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Abstract:  

Introduction: Portable electroencephalography (EEG) devices offer the potential for accurate quantification of 

sleep at home but have not been evaluated in relevant populations.  

Methods: We assessed the Dreem headband (DHB), and its automated sleep staging algorithm in 62 older adults 

[Age (mean±SD) 70.5±6.7 years; 12 Alzheimer’s]. The accuracy of sleep measures, epoch-by-epoch staging, and 

the quality of EEG signals for quantitative EEG (qEEG) analysis was compared to standard polysomnography 

(PSG) in a sleep laboratory. 

Results: The DHB algorithm accurately estimated total sleep time (TST) and sleep efficiency (SEFF) with a 

Symmetric Mean Absolute Percentage Error (SMAPE) <10%.  Wake after sleep onset (WASO) and number of 

awakenings (NAW) were underestimated (WASO: ~17 minutes; NAW: ~9 counts) with SMAPE <20%. Sleep onset 

latency (SOL) was overestimated by ~30 minutes when using the entire DHB recording period, but it was accurate 

(Bias: 0.3 minutes) when estimated over the lights-off period. Stage N3 and total non-rapid eye movement (REM) 

sleep durations were estimated accurately (Bias <20 minutes), while REM sleep was overestimated (~25 minutes; 

SMAPE: ~24%). Epoch-by-epoch sleep/wake classification showed acceptable performance (MCC=0.77±0.17) and 

5-stage sleep classification was moderate (MCC=0.54±0.14). After artefact removal, 73% of the recordings were 

usable for qEEG analysis. Concordance (p<0.001) of EEG band power ranged from moderate to good: slow wave 

activity r2=0.57; theta r2=0.56; alpha r2=0.65; sigma power r2=0.34. 

Conclusion: DHB algorithm provides accurate estimates of several sleep measures and qEEG metrics. However, 

further improvement in REM detection is needed to enhance its utility for research and clinical applications. 

 Keywords: Dreem Headband; evaluation; dementia; wearables; electroencephalograph; sleep; polysomnography.  
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Statement of Significance:  

Wearable electroencephalography (EEG) devices such as the Dreem headband (DHB), hold 

promise for accurate monitoring of sleep at home and improving our understanding of 

neurodegenerative conditions. This study is important because it provides a comprehensive 

evaluation of the DHB in older adults, including people living with Alzheimer’s. The DHB 

automatic sleep staging algorithm demonstrated good concordance with polysomnography for 

most standard sleep statistics, and epoch-by-epoch sleep/wake classification. A novel aspect of 

the study is the evaluation of the suitability of the DHB EEG signal for quantitative EEG analysis.  

Our findings highlight the DHB’s key strengths and provide critical recommendations for 

improving usability and performance to establish its potential utility for large-scale, objective 

sleep monitoring in community-dwelling older adults. 
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Introduction 

Disturbances of sleep and circadian rhythms are reported to be highly prevalent in 

neurodegenerative conditions and negatively impacts the quality of life of people living with 

dementia (PLWD) and their caregivers [1], [2], [3], [4]. Accurate monitoring of sleep structure 

and timing can contribute to detecting early signs of neurodegeneration, monitoring disease 

progression in PLWD, and assessing of the effectiveness of interventions to improve sleep 

quality [5]. Clinical polysomnography (PSG), the gold standard for sleep measurement, allows 

for high-quality sleep characterization but comes at considerable cost, is burdensome to the 

individual, requires expert oversight, and is not suitable for longitudinal sleep monitoring. 

In response to these limitations of PSG, consumer sleep technologies are being increasingly 

adopted for monitoring sleep in community-dwelling older adults and PLWD. The low cost of 

consumer sleep technologies, their ease of deployment, and their remote data monitoring and 

collection capabilities hold promise for the large-scale implementation of these technologies, 

including in research settings [6], [7], [8], [9]. These technologies range from devices that detect 

bed occupancy or wrist activity, to devices that record physiological signals capable of 

performing epoch-by-epoch sleep staging similar to PSG. Unfortunately,  not all consumer sleep 

technologies, such as wrist-worn trackers and wearable EEG devices, are currently regulated 

by medical device standards and adhere to American Academy of Sleep Medicine (AASM) sleep 

scoring guidelines, raising concerns about their accuracy and reliability [10]. 

The choice of technology deployed for longitudinal monitoring depends on the intended use and 

the aspect of sleep, behaviour, or condition that is of interest clinically or in a specific research 

context. The wide variety of wearable and contactless sleep technologies on the market deliver 

varying levels of accuracy and data quality. The majority of assessments of accuracy and data 

quality are based on evaluations that are primarily conducted in young and middle-aged adults. 

Indeed, evaluations of the performance of these devices generally do not include the populations 

for which they have potential clinical use including older adults or PLWD. A recent systematic 

review into the use of non-invasive sleep-measuring devices in mid to late life adults did not 

identify any studies evaluating device accuracy in participants with mild cognitive impairment or 

Alzheimer’s [11]. To bridge this gap to some extent, there is an increasing number of studies 

evaluating the promise of consumer sleep technologies in older adult populations and PLWDs 
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[12], [13], [14]. Several wrist wearables and contactless sleep technology devices currently 

available on the market have been shown to provide acceptable quality in assessing aspects of 

sleep including  timing, continuity, heart rate, and sleep disordered breathing, i.e. sleep apnoea, 

in older populations and PLWD. However, the accuracy of detection of sleep vs wake quantified 

by both sensitivity and specificity, and sleep stage classification by these non-EEG devices 

remains challenging. Wearable devices that employ electroencephalography (EEG) could 

address these limitations and offer an accurate and user-friendly alternative to portable PSG 

systems for home sleep assessment [15]. To address this, consumer-grade wearable sleep EEG 

devices have been developed to provide detailed insights into sleep architecture at home. 

Current research on sleep and its relation to brain function not only focuses on sleep stages but 

also on aspects of the sleep EEG, such as slow waves and sleep spindles. Thus, current 

research questions require that the quality of the EEG signals acquired by these devices is 

sufficient for quantitative analyses of EEG data. This will contribute to the understanding of 

sleep’s contribution to disease progression and development of biomarkers [16], [17], [18], [19].  

In summary, to realise the potential of consumer grade sleep EEG devices the accuracy of sleep 

staging and the quality of EEG signals relative to polysomnography needs to be evaluated in 

relevant populations. Here we provide a comprehensive comparison of Dreem headband (DHB, 

Dreem, Paris, France [now Beacon Biosignals, Inc, Boston, United States]), a sleep EEG 

wearable, against PSG in the sleep laboratory in a group of older adults and people living with 

Alzheimer’s (PLWA). Although several studies have evaluated the DHB in younger adults, to the 

best of our knowledge there is no published evaluation that compares the DHB both in 

community-dwelling older adults and PLWA [14], [20], [21], [22]. Here, we compared classical 

sleep measures and sleep stages provided by the DHB algorithm against polysomnography 

manually scored by two independent human scorers and evaluated the signal quality and 

prominent characteristics of the EEG, such as slow-wave activity, sigma activity in non-REM 

sleep, and rapid eye movements in REM sleep. 

Methods 

Population and Protocol 

The participant group consisted of 62 individuals between the ages of 44 and 83 (mean±SD)= 

70.5±6.7 years). The Dreem 2 (DHB 2) and 3 (DHB 3) headbands were used to perform an 
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overnight laboratory recording alongside polysomnography in the UK Dementia Research 

Institute Clinical Research Facility at the Surrey Sleep Research Centre with a 10-hour time-in-

bed period. It should be noted that there was a pre-laboratory period involving data collection at 

home. This first-night in the laboratory with extended time-in-bed protocol was chosen to induce 

mildly disrupted sleep, which presents a greater computational challenge for algorithms 

compared to scoring highly consolidated sleep. The data were collected in two separate studies 

conducted in line with the Declaration of Helsinki and Good Clinical Practice (GCP). The 

inclusion/exclusion criteria were kept liberal to allow participants with stable co-morbidities to 

participate if it was safe for them to do so, and the study population to be more similar to the 

intended use group. Concomitant medications use needed to be stable, and the participants 

needed to be able to comply with study procedures and perform activities of daily life 

independently. The population characteristics were also assessed by questionnaires including 

the Epworth Sleepiness Scale (ESS), Standardized Mini-Mental State Examination (SMMSE), 

Pittsburgh Sleep Quality Index (PSQI), and International Consultation on Incontinence 

Questionnaire (ICIQ) (summarised in Table 1). It should be noted that there was a pre-laboratory 

period involving data collection at home. 

Study 1 

Study 1 focused on cognitively intact (SMMSE ≥ 27) older adults aged between 65 and 83 years 

(70.8 ± 4.9 years; N=35; Men: Women = 21: 14) and was conducted using DHB 2 in two cohorts. 

The Surrey Clinical Research Facility (CRF) recruitment database was used to identify, screen, 

and recruit participants. The study received a favourable opinion from the University of Surrey 

Ethics committee (UEC-2019-065-FHMS). A detailed description of the population 

characteristics and inclusion/exclusion criteria can be found in our description of the protocol 

[23]. 

Study 2 

In Study 2, DHB data were collected from 27 participants aged between 44 and 81 years (70.1 

± 8.7 years; N=27; Men: Women = 14: 13). Participants in this study consisted of PLWA (N=12), 

their caregiver or study partner (N=8), and controls (N=7). Neither the controls and partners were 

cognitively impaired. The recruitment of cognitively intact older adults was conducted through 

the Surrey Clinical Research Facility (CRF). PLWA and their respective study partners were 
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identified and recruited through the Surrey and Borders Partnership NHS Foundation Trust 

(SABP) memory services. 

PLWA participating in this study had to have a confirmed diagnosis of prodromal or mild 

Alzheimer's disease (AD) and be aged between 50 and 85 years. This included having an 

SMMSE ≥ 23, residing in the community, and maintaining a stable dose of any dementia 

medication for a minimum of three months. PLWA had the option to participate either 

independently or with a designated 'study partner'. Inclusion criteria for the study partner were 

that they had known the PLWA for at least six months. They could be a caregiver, family 

member, or friend, be aged over 18 and have an SMMSE ≥ 27. The inclusion /exclusion criteria 

for the cognitively intact older adults (aged 50-85 years) were the same as those in Study 1. 

Study 2 received a favourable opinion from an NHS ethics committee (22/LO/0694) and is 

registered as a clinical study (ISRCTN10509121).  

Sleep Diary and PSG assessments  

In both studies participants maintained a sleep diary. The sleep diary was either paper-based or 

a digital  application based on the consensus sleep diary [24]. PSG data were collected during 

the in-laboratory session using the SomnoHD system (SOMNOmedics GmbHTM, Germany). 

The system collected data via electroencephalography (EEG; sampled at 256 Hz from F3-M2, 

C3-M2, O1-M2, F4-M1, C4-M1, and O2-M1), electrocardiography (sampled at 256 Hz), 

respiratory inductance plethysmography (RIP) thorax and abdomen (sampled at 128 Hz), 

photoplethysmography (PPG, sampled at 128 Hz), electromyography (EMG; sampled at 256 Hz, 

both submental and limb), and electrooculography (EOG; sampled at 256 Hz; E2-M1 and E1-

M2). Sleep scoring was performed at 30-second intervals in the DOMINO software environment, 

following the guidelines of the AASM, by two independent scorers (a Registered 

Polysomnographic Technologist™ [RPSGT] and a trained scorer), to generate a consensus 

hypnogram [25]. The AASM recommended scoring rules were applied by the RPGST to 

determine the apnea-hypopnea index (AHI) and period limb movement index (PLMI) [26]. 

Dreem Headband (DHB) 

Both DHB 2 and 3 are dry EEG headbands that allow the collection of sleep EEG (sampled at 

250 Hz) for multiple days along with 3D accelerometer data (sampled at 50 Hz). The audio 
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stimulation output feature of the devices was disabled in both studies. The firmware and software 

versions of the DHB used in the studies is provided in Supplemental Table S1. 

Both DHB versions (2 and 3) allow the transfer of the collected data to Dreem secure-cloud 

servers and the data can be downloaded through a common data portal. The automatic sleep 

stage scoring of the collected data is performed online through Dreem’s proprietary algorithm 

and available for download in the data portal along with the sleep statistics. Both the sleep stage 

scoring and sleep statistics are automatically generated by the DHB algorithm for the entire 

period over which the device is switched on (i.e., over the entire recording period). In both 

studies, the recordings were manually initiated without the use of the DHB mobile app. The fit of 

the device to the participant’s head was optimised using the adjustable band provided by the 

manufacturer to obtain a firm but comfortable device placement. The PSG wire-up was 

conducted after the DHB was fitted on the head of the participant.  

Dreem 2 Headband (DHB 2) 

The DHB 2 comprises of six dry electrodes: four frontal (Fp1, Fp2 [ground], F7 and F8) and two 

occipital (O1 and O2) electrodes, to acquire the EEG data. The available channels (seven total 

7) in the downloaded data are Fp1-O1, Fp1-O2, Fp1-F7, Fp1-F8, F7-O1, F8-O2 and F8-F7. In 

addition to the EEG and the 3D accelerometer, DHB 2 also used a photoplethysmography (PPG) 

sensor to collect photoplethysmography data at 50Hz.  

Dreem 3 Headband (DHB 3) 

The DHB 2 uses five dry electrodes: three frontal (Fp2 [ground], F7 and F8) and two occipital 

(O1 and O2) electrodes to collect the EEG data. The available channels (total 5) in the 

downloaded data are F7-O1, F8-O1, F7-O2, F8-O2, F8-F7. 

Collected data 

The DHB data were downloaded from the Dreem data portal. The files consisted of the EEG 

data (.h5), automatic DHB hypnogram (.txt) and sleep reports (.csv). The DHB scores five stages 

(Wake, rapid eye movement (REM), N1, N2 and N3) at 30-second intervals along with artifact 

epochs detected. The sleep report files contain sleep summary measures determined over the 

recording period of the device and recording quality measures. The PSG data were exported 

from the DOMINO software interface in European Data Format (.edf) file for the raw EEG and 
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physiological data, and text (.txt) file format for the consensus hypnograms. Two participants 

(one study partner and one cognitively intact older adult/control) in Study 2 used DHB 2.  

Assessment of Sleep measures 

Sleep Summary 

The sleep summary measures assessed include total sleep time (TST), sleep onset latency 

(SOL), sleep efficiency (SEFF), wake after sleep onset (WASO), number of awakenings (NAW), 

and time spent in each sleep stage (N1, N2, N3, rapid eye movement (REM) and non-REM 

sleep). The PSG sleep summary measures are determined over the lights-off period. The lights-

off time was self-selected by the participant and therefore varies between participants. The DHB 

algorithm automatically generates the sleep summary measures over the entire recording period 

and is referred to as the analysis period –automatic (AP-A). The primary comparison was 

performed against the PSG lights-off period and the AP-A measures of the DHB algorithm. 

Further, to perform a comparison between the PSG and DHB over the same analysis period 

(AP), we estimated the DHB sleep summary measures over the PSG lights-off period (referred 

to as the analysis period – manual [AP-M]). 

The association between the PSG and DHB were analysed using coefficient of determination, 

Bland-Altman agreement measures, consistency intraclass correlation with two-way random 

effects (ICC), standardised absolute differences (SAD) and symmetric mean absolute 

percentage error (SMAPE). The differences between the compared estimates were tested for 

normality using Shapiro-Wilk test before Bland-Altman analysis was performed and 95% 

confidence intervals are provided were applicable [27], [28], [29]. Measures such as minimum 

detectable change (MDC), bias, and limits of agreement (LoA) were also computed. The MDC 

represents the smallest detectable change in an estimate that exceeds the device's 

measurement error[28]. We relied on the confidence interval range of sleep duration (% TST) 

associated with interrater variability in scoring reported by Younes et al., to define the satisfactory 

agreement level for the sleep summary measures (Reference values from Younes et al.,: N1= 

11.1±7.1 %TST; N2= 18.9±7.4 %TST; N3= 14.4±6.1 %TST;REM= 10.0±4.7 %TST) [30]. Please 

note that the DHB sleep report files also contain lights off and lights on variables. These variables 

are not identical to the lights-off and lights-on times as recorded by the RPSGT technician and 

used for the PSG scoring. Please refer to the Supplemental Materials, Comparison of the Lights-
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Off Period section for further discussion of the Lights-off, Lights-On variables as reported in the 

Dreem sleep. All the data analyses reported here were performed using MATLAB (version 

2022b; Math Works).  

Epoch-by-epoch concordance 

The epoch-by-epoch (EBE) concordance of the automatic DHB algorithm hypnogram to the 

consensus hypnogram was performed over the common recording interval between the PSG 

and DHB. The measures used to quantify epoch-by-epoch sleep stage prediction performance 

was determined via standard metrics such as sensitivity, specificity, accuracy, Matthew’s 

correlation coefficient (MCC) and F1 Score. Both two stage (sleep vs wake) performance and 

five stage (W, N1, N2, N3, REM) classification performance were evaluated. We relied on the 

interrater reliability estimates reported in the meta-analysis by Lee et al, to determine the 

acceptable agreement for EBE concordance [31]. We used MCC rather than kappa due to the 

identical relationship between the two metrics in the positive quadrant [32].  

Time synchronisation of the DHB and PSG  

To perform an accurate comparison of the EEG data collected by the DHB to the gold standard 

PSG EEG, we time-synchronised the DHB data using synchronization software provided by 

‘Dreem Research’ in Study 1. The output of the software consisted of files containing both the 

synchronised DHB EEG data and synchronised automatically scored DHB hypnogram. For 

Study 2, the synchronization of the DHB data was performed using an FFT-based 

synchronization approach described in the Supplemental Materials, DHB Synchronisation 

section.  

Assessment of similarity of EEG power spectra 
The EEG data from both the PSG and DHB were filtered between 0.5 to 35 Hz using a zero-

phase filter with third-order Butterworth response (Matlab function ‘filtfilt’). To facilitate a robust 

comparison of the collected EEG data between the PSG and DHB, new PSG EEG channel 

derivations (F3-O1, F4-O1, F3-O2, F4-O2, F4-F3) were created to match the DHB EEG 

channels. 

Spectral estimation and Artifact detection 

The spectral composition of the EEG channels was determined by segmenting the recorded 

channels of interest into 30 second epochs using the consensus hypnogram as the temporal 
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marker. Each 30 second epoch was divided into 4 second sub epochs with an overlap of 1 

second as described in [33]. Due to the difficulty in securing the device firmly on the participant 

head and the nature of dry electrode technology used in the DHB, we noticed numerous contact 

artifacts in the collected DHB EEG signals. Artifacts were determined in the 4 second sub-

epochs using the steepness of the spectral slope between 0.75 and 30 Hz as a quality measure 

[34], [35]. The slope was determined using a first order fit (‘polyfit’ function). Sub-epochs that 

had a spectral slope greater than –100 µV/Hz between 0.75 and 30Hz were considered as 

artifact. We applied this lenient rule which is optimised for sensitivity in detecting artefacts rather 

than specificity, to both PSG and DHB data. An example DHB 3 recording before and after 

artifact removal and the average artifact power spectral density (PSD) and Normal EEG PSD for 

the recording showcasing the method is given in Supplemental Figure S1. It can be seen that 

the activity from the head mounted accelerometer in DHB is inefficient in determining EEG 

segments with artifacts and also showcases the effectiveness of the approach used. 

For each of the 4 second sub-epochs determined to be artifact-free, PSD estimates with a 

resolution of 0.25 Hz were computed via Fast Fourier Transform (FFT) after the application of 

an Hanning window (‘periodogram’ function). The epoch wise PSD was computed by averaging 

the PSD estimates of artifact-free 4 second sub-epochs in each epoch (a 30 second epoch is 

considered valid only if >50% of the data is artifact-free). Following the artifact removal, epoch 

wise band power estimates were generated. The same estimation procedure was applied to 

both DHB and PSG data.  

The spectral concordance of DHB to PSG was evaluated in two ways: 1. association between 

the band powers, and 2. Similarity between the PSDs in the 0.5 to 30 Hz range. The five EEG 

band powers that were assessed included slow wave activity (SWA, 0.75 – 4.5 Hz), Theta activity 

(4.75 – 7.75 Hz), Alpha activity (8-12 Hz), Sigma activity (11-16 Hz) and Beta activity (15 – 30 

Hz) during NREM sleep [36]. Coefficients of determination were determined for each comparison 

and a one-way repeated measures ANOVA (‘anova’ function) was performed using a 

significance level of 0.05 [37].  

Effects of population characteristics on performance 

To understand the influence of participant characteristics on the performance of the DHB scoring 

algorithm, a linear mixed-effects model was fitted to all the sleep measures with participant as 
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the random effect (‘fitlme’ function). The fixed effects included sex, age, body mass index (BMI), 

AHI, ESS, ICIQ, PLMI, PSQI, and DHB device type (DHB2 or DHB3). This analysis was 

performed for two cases, 1. With participant category (PLWA, Caregiver or controls) as fixed 

effect and 2. Without participant category as fixed effect. 

Results 

Characteristics of the study population 

The analysis set (n=62) consisted of 35 men (56%) and 27 (44%) women with a mean age of 

70.5 years (SD=6.7). There were 42 controls (mean ± SD= 70.2 ± 5.2 years; Men: Women = 

25:17), 12 PLWA (73.1 ± 5.8 years; Men: Women = 7:5) and 8 caregivers (68.3 ± 12.9 years; 

Men: Women=3:5). Sixty-five percent of the participants (40/62) had one or more self-reported 

comorbidities including obesity, arthritis, type 2 diabetes, etc. Among the three groups, 92% 

(11/12) of PLWA, 75% (6/8) of caregivers and 55% (23/42) of controls reported comorbidities. 

The detailed demographic characteristics of the study population are presented in Table 1. 

Significant urinary incontinence (n=6; ICIQ>5) was reported by about 10% of the participants. 

According to self-report, about 75% of the participants did not have any significant sleep 

disturbances (n=47; PSQI<5) and only 5 % of the participants had significant sleepiness (n=3; 

ESS>10).  

The polysomnography recordings conducted during the laboratory session revealed that 87% 

(54/62) of the participants had some form of obstructive sleep apnea (AHI>5) with 16% (10/62) 

having severe apnea (AHI≥30) while 29% (18/62) had a periodic limb movement index >15. The 

sleep efficiencies of the study population determined by the gold standard laboratory 

polysomnography during this first night in the laboratory ranged between 25.7% to 92.6% 

(mean±SD= 67.9±12.7%) with a mean total sleep time of 351 minutes (SD=78.1). Table 2 

summarizes the PSG sleep summary measures, and the definitions of the measures are 

described in the Supplemental Materials. 

Example laboratory recording 

An example of overnight data collected during the laboratory session is depicted in Figure 1. The 

subfigures consist of the hypnogram, the spectrogram and the slow wave activity during sleep 

of a PSG channel (F3O2) and a DHB channel (F7O2). The comparison of the hypnogram reveals 
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that although there is overall good structural similarity between the hypnogram, the DHB is less 

sensitive in detecting short bouts of wake (underestimates WASO by 18.5 minutes) and is biased 

towards scoring N2 (overestimates N2 by 77.5 minutes).  

The PSG and DHB spectrograms after artifact removal are shown in Figure 1. The signal quality 

and similarity of EEG collected by the DHB can be inferred from inspection of the spectrograms 

and the associated SWA plots. The frequency distribution and power trends in both spectrogram 

and SWA plot between PSG and DHB closely follow each other, with DHB having a larger 

number of artifacts (eg., spikes in the power due to electrode contact changes) and relatively 

lower power in the higher frequencies. The number of 4 second sub-epochs classified as artifact 

in DHB data (7% of TST) was also high compared to PSG (4% of TST).  

The associations between the various raw spectral band powers for each 30 second epoch are 

depicted in the scatter plot shown in Supplemental Figure S2. The plots show high association 

(r2=0.64, p<0.001) between PSG and DHB SWA and a low to moderate level of association 

(r2=0.24 to 0.44, p<0.001) for rest of the spectral bands.  

Assessment of sleep measures 

Sleep summary measures 

The sleep summary assessment of the automatic DHB algorithm estimates (analysis period 

automatically determined by the device [AP-A]) is presented in Table 3 and 4 and Figures 2 and 

3. The DHB algorithm estimates (AP-A) of TST and SEFF were accurate with a SMAPE of less 

than 10% and high agreement (r2>0.65; p<0.001) with acceptable estimation bias. WASO was 

underestimated with moderate agreement while SOL was overestimated (See Table 3). The total 

number of awakening (NAW, awakenings ≥1min) determined by the DHB also had a moderate 

agreement with PSG. The ICC between DHB and PSG was the highest for TST (0.90) followed 

by SEFF (0.83), WASO (0.61) and SOL (0.59).  

For the sleep stage duration estimations (AP-A, see Table 3), the highest agreement with PSG 

was observed for N3 sleep, even though it was underestimated (-17.2 minutes). For REM sleep, 

DHB overestimated its duration, and the agreement was low (24.4 minutes; SMAPE = 23.6%; 

r2=0.26; p<0.001). N1 was underestimated (-14.4 minutes) and N2 duration was overestimated 
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(43.5 minutes) and for both these sleep stages the agreement with PSG was moderate (see 

Figure 3) 

When the sleep summary measures for the DHB were computed for the PSG lights-off period 

(AP-M), rather than the period automatically detected by the DHB, the concordance between 

PSG and DHB improved compared to the automatic DHB estimates (AP-A). The sleep stage 

duration performance over the lights off period (AP-M) for N3 and REM followed that of the DHB 

algorithm estimates (AP-A) while the accuracy of the N1 and N2 estimates decreased. The SOL 

estimate on the other hand was more accurate over the lights off period (AP-M). The results of 

the lights off analysis are presented in Supplemental Table S2, S3 and Figure S3. 

When expressed as % TST, the automatic DHB sleep duration (AP-A, see Table 4) estimates 

yielded high agreement with PSG measures for NREM (N1 and N3) sleep (r2>0.4; p<0.001) and 

low agreement with N2 and REM sleep (r2≤0.15; p<0.01) while the estimates over the lights off 

period (AP-M) had lower agreement for both NREM and REM (r2≤0.3) (see Table 4, and 

Supplemental Table S3 and Figure S4).  

When the linear mixed effects (LME) model was fit with participant as the random effect for the 

difference between the in-laboratory DHB measures and the PSG measures without the 

participant category information, there were significant effects of device (i.e., DHB3 compared 

to DHB 2) on SOL (overestimation of 23.8 minutes by DHB2, p=0.0013), duration and % TST of 

REM (underestimation of -37.88 minutes by DHB2, p=0.008 and -8.1%, p=0.011), N2 

(overestimation of 29.5 minutes, p=0.029 and 10.15%, p=0.003 by DHB2) and NREM 

(overestimation of 30.2 minutes, p=0.025 and 8.1%, p=0.011 by DHB2). We also found 

significant effects (p<0.05) of AHI on N2, NREM and REM sleep. There were no significant 

effects of MMSE or participant category.  

Epoch-by-epoch (EBE) concordance 

The DHB had a high discriminative power to distinguish between sleep and wake with a MCC of 

0.77. Among the sleep stages, the NREM and N3 sleep stages were most accurately classified 

(MCC >0.65) followed by REM and N2 (see Table 5). DHB performed the poorest in classifying 

N1 sleep (MCC=0.18). The detailed EBE concordance metrics are provided in Table 5 and the 

pooled confusion matrix is shown in Figure 4.  
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The DHB predicted N1 and N3 more often as N2, which contributed to the lower performance in 

distinguishing each NREM stage separately even though performance for overall NREM 

classification remained good. The EBE concordance, as measured by Matthew’s correlation 

coefficient also showed a significant effect of DHB3 (LME model: an increase of 0.11 in MCC, 

p=0.014) compared to DHB 2.  

Assessment of similarity of EEG power spectra 
To investigate the similarity of EEG spectra of PSG and DHB signals, DHB recordings were 

selected if, for at least one EEG channel, 90% of the 30-second epochs contained >50% artifact-

free 4-second sub-epochs. After applying these criteria, 73% (45/62) of DHB recordings in the 

laboratory were deemed usable for the spectral analysis (mean±SD= 602±141 epochs). For all 

the analysis reported below, the PSG EEG channel derivation that was similar to the selected 

low artifact DHB channel was used. 

Normalised band powers were computed and averaged across all NREM epochs in each 

recording (here, each 4 second sub-epochs was normalised using the power within 0 and 35 Hz 

as 100%). Figure 5 illustrates the association between the different spectral band power 

estimates from PSG and DHB. SWA, theta and alpha activity estimates of PSG and DHB were 

found to be significantly correlated (r2>0.56; p<0.001). The association was found to be 

moderate (r2=0.34; p<0.001) for the sigma band and poor (r2=0.08; p=0.058) for the beta band. 

Further inspection of the lack of association revealed a significant difference (p<0.01, one-way 

ANOVA) in the slopes of the correlation between PSG and DHB estimates of the average nightly 

NREM band powers estimated among the participants in Cohort 1 of Study 1 (N=12) and the 

remaining participants (N=33) in the data. ANOVA revealed that the difference was associated 

with variations in the firmware versions of the Dreem 2 headband (see Supplemental Table S1).  

To assess the similarity between the DHB and PSG PSDs, log PSDs of PSG were compared to 

log PSDs from DHB data for the EEG channel with the least artifacts, where mutual pairs of 4-

second sub-epochs were available. The average Pearson correlation (significance p<0.05), 

across all participants was (n=444373): ρ =0.61±0.16 [min:0.18 ,max:0.93]; wake (n=143457) ρ 

=0.49±0.15 [min:0.18 ,max:0.93]; sleep (n=300916) ρ =0.66±0.12 [min:0.18, max:0.92]. The 

ANOVA revealed that the term ‘DHB device type’ had a significant effect on ρ, which were overall 

higher for DHB 3 compared to DHB 2 (F(1,444369) = 11.48, p <0.001). We have provided an 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 18, 2024. ; https://doi.org/10.1101/2024.12.18.24319240doi: medRxiv preprint 

https://doi.org/10.1101/2024.12.18.24319240
http://creativecommons.org/licenses/by-nc-nd/4.0/


averaged PSD across all participants for all artifact-free epochs in DHB and PSG in the 

supplemental materials, Figure S5. 

Discussion 

The comparison of the Dreem headband (DHB), and associated sleep scoring algorithm, to gold 

standard PSG measures of sleep, manually scored, and the sleep EEG revealed both strengths 

and limitations of this wearable sleep EEG device when used in a heterogeneous group of 62 

older adults including PLWA.  

PSG recordings confirmed prevalent sleep disorders within this population, including obstructive 

sleep apnea (87% of the participants) and periodic limb movements (29%), which are consistent 

with the prevalence previously reported in community-dwelling older adults [38], [39]. The 10-

hour time-in-bed protocol implemented along with these sleep disorders induced mildly disrupted 

sleep with an average sleep efficiency of 68% and varying TST (351.3±78.1 minutes) and WASO 

(144.9±53.4 minutes). Despite this, the mean PSG estimated sleep stage durations (%TST) in 

our population were in line with the age specific normal ranges reported in the literature [40]. 

Challenges in DHB Recording 

All laboratory recordings were successful, and DHB data were collected alongside PSG for all 

62 participants. The DHB algorithm scored sleep stages for all 62 recordings. However, the 

quality of the EEG signal from the DHB system was found to be affected by the contact quality 

of the DHB's dry electrode with the participant’s scalp. Despite the DHB being used concurrently 

with PSG and its wear being supervised to ensure optimal placement, design issues specific to 

the DHB (such as slipping out of position and tilting during the night) and the limitations of the 

dry electrode contributed to suboptimal signal quality in several recordings. As a result, only 73% 

(45/62) of the recordings in this study were usable for Quantitative EEG analysis. This issue was 

further compounded by the lack of referential single channels in the acquired data. 

Consequently, even minor head movements in active sleepers caused shifts in device 

positioning, leading to the loss of multiple EEG channel derivations, which is suboptimal. Our 

observations are consistent with similar issues of optimal device wear, data loss and signal 

quality issues of the DHB dry electrode system previously discussed in studies of younger 

populations [41], [42], [43]. 
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Analysis Period of DHB 

The period over which the sleep measures are estimated influences their clinical usefulness and 

impacts the comparability of the wearable derived sleep measure. The DHB algorithm 

automatically generates the sleep statistics based on the entire recording period i.e. the period 

over which the device was switched on, while in standard PSG sleep statistics are estimated 

over the lights off period. In our analysis, this difference in the analysis period between the DHB 

algorithm and PSG affected both SOL and WASO estimate accuracy. We found that the 

accuracy of the SOL improved significantly when the AP was set to the PSG experimental lights 

off periods which highlights the importance of measuring environmental light to understand the 

attempted sleep period.  

DHB Algorithm's Accuracy in Older Adults: A Comparison to Literature 

The minimum detectable change (MDC) for sleep duration measures in N1 (MDC = 10.8% TST), 

N2 (MDC = 21.6% TST), and N3 (MDC = 16.5% TST) stages was within the upper bounds of 

interscorer variability differences reported in the meta-analysis by Younes et al., 2018 [30]. This 

suggests that the DHB algorithm performs comparably to manual scoring variability for NREM 

sleep stages. In contrast, the MDC for REM sleep (MDC = 19.5% TST) exceeds the variability 

limits outlined in the Younes et al. study, highlighting a need for improvements in detecting REM 

sleep.  

In this study, conducted on older adults (N=62 and mean age= 70.5 ± 6.7 years), the DHB 

algorithm demonstrated robust performance in epoch-by-epoch sleep/wake classification of 

sleep/wake with an MCC of 0.77±0.17. Since MCC and kappa are identical to each other we 

directly compare MCC and kappa in the rest of this discussion [32]. This performance was 

comparable to the prior evaluations in younger populations, including DHB 3 evaluated by Ong 

et al., 2023 (N = 40, mean age = 38.03 ± 14.74 years, κ = 0.76 ± 0.12) and DHB 2 evaluated by 

Arnal et al., 2021 (N = 25, mean age = 35.32 ± 7.51 years, κ = 0.74 ± 0.15) [14], [20]. For specific 

sleep stages, the DHB algorithm demonstrated moderate accuracy (0.35 < MCC < 0.7) for 

NREM, N2, N3, and REM stages, while achieving notably lower accuracy for N1 (MCC = 0.18). 

These results for NREM stages are consistent with values reported by Lee et al., 2022 [31].  Our 

findings showcase the limitations of the DHB algorithm's in detecting N1 and REM sleep and 
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suggest that this limitation is likely due to the absence of additional physiological signals such 

as electrooculography (EOG) and electromyography (EMG). 

Overall, the DHB algorithm achieved moderate concordance across all vigilance states (Wake, 

N1, N2, N3 and REM) with the consensus PSG hypnogram (MCC = 0.55 ± 0.14) in this 

population of older adults. This performance was lower than that reported in younger 

populations, where Ong et al., 2023 (Overall κ = [0.76, 0.86]) and Arnal et al., 2021 (Overall κ = 

0.74 ± 0.10) demonstrated higher accuracy [14], [20]. This discrepancy is likely attributable to 

the influence of age-related changes in sleep physiology affecting the DHB algorithm’s 

performance. Please note that comparison with previous studies is hampered by the limited 

number of performance metrics reported in those previous studies. 

Comparison of DHB to Other Sleep Monitoring Technologies 

To understand the position of the DHB as a sleep monitoring technology in the current landscape 

of consumer sleep trackers, we compared the performance of the DHB, a dry EEG based 

wearable, in our older adult population to consumer sleep trackers including  wristworn trackers, 

radars and undermattress trackers evaluated in recent studies. In the study by Ong et al., 2023, 

actigraphy and consumer sleep trackers (Oura ring and Fitbit) had a lower sleep/wake 

classification performance compared to DHB 3 (κ = 0.76 ± 0.12, Ong et al., 2023), with the Oura 

ring (κ = 0.61±0.15) performing better than Fitbit (κ = 0.55±0.14) and Actigraph (κ = 0.46±0.15), 

showcasing DHB’s superior sleep/wake classification performance due to its direct 

measurement of brain activity [27], [44], [45]. Comparing DHB performance to our previous 

evaluation of contactless sleep technologies in older adults (N=35,  mean age = 70.8 ± 4.9 

years), the Somnofy radar, which provided the higher sleep/wake classification 

(MCC=0.63±0.12) compared to under-mattress trackers like Withings sleep analyser 

(MCC=0.41±0.15) and Emfit QS (MCC=0.35±0.16), still under performed relative to DHB [26]. 

Thus, overall DHB offers a clear advantage over traditional actigraphy, wearable, and 

contactless sleep trackers with respect to performance. The other devices may however be more 

suitable for longitudinal recordings. Furthermore, similar to other dry-EEG based sleep 

technologies like the novel in-ear/ behind-the-ear EEG sensors, DHB faces difficulty in detecting 

N1 and REM sleep when compared to gold standard PSG [46], [47], [48].  
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Suitability of DHB for Quantitative EEG 

Despite the use of lenient artifact removal criteria, over 25% of the laboratory recordings were 

unusable due to high levels of EEG artifacts, highlighting challenges in collecting high-quality 

EEG signals in wearable dry-EEG devices, even in controlled laboratory settings. Among the 

remaining 73% of usable recordings, strong correlations were observed for SWA, theta, and 

alpha band power estimates between PSG and DHB recordings (r² > 0.56; p < 0.001), and 

moderate correlations were found for the sigma band (r² = 0.34; p < 0.001), suggesting that the 

DHB reliably captures key sleep EEG features. This offers opportunities to better quantify the 

associations between sleep and physiological and cognitive outcome measures in larger scale 

sleep studies in the community. 

Conclusion  
This evaluation of the DHB in a sleep laboratory setting assessed its performance in an older 

population living with health and sleep conditions common in this age group. The concordance 

between gold standard PSG and DHB algorithm scoring of sleep/wake epochs was substantial 

(MCC: 0.77), surpassing the interrater agreement (𝜅=0.70) reported in Lee et al., 2022 [31]. 

While the accuracy of determining N3 and total NREM sleep durations was moderate, the DHB’s 

automated algorithm requires further refinement to improve N1 and REM sleep detection and 

better adapt to the unique characteristics of older adult sleep patterns. Despite the need for 

improvements in the dry-electrode technology used in DHB, 73% of the recordings were of 

sufficient quality to quantify slow wave and sleep spindle activity. However, agreement between 

PSG and DHB estimates of spectral power deteriorated at higher EEG frequencies. Overall, our 

comprehensive evaluation highlights the DHB’s strengths in terms of portability andperformance 

relative to other currently available sleep technologies and underscores its potential to become 

a useful tool for objective monitoring of sleep in community dwelling older adult populations.  
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Table 1. Demographical Characteristics of Participants 

 

Note: The values shown are the mean followed by the (standard deviation) and [min max]. 

Characteristics Study 1 Study 2 Total 

N 35 27 62 

Age (years) 

[min max] 

70.8 (4.9) 

[65 83] 

70.1 (8.7)  

[44 81] 

70.5 (6.7)  

[44 83] 

Women (n [%]) 14 [40] 13 [48] 27 [44] 

Standardized Mini-Mental State 

Examination (SMMSE) 

28.7 (1.4) 
[25, 30] 

28 (1.5) 
[24, 30] 

28.37 (1.48) 

[24, 30] 

BMI (kg/m2) 
26.7 (4.7) 

[20 39.7] 

27.6 (6) 

[16.8 42.1] 

27.1 (5.3) 

[16.8 42.1] 

AHI (events/hr) 
19.9 (15.5) 

[1.6 66.7] 

14.8 (11.7) 

[1.7 48.2] 

17.7 (14.1) 

[1.6 66.7] 

Pittsburgh Sleep Quality Index 

(PSQI) 

4.2 (1.9) 

[1 7] 

4.2 (3.63) 

[0 14] 

4.1 (2.8) 

[0 14] 

Epworth Sleepiness Scale (ESS) 
3.7 (2.7) 

[1 9] 

4.4 (3.3) 

[0 12] 

4 (2.9) 

[0 12] 

International Consultation on 

Incontinence Questionnaire (ICIQ) 

1.0 (1.7) 

[0 6] 

2.3 (3.2) 

[0 13] 

1.6 (2.5) 

[0 13] 

PLWA 

N - 12 12 

Age (years) 

[min max] 
- 

73.1 (5.8) 

[61 81] 

73.1 (5.8) 

[61 81] 

Women (n [%]) - 5 [42] 5 [42] 

SMMSE - 
26.9 (1.5) 

[24 29] 

26.9 (1.5) 

[24 29] 

Study Partner 

N - 8 8 

Age (years) 

[min max] 
- 

68.3 (12.9) 

[44 80] 

68.3 (12.9) 

[44 80] 

Women (n [%]) - 5 [63] 5 [63] 

SMMSE - 
28.9 (0.8) 

[28 30] 

28.9 (0.8) 

[28 30] 

Cognitively unimpaired older adults / Controls 

N 35 7 42 

Age (years) 

[min max] 

70.8 (4.9) 

[65 83] 

67 (6.2) 

[61 79] 

70.2 (5.2) 

[61 83] 

Women (n [%]) 14 [40] 3 [43] 17 [40] 

SMMSE 
28.7 (1.4) 
[25, 30] 

28.9 (1.1) 

[27 30] 

28.7 (1.3) 

[25 30] 
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Table 2. PSG Sleep measures 

 

Note: The PSG measures are estimated over the lights off period. The values shown are the mean followed by 

the (standard deviation) and [min max]. 

 

 

 

 

 

 

 

 

 

Sleep 

measures 

Study 1 

(N=35) 

Study 2 

(N=27) 

PLWA 

(N=12) 

Study 

partner 

(N=8) 

Controls 

(N=42) 
Total (N=62) 

TST 

(minutes) 

386.0 (65.7) 
[282.0, 504.0] 

306.3 (70.3) 

[121.0, 433.5] 

307.8 (82.8) 

[121.0, 408.5] 

300 (72.7) 

[179.0, 433.5] 

373.5 (68.9) 

[239.5, 504.0] 

351.3 (78.1) 

[121, 504] 

SOL 

(minutes) 

15.1 (12.6) 
[0, 49.5] 

18.9 (25.3) 

[0, 119] 

25.3 (34.4) 

[0, 119] 

11.7 (15.4) 

[0, 47.5] 

15.3 (12.5) 

[0, 49.5] 

16.8 (19.1) 

[0, 119] 

WASO 

(minutes) 

138.0 (51.9) 
[30.5, 240] 

153.9 (55.0) 

[44.0, 285.5] 

152.7 (57.7) 

[70.5, 285.5] 

159.7 (61.3) 

[44, 249] 

139.9 (51.2) 

[30.5, 240.0] 

144.9 (53.4) 

[30.5, 285.5] 

SEFF (%) 
71.0 (10.4) 
[52.3, 92.6] 

63.9 (14.4) 

[25.7, 90.3] 

63.1 (16.5) 

[84.9, 66.1] 

63.7 (14.9) 

[37.6, 90.3] 

70.0 (10.7) 

[47.8, 92.6] 

67.9 (12.7) 

[25.7, 92.6] 

N3  

(% of TST) 

20.0 (7.9) 
[3.1, 36.5] 

29.1 (10.5) 

[11.2, 55.5] 

28.4 (10.6) 

[13.5, 55.4] 

25.8 (11.5) 

[11.2, 39.7] 

22.3 (9.5) 

[3.1, 46.5] 

23.9 (10.1) 

[3.1, 55.4] 

N2  

(% of TST) 

47.5 (7.9) 
[33.7, 61.6] 

42.6 (9.0) 

[27.1, 60.6] 

44.4 (9.3) 

[29.3, 56.8] 

43.5 (10.2) 

[27.1, 60.6] 

46 (8.3) 

[28.4, 61.5] 

45.4 (8.7) 

[27.1, 61.5] 

N1  

(% of TST) 

18.1 (8.0) 
[5.6, 37.8] 

14.2 (6.6) 

[5.3, 28.0] 

13.3 (6.2) 

[5.3, 25.6] 

16.3 (8.6) 

[7.8, 28] 

17.3 (7.8) 

[5.6, 37.8] 

16.4 (7.6) 

[5.3, 37.8] 

REM  

(% of TST) 

14.4 (5.5) 
[3.4, 24.0] 

14.1 (6.2) 

[2.1, 28.7] 

13.9 (7.3) 

[2.1, 28.7] 

14.4 (5.4) 

[7.3, 25.0] 

14.4 (5.5) 

[3.4, 25.2] 

14.3 (5.8) 

[2.1, 28.7] 

NREM  

(% of TST) 

85.6 (5.5) 
[76.0, 96.6] 

82.9 (6.2) 

[71.3, 97.9] 

86.1 (7.3) 

[71.3, 97.9] 

85.6 (5.4) 

[75, 92.7] 

85.7 (5.5) 

[74.8, 96.6] 

85.7 (5.8) 

[71.3, 97.9] 
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Table 3. Agreement Metrics for All-Night Sleep Summary Measures (AP-A) 

 

Note. Number of participants, N=62. AP-A- sleep measures automatically generated by the DHB algorithm over the 

DHB recording period. The values shown are the mean followed by the (standard deviation) and [95% confidence 

interval]. The metrics include Bias – difference in measurement between the Dream headband (DHB) and PSG; 

Lower and Upper bounds of the Bias; Minimum detectable change (MDC) – smallest detectable change 

independent of measurement error (half of Bland Altman agreement width); Standardized absolute difference (SAD) 

– directionless version of Cohen’s d; Symmetric mean absolute percentage error (SMAPE) – mean error in 

measurement expressed as percentage; Absolute intraclass correlation with two-way random effects (ICC) – 

measures of measurement reliability; The ICC estimates were computed for each participant and the mean, and 95 

% confidence interval is reported. All the values are rounded to two decimal places. 

 

 

 

 

 

 

 

 

Sleep 

measure 

DHB 

Mean 

(SD) 

PSG 

Mean 

(SD) 

Bias 

[95% CI] 

LoA Lower 

bound 

[95% CI] 

LoA Upper 

bound 

[95% CI] 

MDC 
SAD 

[95% CI] 

SMAPE 

[95% CI] 

ICC 

[95% CI] 

SOL (min) 
43.9 

(32.2) 

16.9 

(19.1) 

27 (23.9) 

[20.9, 33.1] 

-20 

[-30.4, -9.5] 

73.9 

[63.5, 84.4] 
46.9 

1.1 

[1.1, 1.3] 

51.5 

[51.5, 58.8] 

0.59 

[0.4, 0.73] 

TST (min) 
387.7 

(80) 

351.4 

(78) 

36.3 (35.6) 

[27.3, 45.4] 

-33.5 

[-49.1, -18] 

106.2 

[90.6, 121.7] 
69.8 

0.5 

[0.5, 0.8] 

5.6 

[5.6, 6.8] 

0.9 

[0.84, 0.94] 

WASO (min) 
127.5 

(62.3) 

144.7 

(53.5) 

-17.2 (51.5) 

[-30.3, -4.1] 

-118.2 

[-140.7, -95.7] 

83.9 

[61.4, 106.3] 
101 

0.7 

[0.7, 1] 

16.1 

[16.1, 19.5] 

0.61 

[0.42, 0.74] 

SEFF (%) 
62.7 

(13.5) 

67.9 

(12.7) 

-5.2 (7.6) 

[-7.2, -3.3] 

-20.2 

[-23.5, -16.9] 

9.7 

[6.4, 13] 
14.9 

0.6 

[0.6, 0.8] 

6 

[6, 7.1] 

0.83 

[0.73, 0.89] 

NAW 

(counts) 

30.4 

(10.8) 

39.7 

(16.4) 

-9.3 (11.8) 

[-12.3 -6.3] 

-32.5 

[-37.7 -27.4] 

13.9 

[8.7 19.1] 
23.2 

0.9 

[0.9 1.1] 

16.4 

[16.4 19.3] 

0.63 

[0.46 0.76] 
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Table 4. Agreement Metrics for Sleep duration measures (AP-A) 

Note. Number of participants, N=62. The values shown are the mean followed by the (standard deviation) and [95% 

confidence interval]. The metrics include Bias – difference in measurement between the Dream headband (DHB) 

and PSG; Lower and Upper bounds of the Bias; Minimum detectable change (MDC) – smallest detectable change 

independent of measurement error (half of Bland Altman agreement width); Standardized absolute difference (SAD) 

– directionless version of Cohen’s d; Symmetric mean absolute percentage error (SMAPE) – mean error in 

measurement expressed as percentage; Absolute intraclass correlation with two-way random effects (ICC) – 

measures of measurement reliability; The ICC estimates were computed for each participant and the mean, and 95 

% confidence interval is reported. All the values are rounded to two decimal places. 

 

Sleep 

measure 

DHB 

Mean 

(SD) 

PSG 

Mean 

(SD) 

Bias 

[95% CI] 

LoA Lower 

bound 

[95% CI] 

LoA Upper 

bound 

[95% CI] 

MDC 
SAD 

[95% CI] 

SMAPE 

[95% CI] 

ICC 

[95% CI] 

REM (min) 
75.5 

(49.5) 

51.1 

(25.6) 

24.4 (42.5) 

[13.6, 35.2] 

-59 

[-77.6, -40.4] 

107.8 

[89.2, 126.3] 
83.4 

0.8 

[0.8, 1] 

23.6 

[23.6, 29.5] 

0.42 

[0.19, 0.6] 

N1 (min) 42 (19) 
56.3 

(25.9) 

-14.4 (17.9) 

[-18.9, -9.8] 

-49.4 

[-57.2, -41.6] 

20.7 

[12.9, 28.5] 
35 

0.8 

[0.8, 1.1] 

18.8 

[18.8, 22] 

0.69 

[0.53, 0.8] 

N2 (min) 
204.1 

(54.3) 

160.5 

(52) 

43.5 (41.6) 

[32.9, 54.1] 

-38 

[-56.2, -19.9] 

125 

[106.9, 143.2] 
81.5 

1 

[1, 1.2] 

15.2 

[15.2, 17.8] 

0.69 

[0.54, 0.8] 

N3 (min) 
66.2 

(40.4) 

83.4 

(38.2) 

-17.2 (25.1) 

[-23.6, -10.9] 

-66.4 

[-77.3, -55.4] 

31.9 

[20.9, 42.8] 
49.1 

0.6 

[0.6, 0.9] 

22.6 

[22.6, 28.7] 

0.8 

[0.68, 0.87] 

NREM (min) 
312.2 

(65.4) 

300.3 

(65.8) 

11.9 (42.2) 

[1.2, 22.6] 

-70.9 

[-89.3, -52.4] 

94.7 

[76.3, 113.1] 
82.8 

0.5 

[0.5, 0.7] 

5.4 

[5.4, 6.9] 

0.79 

[0.68, 0.87] 

Sleep stage durations as % of TST 

REM  

(% of TST) 

18.6 

(10.7) 

14.3 

(5.7) 

4.3 (9.9) 

[1.8 6.9] 

-15.2 

[-19.5 -10.8] 

23.8 

[19.5 28.2] 
19.5 

0.8 

[0.8 1] 

21.2 

[21.2 26.8] 

0.32 

[0.08 0.53] 

N1  

(% of TST) 

11.1 

(5) 

16.5 

(7.6) 

-5.4 (5.5) 

[-6.8 -4] 

-16.2 

[-18.6 -13.8] 

5.5 

[3.1 7.9] 
10.8 

1 

[1 1.2] 

21.5 

[21.5 24.7] 

0.63 

[0.45 0.76] 

N2  

(% of TST) 

53 

(10.4) 

45.3 

(8.7) 

7.7 (11) 

[4.9 10.5] 

-13.8 

[-18.6 -9] 

29.3 

[24.5 34.1] 
21.6 

1.1 

[1.1 1.4] 

11.5 

[11.5 13.8] 

0.34 

[0.1 0.54] 

N3  

(% of TST) 

17.3 

(10.2) 

24 

(10.1) 

-6.7 (8.4) 

[-8.8 -4.5] 

-23.2 

[-26.9 -19.5] 

9.8 

[6.2 13.5] 
16.5 

0.8 

[0.8 1.1] 

25.8 

[25.8 32] 

0.65 

[0.48 0.78] 

NREM  

(% of TST) 

81.4 

(10.7) 

85.7 

(5.7) 

-4.3 (9.9) 

[-6.9 -1.8] 

-23.8 

[-28.2 -19.5] 

15.2 

[10.8 19.5] 
19.5 

0.8 

[0.8 1] 

4.3 

[4.3 5.9] 

0.32 

[0.08 0.53] 
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Table 5. Epoch-by-epoch concordance over the common recording interval  

Note: Number of participants, N=62. The values shown are the mean followed by the (standard deviation) and 

[95% confidence interval]. 

 

 

 

 

 

 

Sleep Stage Sensitivity Specificity Accuracy  MCC F1 Score 

Sleep/Wake 
0.96 (0.08) 
[0.93, 0.98] 

0.79 (0.15) 
[0.75, 0.82] 

0.9 (0.09) 
[0.87, 0.92] 

0.77 (0.17) 
[0.73, 0.81] 

0.92 (0.08) 
[0.89, 0.94] 

REM 
0.66 (0.33) 
[0.57, 0.74] 

0.95 (0.05) 
[0.93, 0.98] 

0.93 (0.05) 
[0.92, 0.94] 

0.59 (0.24) 
[0.53, 0.65] 

0.64 (0.21) 
[0.59, 0.69] 

NREM 
0.9 (0.11) 

[0.87, 0.93] 
0.8 (0.15) 

[0.77, 0.84] 
0.86 (0.09) 
[0.84, 0.88] 

0.72 (0.17) 
[0.67, 0.76] 

0.87 (0.1) 
[0.84, 0.89] 

N1 
0.16 (0.11) 
[0.13, 0.18] 

0.97 (0.03) 
[0.96, 0.98] 

0.89 (0.04) 
[0.88, 0.9] 

0.18 (0.1) 
[0.15, 0.21] 

0.2 (0.1) 
[0.17, 0.22] 

N2 
0.85 (0.14) 
[0.82, 0.89] 

0.76 (0.14) 
[0.72, 0.79] 

0.79 (0.09) 
[0.77, 0.81] 

0.56 (0.14) 
[0.53, 0.6] 

0.69 (0.12) 
[0.66, 0.72] 

N3 
0.6 (0.29) 

[0.53, 0.68] 
0.98 (0.03) 
[0.97, 0.99] 

0.93 (0.05) 
[0.92, 0.94] 

0.67 (0.22) 
[0.61, 0.72] 

0.69 (0.22) 
[0.63, 0.74] 
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Figure 1. Data collected in the laboratory from a male PLWA participant between the ages of 70 and 75. The 

consensus polysomnography (PSG) hypnogram is depicted at the top of the plot followed by the PSG spectrogram, 

slow wave activity (SWA), Dreem headband (DHB) hypnogram, SWA and spectrogram. Epochs scored as Wake 

have been removed to showcase the SWA profile during sleep. 
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Figure 2.  Association between polysomnography (PSG) and Dreem headband (DHB) for total sleep time 

(TST), sleep onset latency (SOL), sleep efficiency (SEFF), wake after sleep onset (WASO) and number 

of awakenings. The data points in red depicts people living with Alzheimer's, magenta depicts caregivers, and 

blue depicts controls. The DHB measures are automatically estimated by the DHB algorithm over the recording 

period [AP-A]. The top of each of the plots shows the number of participants, the coefficient of determination 

and significance value of the association between the devices.  
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Figure 3. Association between polysomnography (PSG) and Dreem headband (DHB) for rapid eye 

movement (REM), non REM (NREM), N1, N2 and N3 sleep durations. The data points in red depicts people 

living with Alzheimer's, magenta depicts caregivers, and blue depicts controls. The DHB measures are 

automatically estimated by the DHB algorithm over the recording period [AP-A]. The top of each of the plots 

shows the number of participants, the coefficient of determination and significance value of the association 

between the devices.  
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Figure 4. Confusion Matrix for DHB sleep stage classification: Epoch-by-epoch concordance. The 

pooled confusion matrix is for all 62 participants. The total number of epochs were 63546 over the common 

recording period. 
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Figure 5.  Spectral band power correlation between PSG and DHB recordings. The data points in red depicts 

data collected in cohort 2 of study 1 and entire study 2, and blue depicts cohort 1 of study 1. The data points are 

coloured to distinguish the differences in firmware between the two sets of participants. The top of each of the plots 

shows the number of participants, the coefficient of determination and significance value of the association between 

the devices. 
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