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Abstract

Analyzing treatment effectiveness from electronic health records (EHR) presents unique challenges in causal

inference, particularly when comparing multiple treatment options with high-dimensional covariates. We propose a

novel framework combining instrumental variable (IV) analysis with advanced Bayesian feature selection methods

and neural networks to estimate causal effects in multi-valued treatment settings. Our approach addresses three

key methodological challenges: handling multiple treatment comparisons simultaneously, comparing Bayesian fea-

ture selection methods, and selecting relevant features while capturing complex nonlinear relationships in outcome

models.

Through extensive simulation studies, we demonstrate that spike-and-slab priors achieve superior performance in

treatment effect estimation with the lowest mean absolute bias (0.071) compared to ALL (0.074), LASSO (0.080),

and Bayesian LASSO (0.083) methods. The consistency of bias control across treatment pairs demonstrates the

robustness of our Bayesian feature selection approach, particularly in identifying clinically relevant predictors.

We apply this framework to compare three commonly used vasopressors (norepinephrine, vasopressin, and

phenylephrine) using MIMIC-IV data[1]. Using physician prescribing preferences as instruments[2, 3, 4], our anal-

ysis reveals a clear hierarchical pattern in treatment effectiveness. Vasopressin demonstrated superior effectiveness

compared to both norepinephrine (ATE = 0.134, 95% CI [0.115, 0.152]) and phenylephrine (ATE = 0.173, 95% CI

[0.156, 0.191]), while phenylephrine showed inferior outcomes compared to norepinephrine (ATE = -0.040, 95% CI

[-0.048, -0.031]).

Our methodological framework provides a robust approach for analyzing multi-valued treatments in high-dimensional

observational data, with broad applications beyond vessopressors in critical care. The integration of instrumental

variable analysis, Bayesian feature selection, and advanced modeling techniques offers a promising direction for

using EHR data to inform treatment decisions while addressing key challenges in causal inference.

Introduction

The surge in electronic health record (EHR) data has created unprecedented opportunities for comparing treat-

ment effectiveness in real-world clinical settings. However, extracting reliable causal insights from EHR data

presents substantial methodological challenges, stemming from the complex interplay of unmeasured confound-

ing mechanisms, particularly confounding by indication where treatment assignment is intrinsically linked to dis-

ease severity. These challenges are compounded by the high-dimensional nature of EHR data, featuring complex

covariate structures, non-random missing data patterns, and intricate temporal dependencies. Such complications

are particularly salient in critical care settings, where treatment decisions are both complex and time-sensitive, as

exemplified in the selection of vasopressors for patients with shock.
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While recent methodological advances have addressed individual aspects of these challenges [5, 6], a compre-

hensive framework for causal inference with EHR data remains elusive. We address this gap by developing an

integrated three-component approach: leveraging instrumental variable (IV) analysis to address confounding by

indication, implementing sophisticated Bayesian feature selection methods to identify informative covariates, and

employing flexible neural networks for counterfactual prediction. Our approach extends existing IV methods, which

have predominantly focused on binary treatments [7, 8, 9, 10, 11], to accommodate multiple treatment regimes.

Building upon the theoretical foundations established by Imbens [12] and Imai and Van Dyk [13], we advance be-

yond conventional extensions such as regression adjustment [14] and inverse probability of treatment weighting

[15], developing a deep neural network instrumental variable framework specifically designed for high-dimensional

observational studies [16].

Our methodological framework advances the field in three key directions: (1) extending instrumental variable

methods to handle multi-valued treatments in high-dimensional covariate spaces, (2) providing a systematic compar-

ison of feature selection techniques in EHR-based causal inference settings, and (3) incorporating neural networks

to capture complex treatment effect heterogeneity. The high dimensionality of EHR data, with hundreds of poten-

tial effect modifiers, necessitates robust feature selection methods. While various Bayesian approaches exist, their

comparative performance in causal inference settings remains poorly understood [17]. Our work provides a compre-

hensive evaluation of four methodologies: Bayesian spike and slab priors, Bayesian LASSO, standard LASSO, and

no feature selection, examining their impact on the bias-variance tradeoff in treatment effect estimation.

We demonstrate our framework’s utility through simulation and the analysis of the MIMIC-IV database (N=23,487)[1],

focusing on the comparative effectiveness of three commonly prescribed vasopressors: norepinephrine, phenyle-

phrine, and vasopressin. We exploit variation in physician prescribing preferences as instrumental variable [2],

enabling causal effect estimation while accounting for unmeasured confounding. This comprehensive approach

reveals important treatment effect heterogeneity that traditional methods fail to detect. The work extends beyond

vasopressor selection in critical care. Our framework provides a generalizable methodology for analyzing treatment

effectiveness using EHR data, synthesizing advanced causal inference methods and machine learning techniques.

This integration enables both precise individual-level prediction and robust estimation of causal effects, addressing

fundamental challenges in evidence-based medicine. By providing a rigorous methodology for analyzing real-world

clinical data, this research advances both statistical methodology and clinical practice, offering a pathway to more

personalized treatment decisions.

Methods

Instrumental Variable Analysis Our analytical framework used physician prescribing preferences as an in-

strumental variable to address unmeasured confounding in vasopressor choice effects on mortality. We implement

a two-stage estimation procedure [2, 18], enhanced with neural networks and Bayesian feature selection to capture

complex treatment effect heterogeneity.

The instrumental variable is constructed using the Herfindahl-Hirschman Index (HHI) to quantify physician pre-

scribing concentration [19]. For each physician 𝑖, we calculate HHI𝑖 =
∑𝐽
𝑗=1 𝑠

2
𝑖 𝑗

, where 𝑠𝑖 𝑗 represents the proportion

of vasopressor 𝑗 in physician 𝑖’s historical prescriptions, and 𝐽 denotes the total number of vasopressor options. The

HHI ranges from 1/𝐽 (equal usage) to 1 (single vasopressor usage), providing a continuous measure of prescribing

preference that satisfies key IV assumptions [20].

For valid causal inference, our instrumental variable approach relies on three fundamental assumptions:
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• Relevance: Physician prescribing preferences must be strongly associated with actual vasopressor choices.

Formally, this requires Cov(𝑍𝑖 , 𝑇𝑖 |𝑋𝑖) ≠ 0, where 𝑍𝑖 represents physician preferences, 𝑇𝑖 denotes vasopressor

choice, and 𝑋𝑖 are observed covariates. We validate this assumption through first-stage F-statistics, requiring F

> 10 to ensure strong instrument status [21]. In practice, this means physicians with a documented preference

for a particular vasopressor must demonstrate significantly higher rates of prescribing that medication to their

patients.

• Exclusion: Physician preferences must affect patient mortality only through their influence on vasopressor

selection. This assumption requires that any impact of physician prescribing patterns on patient outcomes

operates exclusively through the choice of vasopressor, not through other channels. We support this assump-

tion by excluding physicians with fewer than 10 prior vasopressor prescriptions to ensure stable preference

measures, adjusting for hospital-level factors that might influence both prescribing patterns and outcomes.

• Independence: The physician preference instrument must be independent of unmeasured confounders affect-

ing patient outcomes. Mathematically, this requires (𝑌𝑖 (𝑡), 𝑇𝑖 (𝑧)) ⊥ 𝑍𝑖 |𝑋𝑖 , where 𝑌𝑖 (𝑡) represents potential

outcomes under treatment 𝑡. This assumption implies that physician prescribing preferences are not systemati-

cally related to unobserved patient characteristics that influence mortality risk. We validate this assumption by

demonstrating balance in observed patient characteristics across physicians with different prescribing patterns

and through sensitivity analyses examining the impact of potential violations.

• Additionally, for multi-valued treatments, we require the Monotonicity assumption: For any two treatments

𝑗 and 𝑘 , if physician A’s preference for 𝑗 over 𝑘 is stronger than physician B’s, then any patient who would

receive treatment 𝑗 from physician B would also receive it from physician A. Formally: 𝑃(𝑇𝑖 (𝑧1) = 𝑗) ≥
𝑃(𝑇𝑖 (𝑧2) = 𝑗) for all 𝑧1 > 𝑧2. This assumption rules out ”defier” behavior where patients systematically

receive opposite treatments from what physician preferences would predict.

Our two-stage model is specified as follows:

Stage 1 (Treatment Model): We employ a multinomial logistic regression to model treatment assignment:

𝑃(𝑇𝑖 = 𝑗 |𝑍𝑖 , 𝑋𝑖) =
exp(𝛼𝑇

𝑗
[𝑍𝑖 , 𝑋𝑖])∑𝐽

𝑘=1 exp(𝛼𝑇𝑘 [𝑍𝑖 , 𝑋𝑖])

with likelihood:

𝐿1(𝛼 |𝑇, 𝑍, 𝑋) =
𝑁∏
𝑖=1

𝐽∏
𝑗=1

𝑝
𝐼 (𝑇𝑖= 𝑗 )
𝑖 𝑗

where 𝑇𝑖 ∈ {1, ..., 𝐽} represents the vasopressor choice for patient 𝑖 among 𝐽 possible treatments, 𝑍𝑖 is the

physician preference score, 𝑋𝑖 represents patient covariates, and 𝛼 𝑗 are the treatment-specific coefficients.

Stage 2 (Outcome Model): Using the predicted treatment probabilities 𝑝𝑖 𝑗 from Stage 1, we model the mortality

outcome using a neural network:

𝑌𝑖 = 𝜎( 𝑓 (𝑝𝑖1, ..., 𝑝𝑖𝐽 , 𝑋𝑖; 𝜃)), 𝜎(𝜂) = 1

1 + 𝑒−𝜂

where 𝑌𝑖 is the binary mortality outcome and 𝑓 (·) is a deep neural network with parameters 𝜃. The network

architecture consists of three hidden layers with ReLU activation functions and incorporates Bayesian spike-and-

slab priors on the weights to enable automatic feature selection and uncertainty quantification.
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Feature Selection Methods We implemented and compared three Bayesian and frequentist approaches for

feature selection: spike-and-slab priors, Bayesian LASSO, and classical LASSO. Each method offers distinct ad-

vantages for handling high-dimensional covariate selection in our instrumental variable framework.

Spike-and-Slab

To perform feature selection within a Bayesian framework, we employed spike-and-slab priors on the weights

of a two-layer neural network. The Spike-and-Slab approach gets its name from its two components: the spike,

which drives weights of irrelevant features exactly to zero, and the slab, which allows non-zero values for significant

predictors. This combination ensures both sparsity and flexibility, making it ideal for high-dimensional feature

selection tasks. This method combines a discrete spike component (set at zero) and a continuous slab component,

modeled by a Gaussian distribution, ensuring sparsity in the selected predictors.

The prior for each weight 𝜃 𝑗 is defined as:

𝜃 𝑗 ∼ 𝜋 𝑗N(0, 𝜏2) + (1 − 𝜋 𝑗)𝛿0,

where 𝜋 𝑗 is the inclusion probability for weight 𝜃 𝑗 , 𝛿0 is a point mass at zero (the spike component), and 𝜏2 is the

variance of the slab component, ensuring the diffuse nature of non-zero weights. The inclusion probabilities 𝜋 𝑗 were

assigned a Beta prior:

𝜋 𝑗 ∼ Beta(𝑎0, 𝑏0),

with hyperparameters 𝑎0 = 1 and 𝑏0 = 4, reflecting our prior belief that approximately 20% of the weights are

non-zero. To control the global shrinkage of weights, 𝜏 was assigned a Half-Cauchy prior:

𝜏 ∼ Half-Cauchy(𝛽 = 1).

Algorithm Implementation The spike-and-slab model was implemented using the PyMC5 package, a proba-

bilistic programming library for Bayesian inference [22]. Posterior sampling was performed using the No-U-Turn

Sampler (NUTS), which adaptively adjusts path lengths in Hamiltonian Monte Carlo (HMC) to ensure efficient ex-

ploration of the posterior distribution. Specifically, the posterior sampling used 4 chains and a burn-in period of

1000 iterations to facilitate convergence and reduce bias. The algorithm proceeds as follows:
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Algorithm 1 Spike-and-Slab for Feature Selection
1: Define input data 𝑋 (features) and 𝑦 (binary outcome).
2: Set prior hyperparameters: 𝜋 ∼ Beta(1, 4) and 𝜏 ∼ Half-Cauchy(1).
3: Initialize Network Parameters:

Sample input-to-hidden weights 𝑤1 ∼ N(0, 𝜏) and inclusion indicators 𝑧1 ∼ Bernoulli(𝜋).
Sample biases for the hidden layer 𝑏1 ∼ N(0, 1).
Combine weights and inclusion indicators: 𝑤combined

1 = 𝑤1 · 𝑧1.
Compute hidden layer activations: ℎ1 = ReLU(𝑋 · 𝑤combined

1 + 𝑏1).
Sample hidden-to-output weights 𝑤2 ∼ N(0, 𝜏) and inclusion indicators 𝑧2 ∼ Bernoulli(𝜋).
Sample biases for the output layer 𝑏2 ∼ N(0, 1).
Combine weights and inclusion indicators: 𝑤combined

2 = 𝑤2 · 𝑧2.
Compute logits for the output layer: logits = ℎ1 · 𝑤combined

2 + 𝑏2.
4: Transform logits to probabilities using the sigmoid function: 𝑝 = sigmoid(logits).
5: Sample the likelihood of the observed outcome: 𝑦obs ∼ Bernoulli(𝑝).
6: Perform posterior sampling using NUTS with:

1,000 posterior samples, 1,000 tuning iterations, 4 chains, and a target acceptance rate of 0.9.
7: Analyze the posterior inclusion probabilities to determine feature importance.

The inclusion probabilities estimated from the posterior distributions were used to identify the most informative

features. Features with high posterior inclusion probabilities were retained for downstream analysis, while those

with low probabilities were effectively pruned. To further quantify feature importance, we computed scores that

combine both the magnitude of the weight and the probability of inclusion. Specifically, the feature importance for

each predictor 𝑗 is defined as the expected value of the absolute weight multiplied by its inclusion probability:

Feature Importance 𝑗 =
1

𝑇

𝑇∑︁
𝑡=1

���𝜃 (𝑡 )𝑗 ��� × 𝜋 (𝑡 )𝑗 ,
where 𝑇 is the total number of posterior samples, 𝜃 (𝑡 )

𝑗
is the sampled weight, and 𝜋 (𝑡 )

𝑗
is the corresponding inclusion

probability at iteration 𝑡. This measure reflects both the magnitude of the weight and the likelihood of the feature

being included, ensuring that features with higher importance scores are identified as more influential in predicting

the outcome.

Bayesian LASSO

To address the challenge of high-dimensional feature selection in our instrumental variable framework, we im-

plemented the Bayesian LASSO (Least Absolute Shrinkage and Selection Operator) methodology following Park

and Casella (2008) [23]. While the classical LASSO employs the double-exponential (Laplace) prior directly, this

can lead to computational instability and challenges in uncertainty quantification. Instead, we adopted a hierarchical

representation that ensures posterior propriety and computational stability while maintaining the selective shrinkage

properties of the LASSO.

For our binary outcome setting, we specified a Bernoulli likelihood with a logit link function:

𝑦𝑖 ∼ Bernoulli(𝑝𝑖), logit(𝑝𝑖) = 𝛼 + 𝑋𝑖𝛽

The half-Cauchy prior on the global shrinkage parameter 𝜏, as recommended by Gelman (2006) and Polson

(2012), provides robust regularization while maintaining sufficient posterior mass away from zero for important
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coefficients [24, 25]. Therefore, we implemented a hierarchical prior structure that facilitates stable computation

while preserving the selective shrinkage properties of the LASSO. Specifically, we employed:

𝛽 𝑗 ∼ N(0, 𝜏2), 𝑗 = 1, . . . , 𝑝, 𝜏 ∼ HalfCauchy(0.5)

This choice represents a notable departure from the direct Laplace prior implementation, offering improved

numerical stability and more reliable posterior inference.

The posterior distribution takes the form:

𝑝(𝛽, 𝜏 |𝑦) ∝
𝑛∏
𝑖=1

𝑝(𝑦𝑖 |𝛽, 𝑋𝑖)
𝑝∏
𝑗=1

𝑝(𝛽 𝑗 |𝜏)𝑝(𝜏)

We implemented the model using PyMC3, employing the NUTS with 2,000 posterior samples across four chains

after 1,000 burn-in iterations. Convergence was assessed through the Gelman-Rubin statistic (𝑅) and effective

sample size calculations. This representation maintains the desirable selective shrinkage properties of the classical

LASSO while providing full uncertainty quantification and improved computational stability through its hierarchical

structure.

Feature selection was performed using the importance score criterion that leverages the full posterior distribution

of the coefficients. For each feature 𝑗 , we computed the posterior inclusion probabilities as P( |𝛽 𝑗 | > 𝜖 |data)

IS 𝑗 =
|E[𝛽 𝑗 |data] |
SD[𝛽 𝑗 |data] · P( |𝛽 𝑗 | > 𝜖 |data)

Features were retained if their importance score exceeded the 75th percentile (𝜖) of all scores, providing a

data-driven threshold for feature inclusion that balances sensitivity and specificity while accounting for posterior

uncertainty.

To ensure the reliability of our posterior inference, we implemented a comprehensive convergence diagnostic

protocol. This included monitoring the Gelman-Rubin statistic (𝑅 < 1.1) across chains, assessing effective sample

sizes (minimum 400 effective samples), and visual inspection of trace plots. Additionally, we examined the energy

plots from the HMC sampler to verify proper mixing and exploration of the posterior distribution.

Standard LASSO

Standard Lasso regression with the TensorFlow Keras package was used as a baseline for comparison

with Bayesian feature selection techniques. The Lasso method incorporates an L1 regularization penalty, defined

mathematically as:

𝛽LASSO = argmin
𝛽

{
𝑛∑︁
𝑖=1

(𝑦𝑖 − 𝑋𝑖𝛽)2 + 𝜆
𝑝∑︁
𝑗=1

|𝛽 𝑗 |
}

Where 𝜆 is the regularization parameter and 𝑤𝑖 represents the weights of the model. In Keras implementation,

the L1 penalty is applied by augmenting the loss function with a regularization term proportional to the absolute

values of the model weights during optimization [26]. This mechanism facilitates feature selection by shrinking

the weights of less informative features to zero, effectively removing them from the model during training. By

leveraging this property, Lasso serves as a robust method for identifying important predictors while simultaneously
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controlling model complexity.

The training process involved setting 𝜆 = 1 × 10−3. Data preprocessing ensured that only relevant features were

included and the data were split into training and testing sets. A neural network model with L1 regularization was

then constructed, and hyperparameters such as the number of layers, activation functions, and optimizers were tuned

to optimize performance.

Estimation and Inference of Parameters Parameter estimation and inference proceeds through both stages

of our analysis. In the first stage, we estimate the relationship between physician prescribing preferences and treat-

ment choices. The HHI score provides a continuous measure of physician preference, ranging from 1/𝐾 (equal

usage of all treatments) to 1 (exclusive use of one treatment), calculated from each physician’s previous prescrip-

tions. We assess instrument strength through F-statistics and partial 𝑅2 values, while evaluating exclusion restriction

assumptions via covariate balance tests. The estimation procedure involves fitting a multinomial logistic regression

model, as detailed in Algorithm 1 (lines 2-8). Parameters 𝛼 are estimated via maximum likelihood with uncertainty

quantified through bootstrapped standard errors, generating predicted probabilities 𝑇𝑖 of vasopressor choice as inputs

to the second stage. 𝑇𝑖 of vasopressor choice serve as inputs to the second-stage model.

In the second stage, we implement a neural network with Spike-and-Slab priors, identified as the optimal tech-

nique for feature selection, to predict binary 28-day mortality. The Spike-and-Slab approach estimates posterior

inclusion probabilities (𝜋 𝑗) and their uncertainties through MCMC sampling, retaining features with high inclusion

probability (𝜋 𝑗 > 0.5). For Bayesian LASSO, we assess convergence through Gelman-Rubin statistics (𝑅) and

effective sample sizes, with posterior distributions of the global shrinkage parameter 𝜏 and regression coefficients

providing uncertainty quantification. The selected features train the final neural network model, which optimizes the

binary cross-entropy loss function. Model parameters are tuned using the Keras Tuner framework to identify

optimal hyperparameters, including optimizer choice. Treatment effect inference combines uncertainties from both

stages. The average treatment effect (ATE) between treatments 𝑘1 and 𝑘2 is computed as:

ATE𝑘1,𝑘2 =
1

𝑁

∑︁
𝑖 = 1𝑁 [𝑝(𝑌𝑖 = 1 | 𝑇𝑖 = 𝑘1, 𝑋𝑖 , 𝜃) − 𝑝(𝑌𝑖 = 1 | 𝑇𝑖 = 𝑘2, 𝑋𝑖 , 𝜃)] ,

where posterior predictive distributions incorporate parameter uncertainty from both treatment and outcome models.

ATEs are reported with 95% confidence intervals derived from these posterior distributions.

Model validation includes performance evaluation through standard binary classification metrics (accuracy, pre-

cision, recall, F1-score, AUC-ROC), cross-validation for assessing generalizability and mitigating overfitting, sensi-

tivity analyses for assumption violations, and diagnostic checks of posterior distributions and MCMC convergence.

Additional validation metrics include precision-recall curves, calibration plots for probability estimates, and resid-

ual diagnostics for the treatment model, ensuring robust uncertainty quantification while maintaining computational

feasibility.
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Algorithm 2 Two-Stage Estimation Procedure

1: Input: Data {(𝑌𝑖 , 𝑇𝑖 , 𝑋𝑖 , 𝑍𝑖)}𝑁𝑖=1
2: Stage 1: Instrumental Variable Estimation
3: Compute physician preference scores:
4: HHI 𝑗 =

∑𝐾
𝑘=1 𝑠

2
𝑗𝑘

⊲ 𝑠 𝑗𝑘 = proportion of vasopressor 𝑘 prescribed by physician 𝑗
5: Model vasopressor choice:
6: 𝑇𝑖 = 𝛼0 + 𝛼1HHI 𝑗 (𝑖) + 𝛼2𝑋𝑖 + 𝜖𝑖
7: Estimate parameters 𝛼 = (𝛼0, 𝛼1, 𝛼2)
8: Generate predicted treatments:
9: 𝑇𝑖 = MultinomialLogit(𝛼0 + 𝛼1HHI 𝑗 (𝑖) + 𝛼2𝑋𝑖)

10: Stage 2: Neural Network with Spike-and-Slab Priors ⊲ Spike-and-Slab prior is used as the optimal method
for feature selection

11: Initialize network weights 𝜃 (0) , inclusion probabilities 𝜋 (0)

12: for 𝑡 = 1 to 𝑇 do
13: Sample weights 𝜃 (𝑡 ) ∼ 𝑝(𝜃 | 𝑌,𝑇, 𝑋, 𝜋 (𝑡−1) ) using NUTS
14: For each weight 𝜃 𝑗 :
15: Update inclusion probability 𝜋 (𝑡 )

𝑗
∼ 𝑝(𝜋 𝑗 | 𝜃 (𝑡 )𝑗 )

16: end for
17: Compute feature importance scores and select features with high importance:

Feature Importance 𝑗 =
1
𝑇

∑𝑇
𝑡=1 |𝜃

(𝑡 )
𝑗
| × 𝜋 (𝑡 )

𝑗
→ 𝑋selected

18: Fit a neural network using 𝑋selected to predict the binary mortality outcome
19: Average the predicted outcomes for each counterfactual treatment assignment
20: Compare the 3 treatments’ effectiveness through pairwise ATE differences and 95% CI

Model Convergence and Diagnostics Discussed

To ensure the reliability of our estimates, we conduct comprehensive convergence diagnostics and model vali-

dation. We examine trace plots of the sampled parameters to assess mixing and convergence of the Markov Chain

Monte Carlo (MCMC) chains, calculating the Gelman-Rubin diagnostic statistic 𝑅 for all parameters; values close

to 1 indicate convergence across chains [27, 28]. The effective sample size (ESS) for each parameter is computed to

evaluate the efficiency of the sampling process, with sufficiently large ESS values indicating that the posterior sam-

ples adequately represent the true posterior distribution. Further assessment of convergence is performed through

detailed evaluation of posterior distributions and trace plots to ensure stability and consistency across all chains.

During neural network training, validation accuracy is monitored to prevent overfitting, ensuring that the model

generalizes well to unseen data. After training, threshold tuning is conducted to balance precision, recall, and

accuracy, optimizing model performance. To evaluate the final predictive accuracy of the model, we assess precision,

recall, accuracy, and the area under the receiver operating characteristic curve (AUC-ROC). Additionally, precision-

recall and accuracy curves are plotted to perform threshold analysis and further validate the model’s performance.

Sensitivity analyses are typically performed by varying hyperparameters such as 𝜏2, 𝑎0, and 𝑏0 in the Spike-and-

Slab priors to assess the robustness of the results and ensure that conclusions are not unduly influenced by specific

prior choices. However, due to the computationally intensive nature and long runtime of the Spike-and-Slab model,

sensitivity analysis was not conducted in this study. To mitigate overfitting, Spike-and-Slab priors and dropout

regularization were employed in the neural network. Training and validation loss were closely monitored during

model fitting to detect potential overfitting. Furthermore, comprehensive convergence diagnostics and validation

techniques [29] were implemented to ensure that the Bayesian neural network provides reliable and valid estimates
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for causal inference and variable selection in the context of vasopressor effectiveness.

Result

Numerical Studies To evaluate our methodology, we conducted extensive simulation studies mirroring real-

world observational data with multiple treatment options. The simulation framework incorporates unmeasured

confounding, a valid instrumental variable, and high-dimensional covariates. For each simulation, we generated

datasets with 10,000 observations. The covariates 𝑋 ∈ R100 were drawn from a multivariate normal distribu-

tion with zero mean and identity covariance matrix. Two unmeasured confounders (𝑈1,𝑈2) ∼ N (0, 1) were

introduced to influence both treatment selection and outcomes. The instrumental variable was constructed as

𝑍 = 0.2𝑈1 + 0.2𝑈2 + 𝜖, 𝜖 ∼ N(0, 1).
Treatment assignment followed an ordered logit model with six levels: 𝑇∗ = 1.5𝑍 + 0.4(𝑈1 + 𝑈2) + 0.3(𝑋1 +

𝑋2) + 𝜂, 𝜂 ∼ N(0, 0.5), where final treatment 𝑇 ∈ 1, . . . , 6 was determined by threshold crossings of 𝑇∗. The binary

outcome 𝑌 was generated through a logistic model:

logit(𝑃(𝑌 = 1)) = −0.5 +
6∑︁
𝑗=2

𝛽 𝑗I(𝑇 = 𝑗) + 0.3(𝑈1 +𝑈2) + 0.1𝑈1𝑇 +
10∑︁
𝑘=1

𝛾𝑘𝑋𝑘

where self-defined 𝛽 𝑗 = (0.5, 1.5,−3.0, 2.0, 3.5) represents heterogeneous treatment effects, and self-defined 𝛾𝑘 rep-

resents the effects of the first ten covariates. The remaining covariates were included in the dataset but did not directly

influence treatment or outcome, allowing evaluation of feature selection methods. The simulation design satisfies

instrumental variable assumptions while maintaining realistic complexity. The instrument demonstrated adequate

strength (first-stage F-statistic > 10) and appropriate exclusion restriction through its data-generating mechanism.

The inclusion of both measured and unmeasured confounding, along with heterogeneous treatment effects, provides

a rigorous test of our methodology’s ability to recover causal effects in challenging scenarios. All continuous vari-

ables were standardized to zero mean and unit variance to ensure stable model optimization. Since the simulated

data contained no missing values, no imputation was required.

Feature Selection

Spike-and-Slab To evaluate the convergence of the spike-and-slab model applied to the simulated dataset, we

monitored the posterior distributions and trace plots of the key parameters, 𝜋 and 𝜏, as shown in Figure 1. The

parameter 𝜋 displayed strong evidence of convergence and well-mixed behavior across the four Markov chains.

The trace plot for 𝜋 shows no discernible trends, with the chains exhibiting proper mixing and stable oscillations

around a consistent range of values. Furthermore, the posterior distributions of 𝜋 align closely across all chains,

indicating that the sampling process achieved reasonable acceptance probabilities. This behavior is supported by the

Gelman-Rubin statistic 𝑅 of 1.01, which is well below the threshold of 1.1, confirming that 𝜋 converged successfully.

On the other hand, the parameter 𝜏 demonstrated moderate convergence issues. The posterior distributions

for 𝜏 exhibited visible misalignment across the four chains, and the trace plot revealed sustained trends with less

mixing. The trajectories of the chains suggest potential issues with high acceptance probabilities, as reflected in the

relatively smooth trace paths without sufficient exploration of the parameter space. While 𝑅𝜏 was 1.28, which is an

improvement compared to the real-world analysis, it remains above the ideal threshold. These findings highlight that

the estimation of 𝜏 remains computationally challenging, even in a controlled simulated setting, due to its sensitivity

9

 . CC-BY 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 20, 2024. ; https://doi.org/10.1101/2024.12.19.24319363doi: medRxiv preprint 

https://doi.org/10.1101/2024.12.19.24319363
http://creativecommons.org/licenses/by/4.0/


to variability in the slab component. Despite this, the runtime for posterior sampling was approximately 3 hours

using 4-core parallelization, demonstrating the model’s computational feasibility for moderately sized datasets.

(a) Posterior Distribution and Trace Plot of 𝜋 (b) Posterior Distribution and Trace Plot of 𝜏

Figure 1: Posterior distributions and trace plots for spike-and-slab parameters 𝜋 and 𝜏 on the simulated dataset.

Given the moderate convergence issues observed in the parameter 𝜏, we identified high variability in estimat-

ing the spread of significant weights, which poses challenges in determining the optimal feature set. Fine-tuning

the Spike-and-Slab hyperparameters was deemed unfeasible due to computational burden discussed before. Conse-

quently, we conducted a feature importance threshold analysis to investigate the relationship between the number

of features selected by Spike-and-Slab and the accuracy of the resulting neural network model. This analysis aims

to assess whether Spike-and-Slab effectively truncates noise in the dataset and identifies truly important features.

Specifically, we hypothesize that reducing the feature set by removing less important features could maintain or

even improve model accuracy, reflecting the robustness of the Spike-and-Slab feature selection in isolating informa-

tive predictors.

Figure 2 presents the relationship between feature importance thresholds and model accuracy. To evaluate the

effectiveness of spike-and-slab feature selection, a series of neural network models were trained using features

selected at varying percentiles of importance scores derived from the spike-and-slab posterior inclusion probabilities.

The accuracy peaked when the bottom 15% of features were removed, meaning that the top 85% of features were

retained, achieving an accuracy of 0.772. This result indicates that a large proportion of features contributed to

the model’s predictive performance, and removing the least informative 15% improved accuracy while avoiding

excessive sparsity.

Figure 2: Best accuracy vs. percentiles of feature importance using spike-and-slab feature selection for the simulated dataset.
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Including additional features beyond the top 85% threshold resulted in a sharp decline in accuracy, which can be

attributed to the introduction of irrelevant or noisy predictors. The spike-and-slab model demonstrated its capability

to perform robust feature selection under a Bayesian framework, effectively identifying informative features while

discarding those with negligible contributions. While the parameter 𝜋 achieved excellent convergence, the moderate

convergence issues with 𝜏 highlight the challenges associated with its estimation. By removing the bottom 15%

of features and retaining the top 85%, the model achieved a peak accuracy of 0.772. These results emphasize

the effectiveness of spike-and-slab priors in improving predictive performance by optimizing feature selection and

filtering out less informative predictors.

Bayesian LASSO The Bayesian LASSO demonstrated robust convergence and feature selection capabilities in

our simulation study. The model achieved stable convergence across all parameters, with Gelman-Rubin statistics

(𝑅) ranging from 1.000 to 1.006 for coefficient estimates. The global shrinkage parameter 𝜏 showed particularly

strong convergence (𝑅 = 1.002), with high effective sample sizes (ESS bulk = 4623.0, ESS tail = 2781.0) indicating

efficient posterior sampling. The posterior estimates demonstrated strong concentration, with 𝜏 estimated at 0.168

(97% HDI: [0.145, 0.192]) and intercept at 0.257 (97% HDI: [0.205, 0.308]), supported by high effective sample

sizes (ESS bulk = 7133.0 for intercept) suggesting reliable posterior inference.

From the complete feature set (𝑝 = 112), the Bayesian LASSO identified 84 relevant predictors using the 75th

percentile threshold criterion. The trace plots (Figure 3) exhibit stable mixing behavior across chains, with smooth

posterior densities indicating proper convergence, while maintaining computational efficiency through parallel chain

implementation. This pattern suggests a natural sparsity in the feature space, validating the LASSO’s selective

shrinkage properties.

Figure 3: MCMC diagnostic plots for the simulation data, Bayesian LASSO model. A. Trace plots for model parameters (𝜏 and intercept)
showing mixing behavior across two chains. Left panels show smoothed posterior densities; right panels show detailed sampling trajectories
over iterations. B. Forest plot and Posterior distributions.

Standard LASSO was applied to the simulated dataset to perform feature selection using 𝐿1-regularization with

𝜆 = 1 × 10−3. The 𝐿1 penalty effectively enforces sparsity by shrinking less important feature weights to zero. In

this analysis, LASSO successfully shrank 2,297 out of 25,088 weights to zero, demonstrating its ability to impose

sparsity at the weight level. However, no input features were completely removed, as all 112 features retained non-

zero weights. This result indicates that while LASSO reduces the influence of less important features, it does not

entirely eliminate any predictors in this simulated setting.

The feature importance scores, calculated as the sum of absolute weights for each feature, are illustrated in

Figure 4. The feature importance distribution highlights that certain features exhibit dominant scores, contributing
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substantially to the model’s predictive performance, while a majority of features maintain relatively small importance

values. This behavior underscores LASSO’s ability to prioritize a subset of key predictors while retaining all features.

The standard LASSO model achieved a test accuracy of 0.767. While this result is competitive, it was slightly

inferior to both the Bayesian LASSO model (0.771) and the spike-and-slab method (0.771). The marginal perfor-

mance gap between LASSO and the Bayesian approaches reflects the limitations of LASSO’s deterministic frame-

work, which does not account for model uncertainty or posterior distributions of the weights. In contrast, Bayesian

methods can quantify uncertainty, providing a more robust framework for feature selection and predictive modeling.

These findings demonstrate the effectiveness of the 𝐿1-regularization penalty in promoting sparsity and model

interpretability, even in simulated datasets. However, the superior performance of Bayesian LASSO and spike-

and-slab highlights the advantages of probabilistic approaches in achieving optimal feature selection and improved

predictive performance.

Figure 4: Feature importance after LASSO regularization, showing the sum of absolute weights for each input feature in the simulated dataset.

Bias

Our comprehensive bias analysis across 15 treatment pair comparisons, as illustrated in Figure 5, reveals consis-

tently controlled bias across all estimation methods. The Spike-and-Slab method demonstrated marginally superior

performance with the lowest mean absolute bias (MAB: 0.071), followed closely by ALL (MAB: 0.074), LASSO

(MAB: 0.080), and BayesLASSO (MAB: 0.083). The visualization of bias estimates and their corresponding con-

fidence intervals reveals systematic patterns across treatment comparisons, with larger biases typically observed in

comparisons involving Treatment 1 (particularly T1 vs T5 and T1 vs T3). Notably, most bias estimates fall within

±0.2, with substantial overlap in confidence intervals across methods, suggesting that all approaches provide statis-

tically comparable performance. The Spike-and-Slab method’s estimates consistently cluster closer to the zero-bias

reference line. These findings indicate that while all methods achieve satisfactory bias control, the Spike-and-Slab

method offers a modest but consistent advantage in estimation accuracy, particularly for certain treatment pair com-

binations.

Real-World Data Application

Study Population and Sample Selection

We analyzed data from the MIMIC-IV critical care database (N = 23,487), employing a multi-stage sampling

framework to identify eligible patients who received vasopressor therapy during ICU admission between 2008-

2019. The sampling frame comprised adult ICU admissions with documented administration of norepinephrine,
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Figure 5: Enter Caption

vasopressin, or phenylephrine. Sequential exclusion criteria were applied: age < 18 years, ICU length of stay < 24

hours, invalid vasopressor records, missing outcome data, and incomplete baseline covariates, yielding a final ana-

lytic cohort of 23,487 patients. Variable extraction followed a standardized protocol encompassing three domains:

(1) high-frequency physiologic measurements (heart rate, blood pressure components, respiratory parameters, oxy-

gen saturation) recorded at hourly intervals; (2) laboratory values (metabolic, renal, and hematologic parameters);

and (3) demographic and clinical characteristics. Time-varying measurements were summarized using sufficient

statistics (mean, extrema) over the initial 24-hour period. Laboratory trajectories were characterized through first

and last measurements and temporal derivatives. Physiologic variables underwent range validation using established

clinical thresholds, with outliers truncated at domain-specific bounds. Data preprocessing employed standardization

for continuous variables (𝜇 = 0, 𝜎 = 1) and one-hot encoding for categorical variables to ensure scale invariance and

avoid ordinal assumptions. Missing data analysis revealed 79.7% variables with missingness, with 69.84% of those

showing < 3% missing values. A subset of hemodynamic and laboratory parameters exhibited higher missingness

(maximum 35.75%). Simple imputation methods (mean for continuous, mode for categorical) were implemented

given the low overall missingness (6.61%) and robustness of downstream feature selection procedures to imputation

uncertainty. The instrumental variable construction utilized physician prescribing patterns, quantified through the

Herfindahl-Hirschman Index (HHI). Inclusion required minimum prescription volume (≥ 10 patients) to ensure sta-

ble preference estimation, yielding 426 eligible physicians. The HHI provided a continuous measure of prescribing

concentration (range: [0.33,1.0]), where 0.33 indicates equal distribution and 1.0 indicates exclusive use. Primary

outcomes included 28-day mortality (binary) and hospital-free days (ordinal: [0,28]), with ICU length of stay as a

secondary endpoint.
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Covariate and Outcome Measurement

The measurement framework captured extensive patient-level data across multiple domains. Demographics

encompassed standard variables (age, gender, race) and healthcare system factors (insurance status, admission char-

acteristics). Clinical parameters were systematically extracted at high temporal resolution (hourly) during the initial

24 hours post-ICU admission. Cardiovascular monitoring included heart rate and multi-component blood pressure

measurements (systolic, diastolic, mean arterial). Respiratory function was assessed through respiratory rate and

oxygen saturation. Laboratory measurements comprised metabolic (lactate, glucose), renal (creatinine), electrolyte

(potassium, sodium), and hematologic (hemoglobin, leukocytes) parameters. Each laboratory value generated six

summary statistics: initial and final measurements, extrema, mean, and temporal gradient. Statistical preprocessing

included removal of physiologically implausible values (< 0.1th or > 99.9th percentile) to minimize measurement

error impact. Outcome ascertainment utilized multiple data sources. The primary outcome (28-day mortality) was

determined through discharge disposition and hospital mortality flags. Secondary outcomes were algorithmically de-

rived: hospital-free days (28 minus length of stay, truncated at zero for non-survivors) and length of stay (calculated

from admission/discharge timestamps). The instrumental variable construction utilized unique physician identifiers

linked to vasopressor orders. Prescribing preference metrics included total prescription volume, primary vasopressor

choice, and two concentration measures: the HHI and a simplified concentration ratio. Additional data validation

steps included temporal logic checks (e.g., administration end times posterior to start times) to ensure measurement

integrity.

Feature Selection

Spike-and-Slab Convergence diagnostics for the real-world dataset revealed distinct behaviors for the parameters

𝜋 and 𝜏. As shown in Figure 6, the posterior distribution and trace plots of 𝜋 demonstrated strong convergence,

characterized by stable mixing across chains and a Gelman-Rubin statistic 𝑅 of 1.02. This indicates that 𝜋 achieved

proper mixing and convergence to a consistent region of values. In contrast, the parameter 𝜏 exhibited significant

convergence challenges. The posterior distributions of 𝜏 displayed discrepancies across chains, and the trace plots

revealed poor mixing with sustained trends, reflecting instability in parameter estimation. The Gelman-Rubin statis-

tic for 𝜏 was 1.73, underscoring the difficulty in achieving convergence due to the high variability associated with the

variance parameter. These findings suggest that the model struggles to differentiate between small but meaningful

features and random noise when applied to real-world data. Additionally, the computational burden of spike-and-

slab sampling was substantial, with each iteration requiring approximately 28 hours without parallelization and 7–8

hours using 4-core parallelization, making fine-tuning of 𝜏 computationally infeasible.

(a) Posterior Distribution and Trace Plot of 𝜋 (b) Posterior Distribution and Trace Plot of 𝜏

Figure 6: Posterior distributions and trace plots for 𝜋 and 𝜏 showing convergence for 𝜋 and poor mixing for 𝜏.

Similar to the simulation framework, these convergence challenges necessitated a feature importance threshold

analysis. This analysis seeks to examine the relationship between the number of selected features and model accuracy

and assess whether the spike-and-slab model effectively filters noise while retaining truly informative predictors. By
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exploring the predictive performance of models trained with varying thresholds of selected features, we aim to

determine whether reducing the feature set improves accuracy by removing irrelevant variables.

Figure 7: Best accuracy vs. percentiles of feature importance, showing the highest accuracy achieved with the top 75% of features.

To evaluate the optimal threshold for feature selection, a neural network was trained for each possible percentile

from 0 to 100, with 0 percentile using only treatment probabilities as input features and 100 percentile including all

features selected by spike-and-slab. The purpose of this analysis was to demonstrate the ability of spike-and-slab

to filter out non-informative features and noise. By reducing the number of input features, the neural network was

able to achieve improved prediction results. As shown in Figure 7, the highest accuracy (0.822) was achieved when

using the top 75% of features ranked by spike-and-slab. This result highlights the effectiveness of the spike-and-

slab method in identifying informative predictors while excluding noise, enabling the neural network to yield better

predictions with fewer input features.

The mechanism for deriving feature importance involved extracting posterior samples of weights and inclusion

probabilities, averaging over hidden units and samples to compute scores. Features were ranked based on these

scores, and the top 75% were selected after excluding redundant or irrelevant predictors. The selected features were

used in downstream modeling to optimize predictive performance.

Computational and Convergence Challenges Building on these methodological considerations, a key challenge

lies in the computational burden of the Spike-and-Slab method, which requires several hours per iteration even

with parallelization, limiting its scalability for larger datasets. The computational inefficiency of the Spike-and-Slab

method can be attributed to the centered parameterization of the variance parameter 𝜏, where 𝜃 ∼ N(0, 𝜏2) and 𝜏

follows a half-Cauchy distribution. This parameterization creates a posterior geometry known as Neal’s funnel[30].

The geometry is characterized by a narrow region near the origin, corresponding to small values of 𝜏, and a wider

region for larger values. This funnel restricts the movement of MCMC steps, making it difficult for the sampler

to efficiently explore the posterior distribution. Specifically, the funnel geometry arises due to the strong coupling

between the scale parameter 𝜏 and the weights 𝜃, where small values of 𝜏 compress the posterior distribution into

a narrow region, and large values of 𝜏 allow for wider exploration. This creates a highly anisotropic posterior,

with steep gradients near the origin and flat gradients in the outer regions. Thereby, MCMC samplers, particularly

gradient-based algorithms like the No-U-Turn Sampler (NUTS), struggle to traverse these regions efficiently. The

steep gradients require very small step sizes to navigate, slowing the sampling process, while the flat gradients in

the outer regions lead to poor exploration of the parameter space. This inefficiency not only prolongs computation
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but also results in poor mixing and limited exploration of the posterior, thereby affecting the accuracy and reliability

of the parameter estimates. The funnel structure ultimately makes the posterior difficult to sample from, especially

when the data strongly inform the weights 𝜃 but provide weak information about the variance parameter 𝜏, further

exacerbating the challenges in convergence and computational burden. Consequently, the sampling process suffers

from high variability and poor mixing, which not only slows computational performance but also contributes to the

convergence issues observed for 𝜏. Specifically, the inability to adequately explore the posterior space exacerbates

the instability in estimating the spread of significant weights, further highlighting the challenges in distinguishing

between small but relevant features and random noise.

To address this issue, non-centered parameterization offers a promising solution by redefining 𝜃 in terms of a

standard normal variable 𝑧 ∼ N(0, 1) such that 𝜃 = 𝜏 · 𝑧. This transformation decouples the dependence between

𝜃 and 𝜏, effectively removing the funnel-shaped posterior geometry and simplifying the sampling process. By en-

abling more uniform exploration of the parameter space, non-centered parameterization improves the efficiency and

stability of MCMC algorithms, reducing the runtime and enhancing the convergence of 𝜏. Applying this adjustment

in future implementations of the Spike-and-Slab method could not only mitigate computational inefficiencies but

also improve the reliability of parameter estimates, making the method more robust and scalable for larger datasets

[31].

Bayesian LASSO The Bayesian LASSO implementation utilized Hamiltonian Monte Carlo sampling with the No-

U-Turn Sampler, employing 2 parallel chains with 2,000 post-warm-up draws each. The model demonstrated robust

convergence across all parameters, with Gelman-Rubin statistics (𝑅) ranging from 1.000 to 1.003, substantially be-

low the conventional threshold of 1.1. The global shrinkage parameter 𝜏 exhibited particularly strong convergence

(𝑅 = 1.000), with posterior mean 0.711 (97% HDI: [0.603, 0.820]) and high sampling efficiency (ESS bulk = 2933.0,

ESS tail = 2893.0). The model intercept showed similar stability (ESS bulk = 6257.0, posterior mean -2.720, 97%

HDI: [-2.958, -2.478]). The trace plots (Figure 8) demonstrate excellent mixing behavior and rapid convergence.

The left panels reveal symmetric, well-formed posterior densities for both 𝜏 and the intercept, indicating proper

posterior exploration. The right panels show stable trajectories without persistent trends or anomalous patterns, with

the two chains exhibiting appropriate overlap and stationary behavior throughout the sampling period. The smooth

transitions between states and consistent exploration of the posterior space support the validity of our sampling

approach. From 120 initial predictors, the model identified 90 features exceeding the 75th percentile importance

threshold. The posterior estimates revealed a clear separation in feature importance, with the three most influential

predictors demonstrating substantial standardized effects: Feature 5 (-4.876, importance score 28.684), Feature 3

(3.777, importance score 24.924), and Feature 4 (-2.177, importance score 21.136). The marked decline in coeffi-

cient magnitudes beyond these top predictors (next largest —coefficient— = 0.413) suggests natural sparsity in the

feature space, validating the selective shrinkage properties of the Bayesian LASSO framework. The computational

demands were considerable (runtime: 11 hours 16 minutes) due to the large sample size (N > 23,000), but the ex-

cellent convergence diagnostics and low Monte Carlo standard errors (all MCSE < 0.002) justify this investment for

ensuring reliable posterior inference.

Standard LASSO In the real-world dataset analysis, the LASSO method successfully shrank 14,454 out of 14,976

weights to zero, resulting in the removal of 34 out of 117 input features. This corresponds to retaining approximately

70.94% of the original features, demonstrating LASSO’s ability to enforce sparsity not only at the weight level but

also at the feature level, in contrast to the simulated results where no features were removed. The feature importance
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Figure 8: MCMC diagnostic plots for the Bayesian LASSO model. Trace plots for model parameters (𝜏 and intercept) showing mixing
behavior across two chains. Left panels show smoothed posterior densities; right panels show detailed sampling trajectories over iterations.

scores, shown in Figure 9, reveal that a small subset of features dominated the predictive performance, with the

remaining features exhibiting low importance. This result highlights LASSO’s effectiveness in discarding negligible

predictors while retaining the most informative ones.

The standard LASSO model achieved a test accuracy of 0.8074, which, while competitive, was slightly inferior

to the Bayesian LASSO (0.823) and spike-and-slab (0.822) methods. The observed performance gap underscores

LASSO’s limitations in capturing model uncertainty, which is a notable advantage of Bayesian frameworks.

These findings reinforce the utility of 𝐿1-regularization for enforcing sparsity and simplifying models, particu-

larly in real-world datasets with more variability and noise compared to simulated data.

Figure 9: Feature importance after LASSO regularization in the real-world dataset.

Model output

Table 1 provides a comprehensive comparative analysis of performance metrics for the four methods—Spike-

and-Slab, Bayesian LASSO, LASSO, and All Features (inclusion of all features without selection techniques)—highlighting

their relative effectiveness in predictive modeling. The All Features method achieves the highest precision (78.20%),

indicating strong performance in minimizing false positives. However, its recall (39.33%) is relatively moderate

compared to Spike (44.96%), which demonstrates the highest recall among the methods. The Spike model also
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achieves the highest F1-score (55.46%), reflecting its ability to balance precision and recall effectively. Bayesian

LASSO shows competitive performance, achieving strong precision (75.93%) and a moderate recall (40.67%), while

LASSO demonstrates the weakest performance in recall (32.52%) and F1-score (45.33%).

The AUC metric, which measures the overall discriminative ability of the models, is highest for All Features

(86.17%), closely followed by Bayesian LASSO (85.57%) and Spike (85.31%). While the All Features method

excels in AUC and precision, the inclusion of all features introduces noise that diminishes the interpretability and

robustness of the model, as indicated by its lower F1-score. In contrast, the Spike model’s competitive AUC and

superior F1-score make it a robust alternative that balances predictive performance and feature selection.

Table 1: Performance Metrics and Pairwise Percentage Improvements Across Methods

Performance Metrics

Method Precision (%) Recall (%) F1 (%) AUC (%)

SPIKE 72.35 44.96 55.46 85.31
Bayesian LASSO 75.93 40.67 52.97 85.57
LASSO 74.79 32.52 45.33 83.16
All Features 78.20 39.33 52.34 86.17

Pairwise Percentage Improvements

Comparison Precision (%) Recall (%) F1 (%) AUC (%)

SPIKE vs LASSO -3.26 38.33 22.38 2.58
Bayesian LASSO vs LASSO 1.52 24.98 16.27 2.90
SPIKE vs Bayesian LASSO -4.72 10.58 4.70 -0.30
SPIKE vs All Features -7.46 14.30 6.00 -1.00

The pairwise comparisons highlight the performance trade-offs between the methods. When comparing Spike-

and-Slab to LASSO, the Spike-and-Slab model exhibits a substantial improvement in recall (38.33%) and F1-score

(22.38%), underscoring its ability to identify true positives effectively. However, this improvement comes with a

minor trade-off in precision (-3.27%). Similarly, Bayesian LASSO shows notable improvements over LASSO, with

a 24.98% increase in recall and a 16.27% improvement in F1-score, while achieving a modest gain in precision

(1.52%).

A comparison between Spike-and-Slab and Bayesian LASSO reveals that Spike-and-Slab outperforms Bayesian

LASSO in recall (10.58%) and F1-score (4.70%), emphasizing its effectiveness in identifying true positives. Despite

a slight reduction in precision (-4.72%), the Spike-and-Slab model’s superior recall and F1-score demonstrate its

ability to minimize false negatives without significantly compromising precision. Compared to the All Features

method, Spike achieves a 14.30% improvement in recall and a 6.00% increase in F1-score, further underscoring its

robust performance. However, Spike-and-Slab trails behind All Features in precision (-7.46%) and AUC (-1.00%),

indicating that the All Features method may excel in scenarios prioritizing false positive minimization.

Among the methods, the Spike-and-Slab model emerges as the best overall performer, achieving the highest

F1-score and recall, which are critical metrics for balanced classification tasks. While including all features achieves

the highest precision and AUC, its lower recall highlights its susceptibility to false negatives, limiting its utility in

scenarios where recall is vital. Bayesian LASSO provides a competitive alternative with balanced improvements

over LASSO but does not surpass Spike in overall performance. The Spike model’s ability to combine effective

feature selection with superior recall and F1-score underscores its robustness in optimizing predictions. These
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results highlight Spike and Slab feature selection as the most effective and balanced method for real-world data

analysis, ensuring accurate and interpretable outcomes.

Clinical Significance

Our comparative effectiveness analysis employed multiple feature selection approaches within a causal infer-

ence framework to evaluate treatment effects, with all methods revealing significant differences between vasopres-

sors (Figure 10). The Spike-and-Slab and LASSO methods demonstrated comparable precision in effect estimates,

with LASSO offering computational advantages while maintaining similar confidence interval widths, particularly in

the vasopressin versus phenylephrine comparison (Figure 10A). Across all methodological approaches, vasopressin

consistently demonstrated superior effectiveness compared to both alternative agents, supporting strong causal in-

ference regarding treatment effects. Our optimal, Spike-and-Slab estimates indicated that vasopressin treatment was

associated with significantly better outcomes compared to norepinephrine (ATE = 0.134, 95% CI [0.120, 0.152],

p < 0.001) and phenylephrine (ATE = 0.173, 95% CI [0.156, 0.191], p < 0.001). The magnitude of these causal

effects remained remarkably stable across different feature selection methods, with mean estimates varying by less

than 0.01 between methods, strengthening causal interpretations of our findings. Phenylephrine consistently showed

inferior outcomes compared to norepinephrine across all analyses, with the LASSO estimating this causal effect

at ATE = -0.040 (95% CI [-0.048, -0.031], p < 0.001). This finding was particularly notable for its consistency

across methods, with all approaches yielding similar point estimates and overlapping confidence intervals, support-

ing robust causal inference (Figure 10A). The comparative analysis revealed a clear hierarchical pattern in treatment

effectiveness (Figure 10B). Vasopressin emerged as the most effective agent, with estimates suggesting an absolute

risk reduction of approximately 13-17 percentage points compared to alternative agents. These findings represent

clinically meaningful treatment effects that remain consistent across multiple analytical approaches, strengthening

their validity for clinical decision-making.

(a) Method Comparison (b) Treatment Effect Analysis (c) Effect Pattern Visualization

Figure 10: Comparative analysis of vasopressor treatment effects using different feature selection methods. This figure presents a compre-
hensive evaluation of treatment effectiveness across multiple analytical approaches. (a) Bar plot comparing average treatment effects (ATEs)
across four feature selection methods (ALL, LASSO, spike-and-slab, and Bayesian LASSO), demonstrating consistency in effect direction
and magnitude across methodological approaches. (b) Forest plot displaying pairwise ATEs with 95% confidence intervals for each fea-
ture selection method, where positive values indicate superior effectiveness of the second listed treatment. The vertical dashed line at zero
represents no treatment difference, with points to the right indicating better outcomes for the comparator treatment. (c) Heatmap visualiza-
tion derived from the spike-and-slab model (best performing method) showing the pattern of treatment effects, where blue indicates better
outcomes (lower mortality) and red indicates worse outcomes (higher mortality). The color intensity corresponds to the magnitude of the
treatment effect difference.
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Discussion

Recent studies indicate substantial variation in mortality rates (15-60%) among shock patients receiving vaso-

pressors [32, 33], underscoring the critical need for more sophisticated treatment selection methods. This variation

reflects three key challenges in vasopressor research: identifying clinically meaningful predictors from hundreds

of variables [34], capturing nonlinear treatment effect heterogeneity across patient subgroups [35], and addressing

confounding by indication where both treatment assignment and outcomes are influenced by unmeasured severity

indicators [36].

Our large-scale observational study provides important causal insights into these challenges through several

methodological innovations. By implementing Bayesian spike and slab priors within a causal inference framework,

we achieved optimal bias control while enabling more robust feature selection to identify key effect modifiers.

The Bayesian neural network framework captures complex nonlinear relationships while quantifying prediction

uncertainty. Notably, while the Spike-and-Slab method demonstrated superior bias control, the LASSO approach

provided comparable accuracy with enhanced computational efficiency, offering a practical alternative for large-scale

analyses.

These methodological advances yielded important clinical insights. The superior performance of vasopressin

aligns with foundational experimental work by Minneci (2004), who demonstrated beneficial effects of both vaso-

pressin and norepinephrine in septic shock models [37]. Our results extend these findings to establish causal rela-

tionships in a real-world clinical population, showing that vasopressin’s advantages persist across a heterogeneous

patient population (ATE = 0.134 vs norepinephrine, p < 0.001).

The significant inferiority of phenylephrine compared to norepinephrine (ATE = -0.040, p < 0.001) corresponds

with findings from Wang (2018) [38]. Our causal inference framework strengthens these previous associations by

establishing clearer evidence of direct treatment effects. The consistency of these effects across multiple analytical

methods particularly reinforces the robustness of our causal conclusions. Our causal inference analysis provides

robust statistical evidence supporting the existing clinical framework for vasopressor use in shock, demonstrating that

modern Bayesian and machine learning methods (Spike-and-Slab and LASSO) can effectively quantify treatment

effects that align with established clinical practice recommendations [39].

Our methodological approach offers several strengths in establishing causal relationships. The instrumental vari-

able approach using physician prescribing preferences helps address confounding by indication, while our compari-

son of feature selection methods demonstrates the robustness of our causal estimates. The Spike-and-Slab method’s

superior bias control, coupled with LASSO’s computational efficiency and comparable accuracy, provides a practical

framework for future causal inference studies in critical care. However, our study still limited by several important

features. First, while physician prescribing preferences serve as our instrumental variable, we acknowledge poten-

tial challenges to this approach. Physicians with certain prescribing patterns may systematically treat patients with

different severity levels, potentially compromising the exclusion restriction. Additionally, variations in prescribing

patterns might correlate with other aspects of care delivery, though we attempted to minimize this by adjusting for

physician characteristics and hospital-level factors. Second, our study relies on data from a single center (MIMIC-IV

database from Beth Israel Deaconess Medical Center), which may limit generalizability. While our methodological

framework is broadly applicable across different settings, the specific treatment effects we observed may vary in

institutions with different patient populations, clinical protocols, or prescribing practices. Institutional factors such

as ICU staffing models, hospital protocols, and available resources could influence both treatment selection and

outcomes. Third, despite our sophisticated methodological approach, unmeasured confounding may persist. This is
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particularly relevant in critical care settings, where subtle clinical factors might influence both treatment selection

and outcomes.

Future research should focus on external validation of these causal relationships in multi-center studies and

investigating potential effect modifiers to identify patient subgroups who might particularly benefit from specific

vasopressors. The methodological framework developed here, particularly the efficient LASSO approach, could

be extended to other clinical scenarios requiring robust causal inference with high-dimensional covariates and un-

measured confounding. Prospective trials comparing different timing strategies for vasopressin initiation may be

particularly valuable given our findings regarding its effectiveness. The generalizability of our analytical framework

to other settings represents a key strength - while our specific findings reflect one institution’s experience, the meth-

ods we’ve developed can be readily applied to similar analyses in different healthcare settings, potentially yielding

insights specific to local populations and practice patterns.

Our findings have immediate implications for clinical practice while acknowledging the need for validation in

diverse settings. The robust causal evidence supporting vasopressin’s superiority suggests that current prescribing

patterns may warrant reconsideration, though individual patient factors and local institutional practices should inform

treatment decisions. This methodological framework and implementation code are publicly available (https:

//github.com/Bma0828/BayesianMultiValuedEHR.git), facilitating reproduction and extension of

these analyses.
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