It is made available under a CC-BY	4.0 International license
------------------------------------	---------------------------

- 1 Evaluating the causal association between type 2 diabetes and Alzheimer's disease: a Two-
- 2 Sample Mendelian Randomization Study
- 3
- 4 Si Han¹, Tom Lelieveldt², Miriam Sturkenboom¹, Geert Jan Biessels³, Fariba Ahmadizar^{1,4*}
- 5
- ⁶ ¹Department of Data Science and Biostatistics, Julius Global Health, University Medical
- 7 Center Utrecht, Utrecht, The Netherlands
- 8 ²Department of Biomedical Science, University College Utrecht, Utrecht University, The
- 9 Netherlands
- ³Department of Neurology, Brain Center, University Medical Center Utrecht, Utrecht, The
- 11 Netherlands
- ⁴Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, USA
- 13
- 14
- 15 ^{*}Corresponding author:
- 16 Fariba Ahmadizar, PharmD, PhD
- 17 Email: f.ahmadizar@umcutrecht.nl

It is made available under a CC-BY 4.0 International license .

19 Abstract

20

21 Aims

- 22 Type 2 diabetes mellitus (T2DM) and Alzheimer's disease (AD) are significant global health
- 23 issues. Epidemiological studies suggest T2DM increases AD risk, though confounding
- 24 factors and reverse causality complicate this association. This study aims to clarify the causal
- 25 relationship between T2DM and AD through a systematic review and meta-analysis of
- 26 Mendelian randomization (MR) studies and a new two-sample MR analysis.

27 Materials and Methods

28 A literature search across major databases was conducted through May 2024 to identify MR

29 studies linking T2DM and AD. Fixed/random-effect models provided pooled odds ratios (OR)

30 with 95% confidence intervals (CI), and heterogeneity was assessed with the I² statistic. For

- 31 our MR analysis, we pooled genetic variants from selected studies and analyzed AD
- 32 outcomes using IGAP, EADB, and UKB databases. Multiple MR methods, including inverse-
- 33 variance weighted (IVW) and pleiotropy-robust approaches, were applied for validation.

34 Results

- 35 Of 271 articles, eight MR studies were included (sample sizes: 68,905 to 788,989), all from
- 36 European ancestry. Our meta-analysis found no significant causal link between T2DM and
- AD (OR = 1.01, 95% CI: 0.99-1.03) with moderate heterogeneity ($I^2 = 44.16\%$). Similarly,
- 38 our MR analysis using 511 SNPs as instrumental variables showed no significant associations

39 in IGAP, EADB, or UKB data, consistent across sensitivity analyses.

40 Conclusions

It is made available under a CC-BY 4.0 International license .

- 41 This meta-MR and MR analysis revealed no significant causal association between T2DM
- 42 and AD, indicating that T2DM may not directly influence AD risk. Further research should
- 43 explore other mechanisms linking these conditions.

- 45
- 46 **Keywords:** Type 2 diabetes, Alzheimer's disease, Mendelian randomization

It is made available under a CC-BY 4.0 International license .

47 Introduction

48	Type 2 diabetes mellitus (T2DM) is a chronic metabolic condition characterized by impaired
49	insulin sensitivity and persistent hyperglycemia. As a significant public health challenge
50	contributing to an increasing burden worldwide, the global diabetes prevalence in individuals
51	aged 20-79 in 2021 was estimated to be 10.5% (536.6 million people), rising to 12.2% (783.2
52	million) in 2045 (1). In addition to its direct health impact and the increasing healthcare costs
53	it brings, T2DM contributes to significant morbidity and mortality through its complications,
54	such as cardiovascular disease, neuropathy, and kidney dysfunction, posing substantial
55	challenges to healthcare systems and public health (1-3).
56	Alzheimer's disease (AD), the most common form of dementia that contributes to 60-
57	70% of dementia cases (4), is also a prevalent condition that significantly impacts global
58	public health, marked by progressive cognitive decline and neurodegeneration (5).
50	Numerous enidemiclosical studies have reported the increased risk of demontia
59	Numerous epidennoiogical studies have reported the increased fisk of dementia
60	outcomes, especially AD, in individuals with T2DM, suggesting a potential link between
	······································
61	these two conditions (6, 7). For instance, a meta-analysis reported a 73% higher risk of all
61 62	these two conditions (6, 7). For instance, a meta-analysis reported a 73% higher risk of all types of dementia and a 56% increased risk of AD in individuals with T2DM (7, 8). This
61 62 63	these two conditions (6, 7). For instance, a meta-analysis reported a 73% higher risk of all types of dementia and a 56% increased risk of AD in individuals with T2DM (7, 8). This association has been observed consistently across diverse populations, pointing to T2DM as a
61 62 63 64	these two conditions (6, 7). For instance, a meta-analysis reported a 73% higher risk of all types of dementia and a 56% increased risk of AD in individuals with T2DM (7, 8). This association has been observed consistently across diverse populations, pointing to T2DM as a significant risk factor for AD. Several biological mechanisms have been proposed to explain
61 62 63 64 65	these two conditions (6, 7). For instance, a meta-analysis reported a 73% higher risk of all types of dementia and a 56% increased risk of AD in individuals with T2DM (7, 8). This association has been observed consistently across diverse populations, pointing to T2DM as a significant risk factor for AD. Several biological mechanisms have been proposed to explain this relationship, including insulin resistance, chronic hyperglycemia, and inflammation (9-
 61 62 63 64 65 66 	these two conditions (6, 7). For instance, a meta-analysis reported a 73% higher risk of all types of dementia and a 56% increased risk of AD in individuals with T2DM (7, 8). This association has been observed consistently across diverse populations, pointing to T2DM as a significant risk factor for AD. Several biological mechanisms have been proposed to explain this relationship, including insulin resistance, chronic hyperglycemia, and inflammation (9-12).
 61 62 63 64 65 66 67 	these two conditions (6, 7). For instance, a meta-analysis reported a 73% higher risk of all types of dementia and a 56% increased risk of AD in individuals with T2DM (7, 8). This association has been observed consistently across diverse populations, pointing to T2DM as a significant risk factor for AD. Several biological mechanisms have been proposed to explain this relationship, including insulin resistance, chronic hyperglycemia, and inflammation (9- 12).
 61 62 63 64 65 66 67 	these two conditions (6, 7). For instance, a meta-analysis reported a 73% higher risk of all types of dementia and a 56% increased risk of AD in individuals with T2DM (7, 8). This association has been observed consistently across diverse populations, pointing to T2DM as a significant risk factor for AD. Several biological mechanisms have been proposed to explain this relationship, including insulin resistance, chronic hyperglycemia, and inflammation (9- 12). Mendelian randomization (MR) analysis is a genetic epidemiology method that infers

69 genetic variants as instrumental variables (IVs), MR minimizes confounding and reverse

It is made available under a CC-BY 4.0 International license .

70	causation, common limitations in observational studies (13). While MR provides a robust
71	method for inferring causality between T2DM and various complications, there remains a
72	lack of comprehensive synthesis regarding its impact on cognitive outcomes, particularly AD
73	(14-16). To address this gap, our study systematically reviewed and synthesized current
74	research on the causal relationship between T2DM and AD by aggregating data from multiple
75	published MR studies. One major limitation of meta-MR results is the risk of overestimating
76	effect sizes due to the repeated inclusion of the same genetic variant, which can inflate
77	associations and bias estimates (17, 18). To minimize this risk, we pooled single nucleotide
78	polymorphisms (SNPs) associated with T2DM from MR studies included in this review and
79	removed duplicate variants. Using the group of non-duplicate SNPs as IVs, we conducted a
80	two-sample MR analysis to explore the unbiased causal association between T2DM and AD.

81 Materials and Methods

i) Systematic Review and Meta-MR

83 To identify all relevant articles that addressed the causal associations between exposure 84 (T2DM) and outcome (AD), we systematically searched PubMed, Web of Science and the 85 EMBASE regardless of language from inception until May 1, 2024 (the complete search 86 strategy can be found in S1 Appendix). The reference list of MR studies included in this 87 review was also searched manually for other potentially relevant inclusions. The Preferred 88 Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines were 89 followed. The registered ID in PROSPERO is CRD42024609885. The review protocal is 90 available from the reuqest from author.

It is made available under a CC-BY 4.0 International license .

92 Search strategy

93	Two authors (SH and TL) independently implemented the search strategy. The process began
94	with an initial screening of titles and abstracts, followed by an in-depth review of the full text
95	for potential articles. Any disagreements between the two reviewers were addressed through
96	discussion with a third author (FA), who provided adjudication.
97	Inclusion criteria
98	We included MR studies investigating the association between T2DM and AD. Eligible
99	studies were required to report causal estimates, such as odds ratios (OR) or β -coefficients,
100	presented as an absolute value per unit increase, along with the associated 95% confidence
101	intervals (CI) or standard errors (SE). Only full original publications were considered for
102	inclusion. In the case of duplicate cohorts, only the most recent MR studies with unique
103	exposure-genome wide association studies (GWAS) and outcome-GWAS were retained for
104	meta-MR.

105 Data Extraction

We extracted key details from each eligible MR study, including the first author, publication
year, number of IVs, consortiums, sample size, population ancestry, MR design, analysis
method, effect metrics (OR with 95% CI or β-coefficients with SEs), and sensitivity MR

109 methods with their results.

110 Quality Assessment

We used the quality assessment tool incorporating ten questions designed to evaluate thequality of MR studies (19). Among the questions, three are core assumptions of MR: (1) the

It is made available under a CC-BY 4.0 International license .

113 genetic variants used as IVs must be strongly associated with the exposure of interest, (2) the

114 genetic variants should not be associated with confounding factors, and (3) the genetic

115 variants should influence the outcome solely through their effect on the exposure. Studies

116 failing to address these key assumptions were excluded from the analysis.

117 Statistical Analysis

118 The effect estimates were combined using either a fixed-effects or random-effects model

119 depending on the heterogeneity among the included studies. Heterogeneity between studies

120 was quantified using the I^2 statistic with values greater than 75% representing high

121 heterogeneity (20). For studies reporting β -coefficients and SEs, the ORs and their

122 corresponding CIs were obtained by exponentiating the β -coefficients and their respective

123 CIs.

124 ii) **Two-sample MR analysis:**

125 We extracted information from eight eligible MR studies included in our systematic review.

126 This included SNPs, major and reference alleles, effect allele frequency, effect size, SEs,

127 effect metrics, p-values, closest genes, chromosomes and locations, and sample sizes. One

128 investigator (SH) extracted the data, which was verified by the third investigator (FA).

129 Missing data were requested from corresponding authors via e-mail.

130 Instrumental variables selection

131 Based on three MR assumptions, we pooled genetic variants demonstrating genome-wide

132 significant associations ($p < 5 \times 10^{-8}$) with T2DM (19, 21). These variants came from

133 DIAbetes Genetics Replication And Meta-analysis (DIAGRAM), DIAbetes Meta-ANalysis

134 of Trans-Ethnic association studies (DIAMANTE) consortia, and other studies (22-26). In

It is made available under a CC-BY 4.0 International license .

135	these GWASs, various definitions of T2DM used across included studies, commonly based
136	on diagnostic criteria such as fasting glucose (\geq 7.0 mmol/L), HbA1c (\geq 6.5%), or non-
137	fasting glucose (\geq 11.1 mmol/L), or from medical records, hospital discharge data, and
138	electronic health registries. Details of these consortiums can be found in the S4 Appendix.
139	The study design of the current MR analysis can be found in Fig 2.
140	Given the overlapping of SNPs across the included studies, we employed a
141	deduplication strategy based on the p-value associated with each SNP's exposure (T2DM)
142	and the corresponding GWAS sample size. In the final analysis, we retained only non-
143	redundant SNPs, prioritizing those with the lowest p-values or derived from the most recent
144	GWAS with the largest cohort size. 1,104 SNPs were initially merged from origin studies,
145	with 859 proving to be unique. We implemented a standardisation process for the effect
146	alleles to ensure comparability and accurate aggregation of genetic effect estimates across
147	multiple cohorts.
148	To ensure the validity and robustness of the causal inference and to verify the
149	assumptions underlying the MR approach, associated traits for the SNPs were manually
150	verified using the GWAS catalog and PheWeb. These SNPs were then subjected to linkage

151 disequilibrium (LD) clumping with a threshold of $R^2=0.1$ and 1000 kilobases (kb). Following

this clumping process, 511 SNPs remained. All SNPs demonstrated F-statistics greater than

153 10, indicating that the genetic variants explain a significant portion of the variance in the

154 exposure variable. The details of IVs can be found in the **S5** Appendix. In the sensitivity

analysis, a broader range of R^2 (from 0.01 to 0.8) was applied to capture a more

156 comprehensive view of the association. By systematically varying the R^2 thresholds, we

157 aimed to balance the trade-off between instrument independence and coverage, thereby

assessing the consistency of the causal estimates across varying degrees of SNP correlation.

It is made available under a CC-BY 4.0 International license .

159 Outcome Genetic Consortia Data

160	The International Genomics of Alzheimer's Project (IGAP), European Alzheimer & Dementia
161	Biobank (EADB) consortium and UK Biobank (UKB) from the included MR studies were
162	utilized, which are all publicly available summary-level data (27-29). All the GWAS datasets
163	used in this study obtained relevant ethics committee approvals, and participant informed
164	consent at the time of their original data collection. IGAP is a comprehensive two-stage study
165	based on GWASs of AD in individuals of European descent, which consists of Alzheimer
166	Disease Genetics Consortium (ADGC), European Alzheimer's Disease Initiative (EADI), and
167	other consortiums (28, 30). In the first stage, IGAP utilized genotyped and imputed data on
168	7,055,881 SNPs to perform a meta-analysis of four previously published GWAS datasets,
169	which included 17,008 AD cases and 37,154 controls.
170	EADB united various European cohorts and GWAS consortia, with summary
171	estimates derived from 39,106 participants with clinically diagnosed AD, 46,828 participants
172	with proxy AD, and 401,577 control participants without AD. Proxy AD was determined
173	solely from the UKB through questionnaire data, where participants were asked if they had
174	been diagnosed with AD or dementia.
175	UKB comprises 500,000 males and females from the general UK population, aged 40-
176	69 at baseline (2006-2010). Cases were identified as algorithmically determined participants
177	to have AD (N = 954), while non-cases were defined as participants who were not (N =
178	487,331). The analysis employed BOLT-LLM and was adjusted for age, sex, genotyping chip,
179	and the top 10 genetic principal components, following the procedures of the Medical
180	Research Council-Integrative Epidemiology Unit UK Biobank GWAS pipeline. Details about

181 UKB and the pipeline can be found elsewhere (29, 31, 32).

It is made available under a CC-BY 4.0 International license .

182 Statistical Methods and Sensitivity Analyses

183	We harmonized the summary SNP-T2DM and SNP-AD statistics to ensure effect size
184	alignment and prevent strand mismatch. In this analysis, we utilized proxy SNPs where the
185	primary SNPs were unavailable in the outcome dataset, thereby enhancing SNP coverage and
186	retaining relevant instruments that meet the LD threshold. A minor allele frequency (MAF)
187	threshold of 0.01 was applied to ensure that SNPs with low allele frequencies, which could
188	introduce noise or bias, were excluded from the analysis. In MR analysis, the inverse
189	variance weighted (IVW) method was used as the primary analysis method. The IVW method
190	operates under the assumption that all SNPs included in the causal estimate are valid
191	instruments, implying that they do not violate any of the fundamental assumptions of MR.
192	To assess the potential impact of pleiotropy, we evaluated heterogeneity across SNP-
193	specific MR estimates using Cochran's Q statistic. We also performed MR-Egger regression,
194	which provides a test for directional pleiotropy through its intercept, where a non-zero
195	intercept suggests that pleiotropic effects are biasing the causal estimate (33, 34). We also
196	used the weighted median estimator (WME), which allows up to 50% of the SNPs to be
197	invalid instruments, offering a more robust causal estimate when pleiotropy is present (35,
198	36). The simple mode and weighted mode methods further complement this by assuming that
199	the causal effect is determined by the most frequent estimate among the SNPs, with the
200	weighted mode giving more importance to stronger instruments (37, 38).
201	All statistical analyses were performed using the "TwoSampleMR (0.5.10)" package
202	in R Studio (version 2024.04). All P values were two-sided, and $P < 0.05$ was considered
203	suggestive of statistical significance. The data, including exposures and outcomes, is all from
204	open databases: <u>https://www.ebi.ac.uk/gwas/home</u> .

It is made available under a CC-BY 4.0 International license .

205 **Results**

206 i) Systematic Review and Meta-MR

207 The initial database search yielded 271 articles. Subsequent filtering to remove duplicates and 208 articles not meeting the inclusion criteria. Further scrutiny for potential inclusions from 209 reference lists led to 11 articles being considered for duplication cohorts' check. Among these, 210 one was excluded because of duplicate exposure and outcome consortium (Morris 2012 211 GWAS and IGAP); one employed the one-sample MR study design, and one didn't use IVW 212 as the primary analysis methods. Eight MR studies met all criteria and were selected for 213 inclusion in the meta-MR and subsequent MR analysis (15, 32, 39-44). In these eight MR 214 studies, total sample sizes, including case and control, range from 68,905 to 788,989, all of 215 European ancestry. All the studies passed the quality assessment. Information on individual 216 studies included in this review (consortium, sample size, IVs, study design, population, and 217 main results) is shown in the **S2 Appendix**. The quality assessment questions and results are 218 shown in the S6 and S7 Appendix. The PRISMA diagram is shown in Fig 1. The PRISMA 219 checklist can be found in **S11** Appendix. The estimates represent the OR of AD per 1-unit 220 higher log odds of T2DM.

In the meta-analysis, the Cochran's Q test yielded a value of 10.74 with p-value 0.097, the I² statistic was calculated to be 44.16%. Based on a fixed-effec model, the pooled risk estimate indicates that a genetic predisposition to T2DM was not significantly associated with an increased risk of AD (OR: 1.01; 95% CI: 0.99-1.03; p-value= 0.2) (**Fig 3**). The result of random effect model showed consistent results (**S3 Appendix**).

226 ii) **Two-Sample MR analysis**

It is made available under a CC-BY 4.0 International license .

227 IGAP dataset: The results of our MR study using the IGAP dataset, which included 440 SNPs 228 as IVs, are presented in the S8 Appendix and visualized in Fig 4a. Although 511 SNPs were 229 initially identified as IVs after clumping ($R^2 = 0.1$), the final analysis included fewer SNPs 230 due to several factors. First, not all SNPs from the clumped list had corresponding outcome 231 data in the outcome dataset, leading to the exclusion of SNPs without matching outcome 232 information. Additionally, despite choosing proxies where possible, some SNPs lacked 233 suitable proxies with sufficient LD, resulting in further reduction. 234 Our findings revealed no significant causal association (OR 0.95; 95% CI: 0.86-1.05; p-value 235 = 0.29) between genetic predisposition to T2DM and AD using the IVW method, even after 236 applying multiple MR methods to assess the robustness of the results. The result remains insignificant in the sensitivity analysis with different clumping R^2 (ranging from 0.01 to 0.8). 237 238 The details of the results can be found in Fig 5a-5e. 239 EADB dataset: The results of this MR study, which included 490 SNPs as IVs, are presented 240 in the **S9** Appendix and visualized in **Fig 4b**. No significant causal association was found 241 using the IVW method (OR 0.99; 95% CI 0.97-1.02; p-value= 0.52) also across all MR 242 methods. The result remains insignificant in the sensitivity analysis with different clumping R^2 (ranging from 0.01 to 0.8). The details of the results can be found in **Fig 5a-5e**. 243 244 UKB dataset: The results from the UKB dataset, which included 492 SNPs as IVs, are 245 presented in the **S10** Appendix and visualized in **Fig 4c**, showing no significant association 246 (OR 1.00; 95% CI 1.00-1.00; p-value = 0.96). The result remains insignificant in the 247 sensitivity analysis with different clumping R^2 (ranging from 0.01 to 0.8). The details of the 248 results can be found in Fig 5a-5e.

It is made available under a CC-BY 4.0 International license .

No significant pleiotropy was observed in the above analyses, with the p-value of MR
Egger regression above 0.05.

251

252 **Discussion**

253 Due to the nature of MR, which leverages genetic variants as proxies for exposures, this 254 method can help address potential causal relationships between risk factors (T2DM) and 255 outcomes (AD), minimizing the influence of confounding and reverse causality. Our study 256 provides a thorough evaluation of the potential causal association between T2DM and AD by 257 presenting findings of a meta-MR, as well as a new two-sample MR analysis based on IVs 258 for T2DM identified from our review and outcome data from three large datasets (IGAP, 259 EADB, UKB). In the meta-analysis of eight MR studies, we did not observe a statistically 260 significant causal association between genetic predisposition to T2DM and AD. Similarly, 261 our two-sample MR analyses revealed no statistically significant support for a causal 262 association between T2DM and AD across various MR methods, such as IVW, MR-Egger, 263 and weighted median. The results remained consistent even after employing different 264 clumping thresholds (\mathbb{R}^2 ranging from 0.01 to 0.8), further suggesting that the genetic 265 predisposition to T2DM does not have a strong causal impact on AD development. Notably, 266 no evidence of directional pleiotropy, as indicated by non-significant MR-Egger intercepts 267 across all datasets, enhancing our findings' reliability.

With these results, it is essential to assess the accuracy of our findings and investigate reasons for discrepancies with previous MR studies; one of the included MR studies in our review obtained significant association, which is opposite to other included studies (41).

It is made available under a CC-BY 4.0 International license .

271	Firstly, the choice of genetic variants used as IVs differs between studies. Genetic variants
272	with varying strengths of association with T2DM could lead to inconsistent results,
273	particularly if some studies utilize weak IVs that violate MR assumptions. Secondly,
274	variations in data quality and population characteristics such as ancestry, age, and sex could
275	also contribute to differing findings. Studies with more homogenous populations may yield
276	stronger associations than those with diverse cohorts, where confounding factors might
277	obscure true relationships. Our review showed that studies with different outcomes-GWAS
278	may yield wider CIs (32). Thirdly, the definition of AD can affect the result of the MR
279	analysis. Among the MR studies included in this paper, some studies used proxy AD
280	diagnosis, which may affect the characteristics of the population (15).
281	While our study did not find strong evidence of a direct causal association,
282	epidemiological studies frequently report links between T2DM and AD. These associations
283	are likely driven by residual confounding factors such as age, obesity, and hypertension,
284	which can contribute to common underlying mechanisms like metabolic dysfunction,
285	inflammation, and vascular damage (6, 45). One possible explanation for the lack of a
286	significant causal link could be that T2DM may influence dementia risk through pathways
287	distinct from those involved in AD, including insulin resistance (46-48), chronic
288	hyperglycemia (49, 50), inflammation (51-53), and vascular dysfunction (54-57). T2DM is
289	mainly associated with vascular changes that elevate the risk for vascular dementia rather
290	than AD. Conditions like vascular injury and small vessel disease, prevalent in individuals
291	with T2DM, may contribute to cognitive decline and dementia through cerebrovascular
292	damage rather than through amyloid or tau pathology, which is central to AD. Studies
293	indicate that while the pathological changes observed in AD and vascular dementia can
294	coexist, their mechanistic pathways may diverge, which may explain why our MR analysis
295	did not find an increased risk of AD associated with T2DM.

It is made available under a CC-BY 4.0 International license .

Genetic instruments in MR studies may capture broader metabolic traits linked with T2DM, such as insulin resistance, obesity, and dyslipidemia, which could have complex effects on brain health. While these metabolic dysfunctions may increase overall dementia risk, their impact on AD pathology might be indirect or less significant. Additionally, T2DM is influenced by genetic, lifestyle, and environmental factors, and genetic variants linked to T2DM may not fully reflect the molecular mechanisms underlying AD, potentially diluting any AD-specific effect.

303 Clinical Relevance

The lack of a significant causal association between T2DM and AD in our study suggests that T2DM may not directly contribute to AD development. This finding challenges the common assumption that diabetes is a direct risk factor for AD and necessitates a reevaluation of the implications of T2DM for cognitive health. However, it is crucial to note that our results do not rule out the possibility that T2DM could increase dementia risk through alternative pathways.

310 Potential mechanisms, including insulin resistance, chronic hyperglycemia, vascular 311 damage, and inflammation, may independently contribute to cognitive decline, offering an 312 explanation for the associations observed in epidemiological studies between T2DM and 313 dementia risk. While our findings do not support a direct link between T2DM and AD, they 314 underscore the need for further research into the broader impact of T2DM on dementia, 315 particularly through non-AD pathways (58-60). Future studies should focus on the 316 differential effects of T2DM on various dementia types to better understand its role in 317 cognitive decline, which could provide valuable insights for healthcare providers and inform 318 strategies for prevention and intervention in at-risk populations.

It is made available under a CC-BY 4.0 International license .

319 Strengths and Limitations

320	A key strength of our study is its comprehensive methodology, which combines a systematic
321	review and meta-analysis of existing MR studies to enhance statistical power and produce
322	robust association estimates. Our original MR analyses conducted across multiple large-scale
323	datasets further strengthen this. Our rigorous sensitivity analyses, utilizing various MR
324	methods and clumping thresholds, also help mitigate potential biases such as horizontal
325	pleiotropy. However, the limitation should be noted. First, moderate heterogeneity among
326	MR studies was observed in our meta-MR study. We conducted additional sensitivity analysis
327	using a random-effects model, which produced consistent results, supporting the robustness
328	of the pooled effect estimate. Second, the generalizability of our findings may be restricted,
329	particularly for populations outside of European ancestry, necessitating caution in applying
330	these results broadly.

331 Conclusions

In conclusion, no causal association was observed in our study, which included a meta-MR and a two-sample MR analysis of T2DM and AD using large, well-powered datasets. These findings highlight the need for further research to explore other potential mechanisms linking metabolic disorders and neurodegenerative diseases, such as shared inflammatory or vascular pathways, rather than direct genetic predispositions to T2DM as a cause of AD.

337

338 Acknowledgements

339 Funding

It is made available under a CC-BY 4.	.0 International license
---------------------------------------	--------------------------

- 340 S.H. is supported by the China Scholarship Council Program (No. 202208330062). The study
- 341 funder was not involved in the study design, the collection, analysis, and interpretation of
- 342 data, or writing of the report, and did not impose any restrictions regarding the publication of
- 343 the report.

344 **Competing Interests**

345 The authors have no relevant financial or non-financial interests to disclose.

346 Author Contributions

- 347 F.A. conceived of the presented idea. S.H. and T.L. did the systematic review. S.H.
- 348 conducted all statistical analyses under the supervision of F.A. and G.B in close collaboration
- 349 with a genetic epidemiologist as a consultant. All authors discussed the results and
- 350 contributed to the final manuscript.
- 351
- 352
- 353
- 354
- 355
- 356
- 357

359 **References:**

360	1. Sun H, Saeedi P, Karuranga S, Pinkepank M, Ogurtsova K, Duncan BB, et al. IDF
361	Diabetes Atlas: Global, regional and country-level diabetes prevalence estimates for 2021 and
362	projections for 2045. Diabetes Res Clin Pract. 2022;183:109119.
363	2. Global, regional, and national burden of diabetes from 1990 to 2021, with projections
364	of prevalence to 2050: a systematic analysis for the Global Burden of Disease Study 2021.
365	Lancet. 2023;402(10397):203-34.
366	3. Zakir M, Ahuja N, Surksha MA, Sachdev R, Kalariya Y, Nasir M, et al.
367	Cardiovascular Complications of Diabetes: From Microvascular to Macrovascular Pathways.
368	Cureus. 2023;15(9):e45835.
369	4. (WHO) WHO. Dementia 2019 [Available from: <u>https://www.who.int/news-</u>
370	room/fact-sheets/detail/dementia.
371	5. Kumar A SJ, Lui F, et al. Alzheimer Disease. [Updated 2024 Feb 12]. In: StatPearls
372	[Internet]. Treasure Island (FL): StatPearls Publishing; 2024 Jan Available from:
373	https://www.ncbi.nlm.nih.gov/books/NBK499922/.
374	6. Rojas M, Chávez-Castillo M, Bautista J, Ortega Á, Nava M, Salazar J, et al.
375	Alzheimer's disease and type 2 diabetes mellitus: Pathophysiologic and pharmacotherapeutics
376	links. World J Diabetes. 2021;12(6):745-66.
377	7. Gudala K, Bansal D, Schifano F, Bhansali A. Diabetes mellitus and risk of dementia:
378	A meta-analysis of prospective observational studies. J Diabetes Investig. 2013;4(6):640-50.
379	8. Biessels GJ, Staekenborg S, Brunner E, Brayne C, Scheltens P. Risk of dementia in
380	diabetes mellitus: a systematic review. Lancet Neurol. 2006;5(1):64-74.
381	9. Jayaraman A, Pike CJ. Alzheimer's disease and type 2 diabetes: multiple mechanisms
382	contribute to interactions. Curr Diab Rep. 2014;14(4):476.
383	10. Umegaki H. Neurodegeneration in diabetes mellitus. Adv Exp Med Biol.
384	2012;724:258-65.
385	11. Singh VP, Bali A, Singh N, Jaggi AS. Advanced glycation end products and diabetic
380	complications. Korean J Physiol Pharmacol. 2014;18(1):1-14.
38/	12. Biessels GJ, Despa F. Cognitive decline and dementia in diabetes mellitus:
388	mechanisms and clinical implications. Nat Rev Endocrinol. 2018;14(10):591-604.
200	15. Sanderson E, Grymour MM, Holmes MV, Kang H, Morrison J, Munalo MK, et al.
390 201	Mendenan randomization. Nat Rev Methods Primers. 2022;2.
202	14. Litkowski EW, Logue WW, Zhang K, Chalest DK, Lange EW, Hokanson JE, et al. Mondelian randomization study of dishetes and demontis in the Million Veteran Drogram
202	Alzhaimar's & Domentia, 2022;10(10):4267.76
393	15 I uo I Thomassen IO Bellenguez C Granier Boley B de Boias I Castillo A et al
305	Genetic Associations Between Modifiable Pick Factors and Alzheimer Disease IAMA Netw
396	Onen 2023:6(5):e231373/
397	16 Hardy I de Strooper B Escott-Price V Diabetes and Alzheimer's disease: shared
398	genetic susceptibility? I ancet Neurol 2022:21(11):962-4
399	17 Stringer S Wray NR Kahn RS Derks EM Underestimated effect sizes in GWAS:
400	fundamental limitations of single SNP analysis for dichotomous phenotypes PLoS One
401	2011;6(11):e27964.
402	18. Uffelmann E, Huang QQ, Munung NS, de Vries J, Okada Y, Martin AR. et al.
403	Genome-wide association studies. Nature Reviews Methods Primers. 2021;1(1):59.
404	19. Davies NM, Holmes MV, Davey Smith G. Reading Mendelian randomisation studies:

405 a guide, glossary, and checklist for clinicians. Bmj. 2018;362:k601.

It is made available under a CC-BY 4.0 International license .

406	20. Higgins JP, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in meta-
407	analyses. Bmj. 2003;327(7414):557-60.
408	21. Burgess S, Davey Smith G, Davies NM, Dudbridge F, Gill D, Glymour MM, et al.
409	Guidelines for performing Mendelian randomization investigations: update for summer 2023.
410	Wellcome Open Res. 2019;4:186.
411	22. Morris AP, Voight BF, Teslovich TM, Ferreira T, Segré AV, Steinthorsdottir V, et al.
412	Large-scale association analysis provides insights into the genetic architecture and
413	pathophysiology of type 2 diabetes. Nat Genet. 2012;44(9):981-90.
414	23. Scott RA, Scott LJ, Magi R, Marullo L, Gaulton KJ, Kaakinen M, et al. An Expanded
415	Genome-white Association Study of Type 2 Diabetes in Europeans. Diabetes.
410	2017;00(11):2000-902.
417	24. Manajan A, wessel J, which sin Sin, Zhao W, Robertson NR, Chu A I, et al. Remning the accuracy of validated torget identification through acding variant fine manning in ture 2
410	dishetes. Not Canot 2018;50(4):550.71
419	25 Vuo A Wu V Zhu Z Zhang E Kompor KE Zhang Z at al Conomo wido
420	25. Aue A, wu 1, Zhu Z, Zhang F, Kemper KE, Zheng Z, et al. Genome-whoe
421	disbotas. Not Commun. 2018:0(1):2041
422	26 Vuikovia M Kaston IM Lynch IA Miller DP Zhou I Tchoandiiou C at al
423	Discovery of 318 new risk loci for type 2 diabates and related vascular outcomes among 1 4
424	million participants in a multi-ancestry meta-analysis. Nat Genet. 2020;52(7):680-01
426	27 Bellenguez C Küçükali E Jansen JE Kleineidam I Moreno-Grau S Amin N et al
420	New insights into the genetic etiology of Alzheimer's disease and related dementias. Nat
428	Genet 2022:54(4):412-36
429	28 Kunkle BW Grenier-Boley B Sims R Bis JC Damotte V Nai AC et al Genetic
430	meta-analysis of diagnosed Alzheimer's disease identifies new risk loci and implicates AB.
431	tau, immunity and lipid processing. Nat Genet. 2019:51(3):414-30.
432	29. Larsson SC, Woolf B, Gill D. Plasma Caffeine Levels and Risk of Alzheimer's
433	Disease and Parkinson's Disease: Mendelian Randomization Study. Nutrients. 2022;14(9).
434	30. Lambert JC, Ibrahim-Verbaas CA, Harold D, Naj AC, Sims R, Bellenguez C, et al.
435	Meta-analysis of 74,046 individuals identifies 11 new susceptibility loci for Alzheimer's
436	disease. Nat Genet. 2013;45(12):1452-8.
437	31. Bycroft C, Freeman C, Petkova D, Band G, Elliott LT, Sharp K, et al. The UK
438	Biobank resource with deep phenotyping and genomic data. Nature. 2018;562(7726):203-9.
439	32. Garfield V, Farmaki AE, Fatemifar G, Eastwood SV, Mathur R, Rentsch CT, et al.
440	Relationship Between Glycemia and Cognitive Function, Structural Brain Outcomes, and
441	Dementia: A Mendelian Randomization Study in the UK Biobank. Diabetes.
442	2021;70(10):2313-21.
443	33. Schmidt AF, Dudbridge F. Mendelian randomization with Egger pleiotropy correction
444	and weakly informative Bayesian priors. Int J Epidemiol. 2018;47(4):1217-28.
445	34. Hemani G, Bowden J, Davey Smith G. Evaluating the potential role of pleiotropy in
446	Mendelian randomization studies. Hum Mol Genet. 2018;27(R2):R195-r208.
447	35. Bowden J, Davey Smith G, Burgess S. Mendelian randomization with invalid
448	instruments: effect estimation and bias detection through Egger regression. Int J Epidemiol.
449	2015;44(2):512-25.
450	36. Slob EAW, Burgess S. A comparison of robust Mendelian randomization methods
451	using summary data. Genet Epidemiol. 2020;44(4):313-29.
452	57. Hartwig FP, Davey Smith G, Bowden J. Robust inference in summary data Mendelian
455	randomization via the zero modal pleiotropy assumption. Int J Epidemiol. 2017;46(6):1985-
454	98.

455	38. Boehm FJ, Zhou X. Statistical methods for Mendelian randomization in genome-wide						
456	association studies: A review. Comput Struct Biotechnol J. 2022;20:2338-51.						
457	39. Østergaard SD, Mukherjee Ŝ, Sharp SJ, Proitsi P, Lotta LA, Day F, et al. Associations						
458	between Potentially Modifiable Risk Factors and Alzheimer Disease: A Mendelian						
459	Randomization Study. PLoS Med. 2015:12(6):e1001841: discussion e.						
460	40. Andrews SJ, Fulton-Howard B, O'Reilly P, Marcora E, Goate AM. Causal						
461	Associations Between Modifiable Risk Factors and the Alzheimer's Phenome Ann Neurol						
462	2021:89(1):54-65.						
463	41. Meng L, Wang Z, Ji HF, Shen L. Causal association evaluation of diabetes with						
464	Alzheimer's disease and genetic analysis of antidiabetic drugs against Alzheimer's disease.						
465	Cell Biosci. 2022:12(1):28.						
466	42. Pan Y, Chen W, Yan H, Wang M, Xiang X, Glycemic traits and Alzheimer's disease						
467	a Mendelian randomization study. Aging (Albany NY), 2020;12(22):22688-99.						
468	43. Dybier E. Kumar A. Nägga K. Engström G. Mattsson-Carlgren N. Nilsson PM, et al.						
469	Polygenic risk of type 2 diabetes is associated with incident vascular dementia: a prospective						
470	cohort study. Brain Commun. 2023:5(2):fcad054.						
471	44. Thomassen JO. Tolstrup JS. Benn M. Frikke-Schmidt R. Type-2 diabetes and risk of						
472	dementia: observational and Mendelian randomisation studies in 1 million individuals.						
473	Epidemiol Psychiatr Sci. 2020:29:e118.						
474	45. Wang F. Guo X. Shen X. Kream RM. Mantione KJ. Stefano GB. Vascular						
475	dysfunction associated with type 2 diabetes and Alzheimer's disease: a potential etiological						
476	linkage Med Sci Monit Basic Res 2014-20-118-29						
477	46. Milstein JL, Ferris HA, The brain as an insulin-sensitive metabolic organ. Mol Metab.						
478	2021:52:101234.						
479	47. Barone E. Di Domenico F. Perluigi M. Butterfield DA. The interplay among oxidative						
480	stress, brain insulin resistance and AMPK dysfunction contribute to neurodegeneration in						
481	type 2 diabetes and Alzheimer disease. Free Radic Biol Med. 2021:176:16-33.						
482	48. Berlanga-Acosta J. Guillén-Nieto G. Rodríguez-Rodríguez N. Bringas-Vega ML.						
483	García-Del-Barco-Herrera D, Berlanga-Saez JO, et al. Insulin Resistance at the Crossroad of						
484	Alzheimer Disease Pathology: A Review. Front Endocrinol (Lausanne). 2020;11:560375.						
485	49. González P. Lozano P. Ros G. Solano F. Hyperglycemia and Oxidative Stress: An						
486	Integral, Updated and Critical Overview of Their Metabolic Interconnections. Int J Mol Sci.						
487	2023;24(11).						
488	50. Caturano A, D'Angelo M, Mormone A, Russo V, Mollica MP, Salvatore T, et al.						
489	Oxidative Stress in Type 2 Diabetes: Impacts from Pathogenesis to Lifestyle Modifications.						
490	Curr Issues Mol Biol. 2023;45(8):6651-66.						
491	51. Okdahl T, Wegeberg AM, Pociot F, Brock B, Størling J, Brock C. Low-grade						
492	inflammation in type 2 diabetes: a cross-sectional study from a Danish diabetes outpatient						
493	clinic. BMJ Open. 2022;12(12):e062188.						
494	52. Tsalamandris S, Antonopoulos AS, Oikonomou E, Papamikroulis GA, Vogiatzi G,						
495	Papaioannou S, et al. The Role of Inflammation in Diabetes: Current Concepts and Future						
496	Perspectives. Eur Cardiol. 2019;14(1):50-9.						
497	53. Rohm TV, Meier DT, Olefsky JM, Donath MY. Inflammation in obesity, diabetes,						
498	and related disorders. Immunity. 2022;55(1):31-55.						
499	54. Albai O, Frandes M, Timar R, Roman D, Timar B. Risk factors for developing						
500	dementia in type 2 diabetes mellitus patients with mild cognitive impairment. Neuropsychiatr						
501	Dis Treat. 2019;15:167-75.						
502	55. Ortiz GG, Huerta M, González-Usigli HA, Torres-Sánchez ED, Delgado-Lara DL,						
503	Pacheco-Moisés FP, et al. Cognitive disorder and dementia in type 2 diabetes mellitus. World						
504	J Diabetes. 2022;13(4):319-37.						

Govindpani K, McNamara LG, Smith NR, Vinnakota C, Waldvogel HJ, Faull RL, et

- al. Vascular Dysfunction in Alzheimer's Disease: A Prelude to the Pathological Process or a Consequence of It? J Clin Med. 2019;8(5). 57. Eisenmenger LB, Peret A, Famakin BM, Spahic A, Roberts GS, Bockholt JH, et al. Vascular contributions to Alzheimer's disease. Transl Res. 2023;254:41-53. 58. Li Y, Liu Y, Liu S, Gao M, Wang W, Chen K, et al. Diabetic vascular diseases: molecular mechanisms and therapeutic strategies. Signal Transduction and Targeted Therapy. 2023;8(1):152. Vinuesa A, Pomilio C, Gregosa A, Bentivegna M, Presa J, Bellotto M, et al. 59. Inflammation and Insulin Resistance as Risk Factors and Potential Therapeutic Targets for Alzheimer's Disease. Front Neurosci. 2021;15:653651. 60. Zhang Y, Chen H, Li R, Sterling K, Song W. Amyloid β-based therapy for Alzheimer's disease: challenges, successes and future. Signal Transduction and Targeted Therapy. 2023;8(1):248.

56.

It is made available under a CC-BY 4.0 International license .

Fig 1. PRISMA ((Preferred Reporting Items for Systematic reviews and Meta-Analyses)
flow diagram for systematic review and meta-analysis of the association between type 2

```
541 diabetes and Alzheimer's disease.
```

- 542 T2DM, type 2 diabetes mellitus; AD, Alzheimer's disease; MR, mendelian randomization;
- 543 IVW, inverse variance weighting.

It is made available under a CC-BY 4.0 International license .

- 545 Fig 2. Flowchart of Mendelian Randomization analysis.
- 546 T2DM, type 2 diabetes mellitus

It is made available under a CC-BY 4.0 International license .

556
557 Fig 3. The pooled result of Mendelian Randomization analysis between type 2 diabetes

558 mellitus and Alzheimer's disease (based on fixed effect model with heterogeneity

I²=44.16%)

- 560 SNP, Single nucleotide polymorphism; OR, odds ratio; CI, confidence interval

It is made available under a CC-BY 4.0 International license .

570 a. Type 2 diabetes mellitus and Alzheimer's disease - MR analysis using the IGAP dataset:

572

573 b. Type 2 diabetes mellitus and Alzheimer's disease - MR analysis using the EADB dataset:

575

576

It is made available under a CC-BY 4.0 International license .

578 c. Type 2 diabetes mellitus and Alzheimer's disease - MR analysis using the UKB dataset:

580

Fig 4. The causal association between type 2 diabetes mellitus and Alzheimer's disease MR analysis using the IGAP dataset, EADB dataset, and UKB dataset.

- 583 SNP, Single nucleotide polymorphism; OR, odds ratio; CI, confidence interval; IGAP, The
- 584 International Genomics of Alzheimer's Project; EADB, European Alzheimer & Dementia
- 585 Biobank consortium; UKB, UK Biobank

586

587

588

589

590

It is made available under a CC-BY 4.0 International license .

592 a. Clumping R2=0.01, based on inverse weighted variance method:

594

595 b. Clumping R2=0.2, based on inverse weighted variance method:

	nSNP	Outcome source		OR	95% CI	P-value
	456	IGAP		0.95	(0.86, 1.04)	0.28
	507	EADB	H	0.99	(0.97, 1.02)	0.54
	509	UK Biobank		1.00	(1.00, 1.00)	0.86
596			os Odds Ratio			

597

598

599

It is made available under a CC-BY 4.0 International license .

601 c. Clumping R2=0.4, based on inverse weighted variance method:

603

604 d. Clumping R2=0.6, based on inverse weighted variance method:

It is made available under a CC-BY 4.0 International license .

611 e. Clumping R2=0.8, based on inverse weighted variance method:

614 Fig 5. The causal association between type 2 diabetes mellitus and Alzheimer's disease

615 (clumping R2=0.01, 0.2, 0.4, 0.6, and 0.8, based on inverse weighted variance method).

616 SNP, Single nucleotide polymorphism; OR, odds ratio; CI, confidence interval; IGAP, The

617 International Genomics of Alzheimer's Project; EADB, European Alzheimer & Dementia

618 Biobank consortium

619