinical implications and future research 

 

Our findings support previous research demonstrating positive correlations between blood 

tau levels and neonatal neuropathology.1,46–49 Previous studies have mainly involved case-

control analyses of HIE cohorts, demonstrating a positive correlation between early serum 

tau levels, HIE diagnosis based on EEG and clinical criteria, as well as HIE severity.50,51 By 

addressing surrogate markers of fetal and neonatal hypoxia, our study of predominantly 
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‘healthy’ participants aims to link blood tau levels with early or mild HIE, and provide a 

foundation for future research into the clinical use of cord blood tau in HIE diagnosis. Our 

study demonstrated a strong correlation between tau levels and non-specific markers of 

acidosis and anaerobic metabolism, such as neonatal pH and lactate levels, extending 

previous research.1,47 Importantly, our study is the first to examine BD-tau specifically, which 

offers an advantage over these traditional biomarkers due to its greater specificity for CNS 

injury.46,49,51,52 Consistent with this, we also demonstrated correlation between tau and 

neurofilament light chain (NfL)—a biomarker of neurological injury validated in adult 

cohorts.49,51,53  

 

The proposed role of tau as a surrogate marker of fetal hypoxia is further evidenced by the 

correlation between early cord blood BD-tau and non-reassuring fetal status observed in this 

study. This finding was not statistically significant when adjusting for mode of delivery and 

gestational age. However, operative delivery is commonly performed for fetal distress, and 

adjusting for mode of delivery could therefore cause the association between BD-tau and 

fetal distress to be underestimated. Fetal distress as determined by ‘pathological’ fetal heart 

rate abnormalities identified intrapartum may indicate early compensatory changes to 

hypoxia and correlate with neonatal acidosis, low APGAR scores, increased NICU admission, 

and requirements for resuscitation.25,54–57 However, CTG patterns are user-dependent and 

have a low positive predictive value for clinically significant long-term adverse outcome.57,58 

Using biomarkers to supplement intrapartum monitoring techniques can increase diagnostic 

specificity, guiding targeted interventions such as urgent delivery and therapeutic 

hypothermia. BD-tau may offer a more specific marker of neurological damage compared to 
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currently used fetal and neonatal blood biomarkers.46,49,51,52 Overall, our data suggest an 

underlying pathway to encephalopathy that warrants further investigation.  

 

Our study also explored potential correlations between neonatal serum tau levels and 

antenatal risk factors for adverse neurological outcomes. Abnormalities in the ‘placenta–

brain axis’ can contribute to intrauterine growth restriction and increased susceptibility of 

the fetal brain to injury during  acute stress.59–62 It is possible that aberrant placental 

function may lead to dysregulated neuronal development, accounting for excessive tau 

phosphorylation and higher levels of pTau217 observed in participants with 

histopathological placental changes. Placental abnormalities—both macroscopic (e.g., cord 

knots, marginal cord insertion) and microscopic (e.g., avascular villi)—have also been shown 

to correlate with increased incidence of HIE,60,61 encephalopathy,63,64 and neonatal stroke.59 

The correlation between tau and placental abnormalities should prompt further 

investigation into underlying associations between tau and encephalopathy risk.  

 

Microscopic placental changes may also occur as a consequence of pre-eclampsia (PET).65 

Non-PET hypertensive disorders may show some similar microvascular changes to a lesser 

unknown degree, manifesting in increased neonatal stroke risk.65 Associations between tau 

and hypertension observed in this study should be further explored in an attempt to identify 

patients with microvascular placental changes who may be more vulnerable to physiologic 

stress and sentinel intrapartum events.  

 

Our results also highlight the potential role of phosphorylated tau in neurodevelopment. In 

our study, pTau217 demonstrated a positive correlation with gestational age, but without 
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evidence of a convincing relationship with markers of hypoxic injury. Whilst dynamic 

changes in tau phosphorylation are essential for microtubule stabilisation, axonal growth, 

and neuronal function, aberrant tau phosphorylation can lead to tau filament accumulation 

and neuronal dysfunction and death.66,67 Adult studies suggest that pTau217 elevation may 

reflect neuronal responses to blood-brain barrier disruption and protein aggregation rather 

than direct neuronal injury.68,69 In neonates, it is unclear whether a high level of 

phosphorylated tau may indicate abnormal neuronal development, or if phosphorylation at 

specific tau domains confers likelihood of neuropathology. Future research in this area could 

help clarify the mechanisms behind phosphorylated tau accumulation in neonates and 

establish threshold levels that indicate a heightened risk of neuropathology.  

 

 Strengths and limitations 

 

This study is the first to distinguish between specific tau subtypes—rather than relying solely 

on total tau levels—paving the way for more precise diagnosis and prognosis. Correlations 

between BD-tau and surrogate markers of hypoxia form a strong foundation for future 

research into the use of cord blood tau in birth asphyxia screening. The successful sample 

collection and analysis, using validated assays, highlights the potential for tau cord blood 

measurement to feasibly be incorporated into neonatal care in an Australian context.   

 

Limitations of this study included the relatively small sample size, from a single centre. In 

addition, the largely ‘healthy’ maternal cohort and short-term follow-up limited adverse 

outcome data. Also, our study only included static measurement of cord biomarkers rather 

than serial samples over the first days of neonatal life. Late rises in serum tau have been 
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associated with adverse neurodevelopmental outcomes at one to two years of age.70–73 

These studies provide an impetus to explore serial neonatal tau measurements in addition 

to cord blood.  

 

 Conclusions 

 

This single centre study is the first to explore neonatal cord blood tau subtypes—pTau217 

and BD-tau—as promising biomarkers of hypoxia and neuropathology. We demonstrated a 

correlation between BD-tau and fetal distress, as well as other surrogate markers of fetal 

hypoxia including cord lactate, pH, and base excess. Moreover, the observed correlations 

between phosphorylated tau levels, maternal hypertension, and placental abnormalities 

underscore the complex interactions in the "placenta–brain axis," which may predispose 

neonates to neurological vulnerability. While our study provides preliminary evidence for the 

diagnostic potential of pTau217 and BD-tau, further research with larger, diverse cohorts and 

longitudinal tracking of tau biomarkers is necessary. This may include a composite 

assessment tool of neurological status through combining multiple rapid biomarker assays 

and imaging modalities.  
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