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Abstract  
We present a novel method for routinely identifying disease resilience associations that offers 
powerful insights for the discovery of a new class of disease protective targets. We show how 
this can be used to identify mechanisms in the background of normal cellular biology that work 
to slow or stop progression of complex, chronic diseases.  

Actively protective combinatorial analysis identifies combinations of features that contribute to 
reducing risk of disease in individuals who remain healthy even though their genomic profile 
suggests that they have high risk of developing disease. These protective signatures can 
potentially be used to identify novel drug targets, pharmacogenomic and/or therapeutic mRNA 
opportunities and to better stratify patients by overall disease risk and mechanistic subtype.  

We describe the method and illustrate how it offers increased power for detecting disease-
associated genetic variants relative to traditional methods. We exemplify this by identifying 
individuals who remain healthy despite possessing several disease signatures associated with 
increased risk of myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) or amyotrophic 
lateral sclerosis (ALS). We then identify combinations of SNP-genotypes significantly associated 
with reduced disease prevalence in these high-risk protected cohorts. 

We discuss how actively protective combinatorial analysis generates novel insights into the 
genetic drivers of established disease biology and detects gene-disease associations missed by 
standard statistical approaches such as meta-GWAS. The results support the mechanism of 
action hypotheses identified in our original causative disease analyses. They also illustrate the 
potential for development of precision medicine approaches that can increase healthspan by 
reducing the progression of disease. 
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INTRODUCTION 
Healthcare costs $10 trillion annually, accounting for £283B (11% of GDP) in the UK and $4.5 
trillion (18% of GDP) in the US1,2. These costs are growing at a long-term average of around 2%-
3% per year above GDP3, in large part due to earlier onset of chronic diseases and increased 
prevalence of older patients with multiple chronic conditions, e.g., diabetes, respiratory, 
cardiovascular, dementia etc., that are often difficult to diagnose, expensive to manage and 
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poorly treated. Overall complex chronic diseases account for over 80% of healthcare spending4, 
and these trends are accelerating. At age 65 the cost of delivering healthcare spirals, to an 
average of 5 times the cost of below-65 patients, as the time spent living with one or more 
chronic diseases has increased5. The cohort of over-65s is expected to grow by 35% in the next 
20 years, while the number of over-80s will double in that period in the UK6.  

In short, healthcare as we know it today is becoming unaffordable in all developed and 
developing economies, and new approaches are urgently required to increase healthspan – i.e., 
reducing the average time spent living with one or more chronic diseases. We need to identify 
and mitigate disease risks earlier to prevent progression and reduce the growing burden of 
complex chronic diseases. 

While daunting, there is good precedent for such innovation. In the 25 years since the first 
human genome draft, the landscape of diagnosis, drug discovery and patient care has been 
transformed in oncology & rare diseases. Cancer has changed from a basic organ-centric 
diagnosis with one or two clinical pathways per organ into a palette of molecularly-stratified 
sub-diseases with multi-specialty tumor boards deciding on individual clinical care pathways7. 
These advances in precision diagnosis and care were largely driven by the discovery of disease-
causing variants (often in coding regions of genes) from tumor sequencing and the development 
of precision medicines targeting these specific pathogenic mechanisms. 

Unfortunately, existing genomic analysis approaches have inherent limitations that mean they 
have had much less impact in many chronic diseases8. These highly prevalent and costly 
conditions are usually more heterogenous and polygenic than most cancers, meaning that 
while they have a larger need for precision solutions, the traditional precision medicine toolkit 
of whole genome sequencing, genome wide association studies (GWAS) and polygenic risk 
scores (PRS) doesn’t work as well, or produce as many clinically actionable insights, in these 
diseases9.  

This lack of an obvious genetic component of disease has stymied development of new 
diagnostics and therapeutics in many highly prevalent complex conditions such as 
schizophrenia, endometriosis, ME/CFS and long COVID. However, advances in combinatorial 
analysis techniques are now leading to much deeper understanding of the biology of many of 
these diseases10. 

Identifying Actively Protective Biology to Increase Healthspan 

A key enabler for increasing disease-free healthspan in a rational, evidence led manner is to find 
components of cellular biology that act to resist disease pressures and slow or stop the 
development of a disease phenotype. When supported and/or stimulated, these resilience 
mechanisms could be made to work to prevent disease and/or reduce the severity or 
progression rate of key pathophysiological processes. This is analogous in principle to 
protective mechanisms that are well known in cancers, such as the BRCA1/2 tumor suppressor 
genes, which play key roles in DNA repair and maintenance of genome integrity. Loss of function 
mutations in BRCA1 and BRCA2 remove this protection, which significantly increases the risk of 
developing breast, ovarian or prostate and many other cancers11. 
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In a broader context, most individuals may remain healthy simply because they have been 
exposed to relatively few genetic or environmental factors associated with increased disease 
risk. However, some people remain healthy even though they would be expected to have high 
risk of developing disease based on their genomic profile and life history. Focusing on this high-
risk but nonetheless healthy population (which we will call the ‘protected’ cohort) offers 
opportunities to identify genetic features that may directly contribute to reducing disease risk 
even when there is a high disease pressure. Such actively protective variants may have broad 
protective effects that would apply (at least partially) to most patients.  

We have developed an ‘actively protective’ combinatorial analytical pipeline that first identifies 
a sub-cohort of individuals who have strong genetic susceptibility to developing a disease 
based on the presence of multiple causative combinatorial disease signatures that have been 
observed to be enriched in patient cases relative to healthy controls.  

The pipeline then identifies and validates combinatorial disease signatures that are significantly 
enriched in the protected cohort relative to patients. This protected cohort has a similar 
prevalence of highly predictive disease risk factors as the patients, but its members remain 
healthy. Understanding what makes this protected cohort differ from patients offers uniquely 
enhanced power for identifying features that appear to be actively protective in the face of 
multiple disease risk factors.  

In this paper, we first describe the actively protective combinatorial analysis pipeline. We then 
illustrate the utility of the approach via one hypothetical and two real world examples. The latter 
includes the study design and output of an actively protective analysis that identified 
combinatorial signatures associated with reduced risk of developing myalgic 
encephalomyelitis/chronic fatigue syndrome (ME/CFS). We then provide an overview of two of 
the key genetic associations identified in an actively protective analysis of amyotrophic lateral 
sclerosis (ALS). Together these examples illustrate the power and potential of the actively 
protective framework for generating novel insights into protective disease biology. 

 

MATERIALS AND METHODS 
Our actively protective analysis pipeline comprises four main steps: 

1. Identifying a broad range of causative disease signatures using combinatorial 
analysis 

2. Identifying ‘high-risk’ cohort using the distribution of causative disease signatures in 
study participants (cases and controls) 

3. Selecting a ‘protected’ cohort of high-risk but healthy controls 

4. Identifying disease signatures enriched in the protected cohort relative to similarly 
high-risk patients with the disease 

In a standard causative combinatorial analysis, the PrecisionLife® combinatorial analysis 
platform identifies disease signatures, i.e., combinations of one or more features that are 
significantly enriched in diseased patients relative to healthy controls. These signatures reflect 
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additive effects as well as the higher-order, non-linear gene-gene (GxG) or gene-environment 
(GxE) interactions that typically govern disease biology10,12,13. In the examples illustrated in this 
manuscript, all disease signatures are comprised of SNP-genotypes. However, depending on 
the study design, the signatures could reflect any aspect of disease biology including broader 
‘omics data (e.g., proteomic or epigenetic features or disease-stage) as well as environmental 
or lifestyle-based risk factors. 

The actively protective analysis pipeline uses the disease signatures from a causative 
combinatorial analysis to calculate a baseline risk score for all individuals in a cohort. A risk 
score threshold is then chosen to define a “high-risk” sub-cohort, including both protected 
(healthy) controls and patient (diseased) cases, all of whom have a similarly high level of 
disease risk factors. A second combinatorial analysis identifies protective disease signatures 
that are significantly enriched in the protected cohort relative to the high-risk diseased patients.  

Finally, biological annotation and analyses are conducted to identify and characterize key 
genes, potential drug targets, genetic interactions, pathways, and mechanisms of action 
represented by the protective disease signatures. This workflow is illustrated in Figure 1. 

 
Figure 1. Schematic of the PrecisionLife® combinatorial analysis pipeline used for actively protective studies.  

Estimating Individual Risk 

The default option for estimating individual risk in the actively protective pipeline is to simply 
count the number of causative disease signatures possessed by each person in the dataset. 
This is a crude approximation of risk, as it implicitly weights each signature equally and does not 
accurately reflect non-linear interactions and feature overlap between disease signatures. 
Simple counting is however well suited to an actively protective analysis as it ensures that all 
flagged high-risk individuals have multiple disease risk signatures. By focusing on the high-risk 
protected individuals, we can then identify protective signatures that partially or wholly mitigate 
the observed link between these causal disease signatures and disease status. 
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Selection of High-Risk Cohort 

The risk score threshold used to define ‘high-risk’ cohorts should be informed by the properties 
of the disease and the distribution of risk signatures in cases and controls but is ultimately 
somewhat arbitrary. Selecting a high threshold allows the analysis to target signatures with the 
strongest potential actively protective effects but offers lower statistical power due to reduced 
dataset size. Conversely, although selecting a low threshold increases the dataset size, it can 
reduce the effectiveness of the analysis by reducing the observed associations between 
protective signatures and disease status.  

Broadly, choice of threshold depends on three main factors: 

1. Size of the original cohort. Combinatorial analysis requires at least 500 and ideally 1,000 
cases to have sufficient statistical power for most analyses. Achieving these totals can 
necessitate use of lower risk score thresholds when the size of the original dataset is 
small.  

2. Strength of relationship between risk score and disease. Because causative disease 
signatures are, by definition, enriched in cases relative to controls, we observe strong 
enrichment of cases in individuals who possess multiple disease signatures (i.e., higher 
risk scores). This can lead to strongly skewed case-control ratios for high risk-score 
thresholds. A high-risk threshold should be selected that allows for a desired minimum 
number of protected controls and generates a ratio of high-risk cases to protected 
controls that is ideally between 2:1 and 4:1.  

3. Risk score variance in controls. The assumption of the actively protective analysis is that 
it increases statistical power for identifying protective disease signatures by focusing on 
the subset of high-risk individuals who have strong disease pressure. This requires the 
protected cohort to be suitably distinct from the larger control cohort. The greater the 
difference in mean risk between the high-risk (‘protected’) and low-risk control cohorts, 
the larger the potential opportunity to identify novel protective signatures that cannot be 
identified in a whole cohort analysis.  

Once the high-risk threshold is chosen, individuals are filtered by risk score to obtain the 
protected cohort. The protected cohort is then analyzed, to identify signatures and associated 
networks enriched in the protected cohort relative to high-risk cases. 

Hypothetical Example of Actively Protective Analyses 

We constructed a simple hypothetical example demonstrating the potential utility of the 
actively protective analytical approach for identifying important features that drive disease 
biology. 

Consider a disease signature (R) that has 20% frequency in a cohort of 10,000 cases and 10,000 
controls. In isolation, R increases disease risk so that it occurs in 25% more cases than 
controls. Next consider an actively protective signature (P) with 10% frequency that wholly 
cancels the biological effect of R when they co-occur but has no effect on disease in other 
genomic backgrounds. Assuming that R and P independently segregate in the population (e.g., 
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they are on different chromosomes), the expected frequency of the four possible combinations 
of R and P is shown in Table 1: 

Table 1. Expected number of individuals with and without causative risk signature (R) and protective signature (P) in 
hypothetical example of actively protective biology. The first four lines assess each possible combination of R and P. 
The last four lines assess R and P individually without controlling for absence/presence of the interacting signature.  

Signature Class Total Individuals Number of 
Cases 

Number of 
Controls 

Observed Disease 
Odds (cases/controls) 

R yes, P no (1) 3,600 2,000 1,600 1.250 

R yes, P yes (2) 400 195 205 0.951 

R no, P no (3) 14,400 7,025 7,375 0.953 

R no, P yes (4) 1,600 780 820 0.951 

R yes (1+2) 4,000 2,195 1,805 1.216 

R no (3+4) 16,000 7,805 8,195 0.952 

P yes (2+4) 2,000 975 1,025 0.951 

P no (1+3) 18,000 9,025 8,975 1.006 

 

In this hypothetical example, the causative effect of R will be readily detected in whole cohort 
genetic association analyses as it increases disease risk in 90% of individuals who possess the 
feature (observed odds ratio = 1.216 / 0.952 = 1.28, p = 3x10-12). In contrast, R is not significantly 
associated with decreased disease risk when considering the whole cohort, as it has no effect 
in 80% of individuals (observed odds ratio = 0.951 / 1.006 = 0.95, p = 0.12).  

The biological link between P and lower disease risk is revealed if we instead restrict the 
analysis to the ‘high-risk’ cohort who have R (observed odds ratio = 0.951 / 1.250 = 0.76, p = 
0.006). After identifying the protective effects of P, we can also more properly assess the 
isolated effect size of variant R by limiting the association analysis to the cohort without P 
(observed odds ratio = 1.250 / 0.953 = 1.31, p = 2x10-13). 

SNP Annotation for Case Studies 

To identify potentially interesting insights into disease biology, we used an annotation cascade 
process to map SNPs contained in the ME/CFS and ALS actively protective signatures to genes. 
First, SNPs that lie within gene boundaries were assigned to the corresponding gene(s). 
Remaining SNPs that lie within 2 kb upstream or 0.5 kb downstream of any gene(s) were then 
mapped to the closest gene(s) within this region. For the ALS case study, we included additional 
gene assignments for remaining SNPs using publicly available eQTL14 and/or chromatin 
interaction data15. This included genes with at least one cis-eQTL SNP (FDR of 0.05) with 
expression differences of that gene in brain tissues or promoter capture Hi-C (pcHi-C) 
interactions significantly associated in brain tissues. Due to the uncertainty about the relevant 
cells and tissues affected in ME/CFS etiology, genes assigned by either eQTL or chromatin 
interaction data were not considered to avoid capturing spurious associations from non-trait-
related tissues. All remaining SNPs that failed to map to a gene via any of these methods were 
left as ‘unassigned’.  
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RESULTS  

ME/CFS – Identifying Causative Risk Factors 

ME/CFS is a debilitating chronic disease that presents with diverse symptoms affecting multiple 
organ systems, the most common being post-exertional malaise, cognitive impairment, chronic 
pain and sleep disturbance16,17. It lacks known pathogenesis and a clear, consistent diagnostic 
criteria. The global prevalence is estimated to be over 17 million people, disproportionately 
affecting females18. There are currently no disease modifying therapies for ME/CFS and patient 
management focuses on alleviating symptoms. 

In ME/CFS, there have been no replicated genetic associations found in any GWAS study. Our 
standard combinatorial analysis identified 84 high-order combinations of SNP-genotypes 
(“disease signatures”) comprised of 199 SNPs mapping to 14 genes that were significantly 
enriched in a cohort of self-reported ME/CFS patients from UK Biobank19. We also replicated 
several of these gene-disease associations in other UK Biobank ME/CFS cohorts as well as a 
combinatorial analysis of long COVID patients13. A SNP associated with one of these genes was 
also among 30 candidates tested by an independent statistical association analysis and was 
the only one that showed replicated association with ME/CFS20. Notably its association with 
disease remained significant even after multiple test correction even though that study failed to 
incorporate the higher-order combinatorial dynamics associated with the gene-disease 
relationship. 

We showed in our previous publication19 that these causative ME/CFS disease signatures 
further stratified into 15 clusters (“communities”) representing shared cases and potential 
mechanisms of action relevant to ME/CFS patient subgroups. To check the clinical relevance of 
our findings, the phenotypic presentations of the mechanistically stratified subgroups of 
patients were previously compared to confirm that they do in fact present with symptoms 
consistent with the mechanism of action hypothesis for the underlying genes (Figure 2).  
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Figure 2. Mechanism based patient stratification of ME/CFS causative genes (circles are SNPs, connecting lines indicate co-
association in patients, and colors represent patient subgroups with different mechanistic causes of disease). All MoA 
hypotheses were validated against clinical records. 

This mechanistic patient stratification captures both linear and non-linear effects on disease 
biology and enables evaluation of the risk of specific symptoms and likelihood of therapy 
response. The underlying genotypic disease signatures are highly predictive of disease in UK 
Biobank (average OR=3.7 with p-values from 10-10 to 10-72), which is crucial for moving from 
identifying disease risks to identifying actively protective mechanisms. 

ME/CFS – Identifying High-Risk and Protected Cohorts 

All causative disease signatures from our published analysis (i.e., the results from the UK 
Biobank Pain Questionnaire cohort described above as well as supplemental analyses of the 
CFS Verbal Interview cohort from UK Biobank) were aggregated to generate a risk score for 
ME/CFS by counting the number of disease signatures possessed by each individual.  

The distribution of the causative risk score in the UK Biobank Pain Questionnaire cohort is 
shown in Figure 3. Using a threshold reflecting the top 75th percentile, we identified 606 
protected individuals in the UK Biobank control population who had not been diagnosed with 
ME/CFS (or similar condition) even though they possess several causative disease signatures 
associated with high risk of ME/CFS. Applying the same threshold, we identified 1,192 ME/CFS 
patient cases with elevated risk scores. 
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Figure 3. Violin plot showing distribution of risk scores for the UK Biobank Pain Questionnaire ME/CFS cohort. Scores 
above the dashed line represent the top 75th percentile risk scores which comprise the high risk ME/CFS cohort 
(n=1,798 comprised of 1,192 ME/CFS patient cases and 606 ‘protected’ healthy controls). 

ME/CFS – Identifying Disease Protective Signatures 

We ran an actively protective combinatorial analysis on the 606 individuals in the protected 
cohort against the 1,192 high-risk ME/CFS cases to identify ‘actively protective’ disease 
signatures that are significantly associated with reduced risk of developing ME/CFS in the high-
risk cohort. The analysis identified 276 protective signatures comprised of combinations of 2 to 
5 SNPs, containing a total of 439 unique SNPs. The disease architecture, containing 12 
communities, comprised of these protective signatures is illustrated in Figure 4.  

 

Figure 4. (a) Disease architecture diagrams representing actively protective factors for ME/CFS identified by the 
PrecisionLife combinatorial analytics platform. Each circle represents a SNP-genotype, edges connect SNP-
genotypes that are co-associated in protected controls because they co-occur in at least one actively protective 
signature, and colors represent distinct ‘protective’ sub-types that are not mutually exclusive in individuals (i.e. a 
person may benefit from more than one such protective mechanism). (b) The same disease architecture view colored 
to show the key ‘critical’ SNPs linked to genes of interest (see Table 2) associated with each community (dark green). 
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We quantified the association with disease for the 276 protective disease signatures in the 
1,189 cases and 4,157 controls from the original ME/CFS dataset who were not included in the 
high-risk protected cohort – i.e., the ‘low-risk’ cohort. 25 signatures (9%) had odds ratios greater 
than 1.5, 83 (30%) had odds ratios greater than 1.1, and 115 signatures (42%) had odds ratios 
greater than 1.0 in this low-risk cohort.  

These results suggest that some signatures have protective effects that expand beyond the 
protected cohort. However, only one signature had a nominally significant p-value in the low-
risk cohort (Fisher Exact Test p = 0.042, which is not significant after adjusting for multiple 
tests), and all but 2 signatures had weaker odds ratios in the low-risk cohort relative to the high-
risk cohorts. The remaining 161 protective disease signatures (58%) had odds ratios greater 
than 1.0 in the low-risk cohort, suggesting that the significant association with decreased 
disease risk is unique to the protected cohort.  

15 SNPs identified in the actively protective analysis represent ‘critical SNPs’ as defined in Das 
at al. 202219. That is, they occupy key nodes in the disease architecture and define the 
statistically validated networks associated with different disease subtypes (Figure 4b). Of these, 
9 mapped to protein-coding genes, as listed in Table 2 below.  

Table 2. Genes associated with critical SNPs in the ME/CFS active protective analysis. 

Gene Name Function 

Percent of 
Protected 

Cohort with 
Signatures 

AC139768.1 
/ POU6F1 

autophagy-related long 
non-coding RNA 

lncRNA located in the second intron of POU6F1 
(POU class 6 homeobox 1), which enables 
DNA-binding transcription repressor activity 

15% 

CAMK1D 
calcium/calmodulin 
dependent protein kinase 
1D 

Component of the calcium-regulated 
calmodulin-dependent protein kinase cascade 34% 

CAMK1G 
calcium/calmodulin 
dependent protein kinase 
1G 

Predicted to enable calcium/calmodulin-
dependent protein kinase activity and 
calmodulin binding activity 

47% 

CDC14A cell division cycle 14A Member of the dual specificity protein tyrosine 
phosphatase family 17% 

DYM dymeclin 

Regulates Golgi-associated secretory pathways 
essential to endochondral bone formation 
during early development. Also believed to play 
a role in early brain development. 

32% 

EPB41L4B erythrocyte membrane 
protein ban 4.1 like 4B 

Predicted to be a structural constituent of 
cytoskeleton. Involved in several processes, 
including positive regulation of cell adhesion, 
positive regulation of keratinocyte migration, 
and wound healing. Acts upstream of or within 
actomyosin structure organization.  

35% 

GAB4 GRB2 associated binding 
protein family member 4 

Predicted to be involved in signal transduction 
and enable transmembrane receptor protein 
tyrosine kinase adaptor activity.  

44% 

HGD homogentisate 1,2-
dioxygenase 

Enzyme involved in the catabolism of the amino 
acids tyrosine and phenylalanine 19% 

IFI27L1 interferon alpha inducible 
protein 27 like 1 Involved in apoptotic process 8% 
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Seven of the protein coding genes mapped from ME/CFS protective disease signatures have 
reported significant GWAS associations in OpenTargets21. Of these, 6 had prior associations in 
the GWAS Catalog22 with metabolic measurements such as BMI, fat body mass, HbA1c 
measurement or type 2 diabetes (Figure 5).  

 
Figure 5. Gene set enrichment analysis for the ME/CFS active protective analysis using annotations from GWAS 
Catalog. 

Several of these genes are also associated with specific metabolites and pathways previously 
identified in our risk analysis of ME/CFS19, including CDC14A and HGD. Below we highlight key 
findings from the ME/CFS actively protective analysis and the potential insights for disease 
biology. 

Insulin-related signalling 

We previously found ME/CFS risk-associated SNPs in genes such as AKAP1, CLOCK, SLC15A4 
and INSR that are hypothesized to drive AMPK and/or insulin-related signaling. 

The gene CDC14A (cell division cycle 14A) is a member of the dual specificity protein tyrosine 
phosphatase family. GWASs have previously associated this gene with HbA1C and glucose 
measurement, and studies have demonstrated that CDC14A plays a key role in insulin secretion 
via AMP-activated protein kinase (AMPK) activation23,24. AMPK activation and subsequent 
glucose uptake takes place in skeletal muscles in response to exercise, and both processes are 
diminished in cell cultures taken from patients with ME/CFS25.  

Calcium/calmodulin dependent protein kinases 

Two of the genes associated with critical SNPs identified in the actively protective analysis are 
components of the calcium- and calmodulin-dependent protein kinase complex: CAMK1G and 
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CAMK1D. Both occur in high prevalence in the protected cohort, represented by SNPs that 
feature in disease signatures possessed respectively by 47% and 34% of this protected cohort. 
These genes occur on different chromosomes and are not in linkage disequilibrium, indicating 
independent involvement of different components of this complex in the biology of ME/CFS. 
Fifteen percent of the protected cohort have both CAMK1G and CAMK1D protective signatures. 

Evidence suggests that these two genes have similar functions. The subgroups of cases with 
disease signatures mapping to CAMK1G in the high-risk cohort are significantly more likely to 
have type 2 diabetes (ICD-10 code, E11.x) (p = 0.029 for CAMK1G). Polymorphisms in CAMK1D 
have been previously associated with type 2 diabetes risk as well as insulin-like growth 
factors26. Likewise, CAMK1G, which is highly expressed in the brain and has a role in synaptic 
transmission in cortical neurons, has also been associated with insulin-like growth factor levels, 
as well as amyotrophic lateral sclerosis (ALS) risk and measurements of body mass21,27. 

Stress response  

The results of the actively protective analysis also support the hypothesis from the original 
causative combinatorial analysis that stress response is an important mechanism underlying 
risk of developing ME/CFS. Expression of CAMK1G is regulated by glucocorticoid receptor 
activation and has been hypothesized to be involved in pathways associated with stress 
response28. EPB41L4B, which is found in a disease signature mapping to 35% of protected 
controls, is also activated by the glucocorticoid receptor and increased methylation in 
EPB41L4B has been associated with stress exposure29,30. 

Autoimmunity 

The actively protective analysis revealed additional support for the identification of a subtype of 
ME/CFS associated with autoimmune-related mechanisms. The identified SNP in GAB4 (GRB2 
associated binding protein family member 4), which was found in a disease signature mapping 
to 44% of protected controls, is a splice region variant with no significant GWAS/PheWAS 
associations. However, different variants in the gene have been associated with various immune 
cell counts (monocyte, neutrophil, leukocyte) and IL17A levels in GWAS analyses21. This 
indicates that GAB4 may play a role in inflammation and the development of autoimmunity. 
Differential levels of IL17A in plasma and cerebrospinal fluid of ME/CFS patients have been 
observed when compared against healthy controls, and IL17A is linked to the development of 
chronic inflammation and autoimmunity31,32. 

Overall, the output of the actively protective analysis supports the mechanistic hypotheses 
from our original causative combinatorial analysis for ME/CFS. It also identified several novel 
genes not identified in that analysis. Importantly, the signatures associated with these genes are 
associated with reduced rather than increased prevalence of ME/CFS, especially among 
individuals who possess multiple causative risk signatures. Thus, they provide potential 
opportunities for identifying treatments that wholly or partially mitigate risks associated with 
one or more causative mechanisms of action.  
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Highlights of Amyotrophic Lateral Sclerosis (ALS) Actively Protective Study 

ALS (also known as motor neuron disease, or MND) is a fatal progressive neurodegenerative 
disorder that is characterized by degenerative changes in the upper and lower motor neurons, 
resulting in loss of muscle control. It is relatively rare, affecting approximately 9.1 persons per 
100,000 in the U.S. population33. Familial ALS with clear Mendelian inheritance only comprises 
5%-10% of cases34, while sporadic ALS is characterized by a high degree of heterogeneity across 
the patient population, reflected in multiple disease etiologies, influences and presentations. 
There is no effective therapy for sporadic forms and fewer than 50% of patients survive for more 
than two years after diagnosis35. 

We conducted an actively protective combinatorial analysis to identify disease signatures 
associated with reduced risk of ALS in a UK-derived cohort of 718 high-risk protected controls 
and 1,468 high-risk sporadic ALS cases from the Project MinE consortium36. Individual risk was 
estimated based on the presence of 2,991 disease signatures derived from an unpublished 
hypothesis-free causative combinatorial analysis. Controls for the original dataset were 
selected to maximize the age of control cohort, reducing (but not eliminating) the possibility 
that the protected cohort will develop ALS in the future. The actively protective ALS analysis 
highlighted 24 key genes that were significantly associated with signatures enriched in the 
protected cohort.  

Of these genes, 10 have been previously linked to ALS, including GRIP1 (glutamate receptor-
interacting protein 1). GRIP1 is believed to function as a scaffolding protein for a variety of 
different cargos including the GRIA2-containing AMPA receptor37,38,39,40,41 . It was initially 
reported to interact with alsin, the gene product of ALS2, which is involved in amyotrophic 
lateral sclerosis 2 and juvenile primary lateral sclerosis42. Knockdown of ALS2 results in altered 
subcellular distribution of GRIP1, reduced AMPA receptor levels at the neuronal synapse and 
increased susceptibility to glutamate receptor mediated neurotoxicity. 

Although there is strong evidence linking GRIP1 with ALS, it was not identified in a meta-GWAS 
of 29,612 ALS patients and 122,656 controls43. This demonstrates the power of the actively 
protective combinatorial approach for identifying gene-disease relationships that are not 
detected in traditional genetic disease association studies. Interestingly GRIP1 is one of the 
only two genes that have previously been linked with rare ALS reversals, supporting a potential 
actively protective role for this gene44.  

One of the genes identified by the actively protective analysis that has not been previously 
associated with ALS is MTRR (methionine synthase reductase), the enzyme responsible for the 
reactivation of methionine synthase via the reductive methylation of cobalamin (vitamin B12)45. 
As such MTRR represents an important component of the vitamin B12/cobalamin pathway. 
Vitamin B12 is critical for hematopoiesis and myelination and deficiency can be associated with 
progressive tremor, ataxia, and scanning speech46.  

Reduced activity of the methionine synthase results in elevated levels of homocysteine, which 
is known to have neurotoxic effects, and increased levels of homocysteine indeed occur in the 
cerebrospinal fluid of ALS patients47. Crucially, we also identified three other genes (CUBN, 
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LRP2, and CD320) that have functions related to vitamin B12 absorption and transport, 
providing additional support for this mechanistic hypothesis. 

 

Figure 8. Identification of a replicated actively protective gene (MTRR) involved in uptake and function of 
cobalamin/vitamin B12 in ALS. Green highlight indicates gene identified in actively protective analysis, blue highlight 
indicates other genes identified in other disease risk analyses. 

We believe that our observation provides the first genetic linkage between vitamin B12 
availability and ALS. Evidence for a role of vitamin B12 in ALS pathology has, however, existed 
for some time. The vitamin B12 analogue, hydroxocobalamin, protects neuronal cell lines from 
TDP-43-induced mitochondrial damage and neurotoxicity48. Methylcobalamin prevents motor 
neuron death induced by co-culture with mutant SOD1 (G93A) expressing astrocytes49. ‘Ultra-
high dose’ methylcobalamin (30 mg/kg) significantly delayed progression of motor and 
neurological symptoms in the wobbler mouse model of ALS50.  

Most significantly, high dose methylcobalamin was shown to be efficacious in slowing the 
functional decline in patients with early-stage ALS51 and Rozebalamin has recently been 
approved for use in the treatment of ALS in Japan52. Future research is needed to assess 
whether MTRR is the key genetic link between ALS and vitamin B12 availability, and whether 
MTRR variants can be used as a precision medicine biomarker for predicting which ALS patients 
are most likely to respond favorably to methylcobalamin or Rozebalamin treatments. 

 

Discussion 
As illustrated by the hypothetical and real-world case studies presented above, actively 
protective combinatorial analysis is a powerful method for achieving a greater understanding of 
disease biology. In contrast to a standard whole-cohort protective analysis, which aims to 
identify signatures enriched in a broad set of healthy controls, actively protective analyses rely 
on a smaller cohort of high-risk individuals. Nevertheless, they offer increased statistical power 
for detecting signatures when the signatures’ protective effects vary between people.  

Notably, an actively protective combinatorial analysis is well suited for identifying signatures 
that are significantly associated with decreased disease risk in a high-risk cohort, but that have 
little-to-no effect on disease risk in individuals who have few causative risk factors. This can 
occur when the protective variant directly affects the same biological mechanisms associated 
with increased risk (e.g., by reducing the expression of a downstream gene that is otherwise 
upregulated by a causal variant). Such signatures offer important insight into prospective 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 20, 2024. ; https://doi.org/10.1101/2024.12.19.24319349doi: medRxiv preprint 

https://doi.org/10.1101/2024.12.19.24319349
http://creativecommons.org/licenses/by-nc-nd/4.0/


Confidential (not yet submitted) © PrecisionLife Ltd 2024 All rights reserved 

precision medicine therapeutic interventions tailored towards patients with one or more 
specific mechanistic subtypes of disease.  

Alternatively, the effects of an actively protective signature may apply to all high-risk individuals 
regardless of their disease etiology, but the effect sizes may be minimal in other individuals 
simply because they offer less opportunity for risk reduction. This may occur, for example, if 
everyone is subject to a baseline non-genetic risk of disease which cannot be modified by the 
effects of protective genetic variants. In this scenario, the primary advantage of the actively 
protective analysis framework is that it excludes low-risk controls who are expected to obtain 
weaker benefits from a protective signature, resulting in stronger odds ratios and p-values for 
the signature in the high-risk cohort. Therapeutic interventions derived from this class of 
actively protective signatures are expected to be broadly applicable across many disease 
subtypes.  

The actively protective case studies discussed in this manuscript represent analyses in which 
the protected cohort reflects the cumulative effects of all known disease signatures associated 
with increased risk. However, the actively protective approach is highly flexible, both in terms of 
data types used and study design, and the approach for estimating risk can be tailored to meet 
the specific aims of a study.  

For example, if the primary aim of a study is to identify protective variants that mitigate disease 
risk associated with a specific gene, then the risk score used to identify the protected cohort 
may incorporate only disease signatures that contain at least one SNP linked to that gene. A 
limitation of this approach is that many strongly causal (high-effect size) variants are rare. 
Limiting the dataset to individuals with a single rare SNP-genotype or disease signature 
significantly decreases the statistical power for detecting and validating interacting protective 
disease signatures. In contrast, using a more expansive set of causative disease signatures to 
estimate risk provides increased power for detecting signatures which have broad protective 
effects that are not limited to a single gene-gene interaction. 

A similar approach can be used to identify actively protective signatures that are associated 
with a broader mechanism/pathway. By limiting the causative disease signatures to those linked 
to a set of genes associated with a specific mechanism of action (MoA) hypothesis, it is possible 
to construct an MoA-specific risk score. This provides greater power for identifying protective 
disease signatures that are likely to directly interact with the biological pathways associated 
with that MoA (i.e., to provide active protection against that specific class of risk factors). This 
mechanistic approach can be more powerful than a broad overall risk score as it potentially 
produces a more homogenous cohort from a heterogenous disease population. In contrast, a 
single pan-mechanism disease model lumps patients who have diverse disease etiologies into 
a single ‘high-risk’ study cohort. The resulting risk score may result in the exclusion of relevant 
protected individuals who have low/moderate overall risk even though they have high risk 
associated with the focal mechanistic subtype.  
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Conclusion 
Actively protective combinatorial analysis exploiting the ability to accurately predict disease risk 
in complex diseases offers a uniquely powerful and highly scalable approach for obtaining key 
new insights into the biology of disease. This approach has the potential to uncover a new class 
of actively protective drug targets that, alongside more accurate precision diagnostics based on 
the same mechanistic disease insights, could be used to slow/stop progression of complex 
chronic diseases and increase the symptom-free healthspan of individuals. 

We have shown that the approach is better suited than GWAS for identifying disease signatures 
associated with reduced risk of disease when the protective effects depend on the presence of 
one or more causative risk factors. The non-linear relationships identified by combinatorial 
analysis underpin the concept of precision medicine, which posits that the most effective 
treatment for a disease often varies between patients, reflecting individual-level differences in 
the genetic and non-genetic etiologies of disease53.  

Real world examples of actively protective combinatorial analyses for ALS and ME/CFS illustrate 
the power of this novel framework. We were able to identify genes that have been shown to have 
a key role in disease biology but that were overlooked by conventional meta-GWAS analyses in 
much larger datasets. Likewise, we identified multiple examples of novel gene-disease 
relationships that reflect the known biological pathways and mechanisms implicated in these 
diseases.  

Most importantly, these genetic features occur in the context of signatures that are enriched in 
protected individuals who are otherwise expected to have high susceptibility to disease. As 
such, actively protective signatures provide direct insight into candidate drug targets that may 
potentially be used to mitigate the adverse effects of one or more causal genetic variants. In 
many cases, the protective benefits may be effective (albeit at varied levels) across a wider 
patient population than existing drugs (risk target modulators), due to the higher prevalence of 
the protective mechanism in the population. 

Targets based on actively protective biology may enable a new class of prophylactic therapeutic 
interventions. Like existing disease risk targets, they are amenable to modulation by multiple 
modalities, such as small molecules, mAbs and ASOs, but are particularly well suited to the use 
of therapeutic mRNA vaccines, where a protective protein product can be produced directly in 
muscle cells following injection of tailored mRNA transcripts54. If issues with stability and 
immunogenicity can be overcome, such mRNA therapeutics targeting actively protective 
mechanisms have broad potential for targeted treatment of chronic diseases requiring longer-
term expression of protective proteins.  
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