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Abstract

Seasonal respiratory infections typically surge within a limited time window, but the ex-
act timing within a given year is hard to predict. The disruptions caused by the COVID-19
pandemic led to dramatic changes in the transmission dynamics of many pathogens, pro-
viding a unique opportunity to study the determinants and robustness of the seasonal timing
of epidemics. Combining detailed data on acute respiratory infections from Germany with
an epidemiological model, we analyzed changes in the timing of seasonal epidemics. The
seasonal surge in infections occurred substantially earlier during the COVID-19 pandemic,
and was reflected in a corresponding shift in the seasonality of all-cause mortality. We show
that this is a consistent, but transient outcome of disrupted epidemic seasonality, predictable
from basic epidemiological principles.

Introduction Many infectious respiratory diseases in human populations experience a sea-
sonal variation in transmission, leading to recurring epidemics (1–5). The non-pharmaceutical
interventions (NPIs) implemented during the COVID-19 pandemic constituted a major disrup-
tion of the seasonality for many endemic respiratory diseases, resulting in wide-spread changes
to their usual seasonal dynamics (6–11). One of the most striking examples of this effect was
the almost complete disappearance of influenza and respiratory syncytial virus (RSV) for one
season or even longer (12–15).

It had been suggested during the COVID-19 pandemic that such disruptions can lead to
changes in the severity and timing of the seasonal dynamics of the respective diseases (16–

20). Out-of-season waves of respiratory infections following COVID-19-associated NPIs have
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subsequentely been reported from around the world (13,15,21–30), which were not necessarily
more severe than previous seasons (31).

Whether these unusual epidemic patterns are a predictable consequence of disruptions of
seasonal infection dynamics and also translate to changes in temporal patterns of mortality
has not been systematically evaluated. While the major drivers of disease seasonality such as
changes in the abiotic environment, vector seasonality and seasonal changes in host behaviour
(1, 32, 33) determine the overall seasonality of diseases, the determinants of the exact timing
remain largely unknown (1).

With more than one full seasonal cycle having passed since the Public Health Emergency of
International Concern due to COVID-19 has been declared over in May 2023, a more complete
picture of the magnitude and duration of the disruptive changes of seasonal epidemics due
to NPIs emerges. The interplay of an emerging respiratory disease and the disruption and
resurgence of already circulating diseases provides a unique opportunity to study the drivers
of seasonal forcing of respiratory diseases and the factors determining the seasonal timing of
epidemics (1).

Transient shift in timing of respiratory disease season We analyzed all available data
for weekly incidences of self-reported symptomatic respiratory infections, doctor’s visits for
acute respiratory infections (ARI) and hospitalisations due to severe acute respiratory infections
(SARI) in Germany for the last 10-12 years. The incidences of respiratory infections follow a
clear seasonal pattern, increasing four to five-fold in late fall and winter compared to the sum-
mer months (Figs. 1a-c). This seasonal pattern was remarkably stable before the COVID-19
pandemic, with incidences consistently peaking during just a few weeks in February and March
each year (Figs. 2a-c).

The NPIs implemented in 2020/21 during the first winter of the the COVID-19 pandemic
in Germany resulted in a reduced transmission not only of Sars-CoV-2, but also of many other
respiratory infections. For example, seasonal influenza and RSV were almost completely absent
in the winter of 2020/21 (Fig. 3). This reduced transmission of respiratory pathogens due to
NPIs is reflected in a reduced number of self-reported respiratory infections and doctor’s visits
for ARIs in the fall and winter of 2020/21 (Fig. 1a,b). This reduction was found across all age
groups, with weekly incidences reduced by 50% or more compared to previous seasons (Figs.
S1b, S2b, S3b). The effect was even more striking for hospitalisations of 0-4 years olds, with
no discernible seasonal increase of SARI cases at all in the winter of 2020/21 (Figs S1c).
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Figure 1 Timeseries data showing the strong seasonal component of respiratory infections and
all-cause mortality in Germany. Pre-pandemic seasons are shown in blue and (post-)pandemic
seasons in red colors. (a) Weekly incidence of self-reported, symptomatic respiratory infections
(SRI). (b) Weekly incidence of acute respiratory infections (ARI). (c) Weekly incidence of
hospitalized severe acute respiratory infections (SARI). (d) All-cause mortality as number of
deaths per 100.000 per week. The winter peaks are often interspersed with a sharp summer
peak, corresponding to heat-related mortality in particularly hot summers.

Despite this anomalous season at the start of the COVID-19 pandemic, the overall epidemi-
ological dynamics of ARI cases continued to be dominated by a clear seasonal signal (Fig.
1a-c), in particular for the severe cases that required hospitalisation (Fig. 1c). At the same time,
rapid evolution of SARS-CoV-2 led to out-of-season waves of emerging viral variants, most
prominently the spread of the Alpha variant from January to April 2021, and the Omicron vari-
ant from January to March 2022. These waves appear as overlaying the dominating seasonal
pattern (Fig. 1a-c).

While the overall seasonality of acute respiratory diseases appeared unchanged after the
anomalous 2020/21 season, there was a striking shift in timing: In the first winter of the COVID-
19 pandemic in 2020/21 and the two following seasons from 2021/22 to 2022/23, the onset and
peak of respiratory disease season was shifted by several weeks, each occurring 8-12 weeks
earlier than in all of the observed previous seasons (Figs. 2a-c).

For the 2020/21 winter, this shift was driven by the seasonally early epidemic spread of
COVID-19 (Fig. 3), which was responsible for the majority of ARI and SARI cases in the
absence of influenza and RSV. After being absent in 2020/21, RSV re-emerged in September
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Figure 2 The same data as in Fig. 1 in a polar plot to highlight the shift in the timing of seasonal
epidemics. As in Fig. 1, pre-pandemic seasons are shown in blue and (post-)pandemic seasons
in red. The bars above the timeseries indicate the four weeks with the highest incidences in
each season. Before the pandemic, those peak weeks occurred almost exclusively in February
and March. During and after the pandemic they were shifted to December or even earlier.
(a) Weekly incidence of self-reported, symptomatic respiratory infections (SRI). (b) Weekly
incidence of acute respiratory infections (ARI). (c) Weekly incidence of hospitalized severe
acute respiratory infections (SARI). (d) All-cause mortality as number of deaths per 100.000
per week.
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of 2021/22, very early in the season and almost simultaneously with the start of the next winter
wave of COVID-19 (Fig. 3). The COVID-19 pandemic was at this time mainly driven by the
highly pathogenic Delta variant (Fig. S4).

As a consequence the incidence of hospitalized SARI cases already peaked in November,
earlier than in any other observed season and 3-4 months before the usual pre-pandemic timing
(Fig. 2c). For the ARI cases the 2021/22 season is more complicated, as the highly transmissi-
ble, but less pathogenic Omicron variant began to rapidly replace the Delta variant in late 2021
and early 2022 (Fig. S4). This emerging variant lead to a peak in ARI cases in March 2022,
which did not lead to a corresponding peak in hospitalisations, presumably due to the generally
lower pathogenicity of the Omicron variant. In 2022/23 seasonal influenza, re-emerging after
being almost completely absent in 2020/21 and 2021/22, had an early epidemic peak in De-
cember, 2-3 months before its usual peak in February or March (Fig. 3). Simultaneously with
influenza in 2022/23 the RSV epidemic occurred, two months later than the very early season
in 2021/22 right after its re-emergence, but still two months earlier than usual (Fig. 3).

This suggests a shift back towards the usual, pre-pandemic seasonal timing for RSV, a pat-
tern that was confirmed for both RSV and influenza in the most recent season in 2023/24. A
similar shift back to pre-pandemic seasonal patterns had also been reported in the US (28).
The 2023/24 season was characterized by a succession of COVID-19 early in the season from
September to December, followed by seasonal influenza and RSV, which both peaked almost
back at their normal timing in late January and early February (Fig. 3). This suggests that the
shift in seasonal timing for previously circulating diseases in Germany was transient and was
gradually reversed within one or two seasons.

Corresponding shift in seasonality of mortality The excess mortality associated with the
COVID-19 pandemic has received a lot of attention, showing that the number of deaths was
substantially higher than expected around the world (34). But changes to the temporal dynam-
ics of mortality have received relatively little systematic attention. For this, we analyzed the
timeseries of weekly all-cause mortality in Germany (35), which also follows a clear seasonal
pattern (Fig. 1d and 2d).

In Germany, weekly mortality is correlated with the weekly incidence of ARI and SARI
cases, generally increasing in fall and peaking in late winter (Fig. 2d). While peak mortality
can vary by more than 30% season-by-season, the timing of the seasonal peak in mortality was
remarkably stable before the COVID-19 pandemic. Mortality generally peaked in February or
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Figure 3 Normalized weekly incidences of laboratory confirmed COVID, seasonal influenza
and RSV in Germany. Influenza and RSV very consistently peaked in February and March,
except during the swine flu pandemic 2009/10 and since the onset of the COVID pandemic.
For RSV we observe a gradual shift of the peak back to its normal timing during the last three
seasons, although the current RSV season still started much earlier than usual. After the early
peak of the first post-pandemic influenza season 2022/23, the current 2023/24 influenza season
has already moved almost back to its pre-pandemic timing.

March, coinciding with the pre-pandemic seasonal peaks in ARI and SARI cases (Fig. 2d).
Naturally, the dynamics of all-cause mortality are dominated by the older age groups, and this
clear seasonal pattern is absent from the youngest age groups (Fig. S1d).

Strikingly, during and after the COVID-19 pandemic the seasonal peak in mortality occurred
2-3 months earlier, in December and early January (Fig. 2d). This is a shift very similar to the
one observed for respiratory infections and a strong signal of the effect the pandemic had not
only on epidemiological processes, but also seasonal dynamics of mortality. The close match
between the shift in mortality and the shift in the timing of respiratory infections suggests that
most of the seasonal component of mortality can in fact be attributed to respiratory infections
and their direct and indirect side effects.
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Shift in seasonal timing in an SIRS model The transient shift in seasonal timing of respira-
tory diseases can be understood within an established SIRS (susceptible-infectious-recovered-
susceptible) model with seasonal forcing. Such SIRS or related SEIR (susceptible-exposed-
infectious-recovered) models have been used to shed light on the epidemiological dynamics of
seasonal diseases, including sudden transitions between different epidemiological patterns (36),
and the transient and long-term effects of perturbations of the seasonal forcing (37).

In the simplest case, the SIRS model describes the spread of an infectious disease in a pop-
ulation of constant size with the fraction of susceptible individuals S, the fraction of infected
individuals I, and the fraction of recovered and immune individuals R, so that S+ I +R = 1.
Susceptible individuals get infected with the intrinsic transmission rate β (t) by infected individ-
uals. The transmission rate varies with time, reflecting that seasonally changing environmental
conditions influence the transmissibility of the disease. We assume a periodically driven trans-
mission rate

β (t) = βmin +(1− p) (βmax −βmin)
1
2

(
1− cos

(2π

52 t
))

,

which for p = 0 oscillates between a minimal transmission rate βmin and a maximum transmis-
sion rate βmax. The factor 1− p in this model reflects the reduction of the amplitude of the
seasonal forcing due to non-pharmaceutical interventions (NPIs), so that p = 0 during a usual
season in the absence of NPIs and 0 < p ≤ 1 during periods of NPIs. We assume that NPIs can
not reduce transmission below the minimal rate βmin even at 100% efficacy, but our results do
not depend on the specific way NPI efficacy p affects transmission. The period of the seasonal
forcing is chosen as 52 weeks, with the maximum transmission rate occurring at t = 26 weeks,
defined as the turn of the calendar year and mid-season.

We fix the minimal transmission rate at βmin = 0.6 and the maximum transmission rate at
βmax = 3. After infection an individual remains infective for a duration of ρ−1 = 1 week, after
which it recovers and enters the fraction R. Recovered individuals are protected against re-
infection for a duration of immunity of ω−1 = 40 weeks. Waning immunity is the result of a
complex interaction between the host’s immune system and antigenic variation of the causal
pathogen, and the exact duration of protection is uncertain for many respiratory diseases (38).
This model leads to annual epidemics and has previously been used to describe the spread of
seasonal influenza (37), and with similar parameters for RSV (39,40). Unless stated otherwise,
NPIs reduce transmission by 30% (p = 0.3).
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The dynamical equations for this SIRS model are

susceptible
dS
dt

=−β (t)SI +ω R

infective
dI
dt

= β (t)SI −ρ I

recovered
dR
dt

= ρ I −ω R

(1)

A timeseries obtained from the numerical solution of the model is presented in Fig. 4a, starting
from an initially completely susceptible population. This corresponds to the scenario of a novel
disease spreading in a population without pre-existing immunity, as for example at the onset of
the COVID-19 pandemic. After introduction of the disease the seasonally varying transmission
rate leads to seasonal epidemics with a very consistent timing (Fig. 4b). For the chosen param-
eter values the peaks of the recurring epidemics are reached in a narrow time window just after
the transmission rate has reached its seasonal maximum.

The very first epidemic is an exception to this pattern, as it starts much earlier in the seasonal
cycle and reaches its maximum before maximum transmissibility has been reached at the turn of
the year (Fig. 4b). This can be understood in terms of the number of secondary infections caused
by one infective individual, which in a completely susceptible population (S ≈ 1) is determined
by the basic reproduction number R0 = β (t)/ρ . This number is directly proportional to the
intrinsic transmissibility β (t) of the disease, and thus it changes with the time of season. But
this is only valid in a fully susceptible population and more generally the reproduction number
not only depends on the transmission rate β (t), but also on the current size of the fraction S of
the population that is susceptible. This leads to the effective reproduction number Re = R0 S,
where both the basic reproduction number R0 and the susceptible fraction S change dynamically
in time.

The disease will only spread and cause an epidemic if Re > 1, which in the model (1)
exactly corresponds to a positive growth rate of the infective fraction I. In this case, the size
of the susceptible fraction S decreases as more individuals become infected and eventually
recover, until Re falls below 1 again. At this point the epidemic has reached its seasonal peak
and the infective fraction starts to decrease. After some time, the susceptible fraction will start
to increase again due to waning immunity until the cycle begins again.
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Figure 4 (a) Timeseries obtained from model (1). During the NPI season marked in red the
maximum transmission rate βmax is reduced by 30%. This results in the suppression of the sea-
sonal epidemic and an earlier epidemic in the following season. (b) Same data as in (a) in a polar
plot, highlighting the shift in peak timing. The seasonal epidemics after the initial introduction
of the disease and right after the NPI season happen earlier than during other seasons. (c) The
effective reproduction number Re is higher earlier in the season after a prolonged buildup of
susceptibles S due to NPIs (orange lines), which is similar to the scenario of a newly arising
disease with limited pre-existing population-level immunity. The blue lines show the situation
during a usual season without disruptions. The dashed vertical lines mark the peak of the sea-
sonal epidemic in the respective seasons, showing the shift forward after an NPI season. (d)
Effect of different levels of NPI stringency on the shift of subsequent seasonal epidemics. The
NPIs generally lead to earlier epidemics in the following season, unless NPIs are so effective
that they almost eradicate the disease. In this case the following season can be slightly later and
weaker than usual, or even be entirely skipped (here for p > ca. 75%). The disease resurgence
two seasons later is then again earlier than usual.
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Since outside of NPI-periods the transmission rate β has fixed temporal dynamics, it is the
dynamic size of the susceptible fraction S that determines the exact timing of when the effective
reproduction number will be above or below 1. Generally, the larger the fraction S is earlier in
the seasonal cycle, the earlier the effective reproduction number will cross this threshold and
the earlier the epidemic will start relative to its underlying seasonal forcing. After introduction
of a disease into a fully susceptible population (S ≈ 1) the effective reproduction number Re is
close to the basic reproduction number R0 = β (t)/ρ , and consequentely the epidemic starts at
the earliest possible time, i.e. as soon as β (t)/ρ > 1 (Fig. 4c).

In the subsequent seasons, when there is some amount of pre-existing immunity on the
population level (S < 1), the effective reproduction number Re < R0 governs the infection dy-
namics and thus the epidemic will start and peak later in the seasonal cycle (Fig. 4c). Due to
the constant rate of immune waning ω and in the absence of other disruptions, the increase of
susceptibles between two consecutive epidemic peaks follows a very consistent pattern. This
results in subsequent epidemics having a very consistent timing later in the seasonal cycle com-
pared to the initial season (Fig. 4b).

If an epidemic season is reduced or entirely skipped due to NPIs, this consistent temporal
pattern is disrupted. After an NPI period and a skipped seasonal epidemic, the buildup of
susceptibles in the population due to prolonged immune waning leads to a higher Re earlier
in the season (Fig. 4c). This in turn results in an earlier onset of the corresponding seasonal
epidemic, which will generally fall somewhere between the timing of the very first epidemic
season and the usual, later timing of unperturbed seasons (Fig. 4b).

The extent of the shift away from the usual seasonal timing depends on the size of the
susceptible fraction reached during and after the NPI period. This buildup of susceptibles ul-
timately depends on the ability of the NPIs to suppress the disease, in the model described by
the efficacy p of NPIs. Varying the efficacy p of the NPIs shows that the seasonal epidemic
is effectively contained if the transmission rate is reduced by 20% or more (Fig. 4d). At the
same time the following season is shifted forward towards an earlier timing. For the chosen
parametrization this shift is most pronounced for an NPI efficacy of ca. 25%, but the forward-
shift is observed for the larger part of the efficacy range up to p ≈ 70% (Fig. 4d). Above
p ≈ 70%, the seasonal epidemic is slightly delayed, despite the effective reproduction number
Re becoming larger than one earlier in the season.

This delay arises because with very effective NPIs the prevalance I drops so low that the
exponential growth rate of the disease is initially so low that a noticable epidemic develops only
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later in the season. If the NPIs are so effective that the disease is almost driven to extinction
(p > 90%), the exponential growth rate is in fact so low that there is not enough time for the
infection to grow into an epidemic within the seasonal window. In this case the epidemic in the
first season after the NPIs is skipped entirely and the disease re-emerges in the second season
after the NPIs. This resurgence then again happens much earlier compared to the usual epidemic
timing (Fig. 4d). This delay or skipping of an additional season after very effective NPIs can
be reduced or even reversed if there is a small, constant influx of infecteds, which prevents the
prevalence I from dropping to extremely low values.

The exact size and timing of seasonal disease outbreaks also depends on the dynamics of
the underlying seasonal forcing. But the general pattern of diseases spreading earlier in their
seasonal cycles either directly after introduction or after reduced transmission in a previous
season is generally robust to variations in the minimum and maximum transmission rates (Fig.
S5). If, however, maximum transmission rates are very high the usual seasonal peaks already
happen relatively early, and disruptions by NPIs have no potential to move them much further
forward (Fig. S5e).

Another result from this simple model is that if waning of immunity happens on a much
faster time scale compared to the seasonal cycle (ω−1 ≪ 52 weeks), a similar shift of the epi-
demic timing following a perturbation of the seasonal forcing would not be observed (Fig. S7).
In this case the population would quickly be made up mostly of susceptibles again following an
epidemic, and the following season would thus again start at the earliest possible time, solely
determined by the intrinsic transmission rate β (t).

Discussion In general, two factors determine if and when seasonal epidemics occurr: (i) sea-
sonal variation of pathogen transmission driven mainly by environmental factors and (ii) the
fraction of the population that is susceptible (1). But the relative importance of these factors
and how they work together to determine the exact timing is not clear. The NPIs associated with
the COVID-19 pandemic and the resulting disruption of the pre-pandemic seasonal pattern has
allowed us to disentangle these factors in more detail.

We observed a significant shift in the timing of seasonal respiratory disease epidemics in
Germany during the fall and winter of 2021/22 and 2022/23. A corresponding shift is also
observed in the seasonal pattern of all-cause mortality. Together with the complete absence of
the most important respiratory diseases during the 2020/21 and 2012/22 seasons, this shift is one
of the clearest signals of the impact that the developing SARS-CoV-2 pandemic and associated
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mitigation measures had on established seasonal epidemics.
This shift is even more profound considering that the timing of seasonal epidemics in Ger-

many has been remarkably consistent, with highest incidences typically occurring within a rela-
tively narrow time window in February and March. In fact, in the last 20 years there is only one
precedent of a similar seasonal shift, caused by the novel 2009 H1N1 influenza which lead to a
global pandemic (41). This early-onset influenza epidemic also led to a transient change in the
timing of seasonal epidemics of RSV and other respiratory diseases. In this case the change in
timing was not as pronounced and not necessarily all in the same direction (41), which may be
more a result of direct viral interference rather than the more limited implementation of NPIs
during this pandemic (42).

Supplementing our analysis of respiratory disease epidemics in Germany with an SIRS
model has enabled us to show that seasonal variation of transmission creates the necessary
window of opportunity for epidemics, but it is the availability of susceptibles that mainly de-
termines the exact timing of the epidemic within this window. The susceptible fraction of the
population increases between consecutive epidemics as a result of a gradual reduction of an-
tibody levels and antigenic shift of the pathogen (38). For an annually occurring epidemic,
skipping of one season then leads to a larger fraction of susceptibles at the start of the next
epidemic window. An analysis of the effective reproduction number within the context of an
SIRS model (1) then predicts an earlier onset and peak of the epidemic (Fig. 4a), matching the
epidemiological data (Fig. 1). This view on the temporal dynamics of the susceptible pool and
the effective reproduction number is analogous to the notions of overcompensation and return
time recently introduced to analyze the conditions for mutual invasibility and co-circulation of
pathogens (43).

It is important to note that this shift in timing is not the result of an individual immunity debt
or otherwise weaker immune system, since individual differences due to previous exposures to
the pathogen is not part of the model. Instead any changes to the usual seasonal dynamics are
the result of a loss of population-level immunity and a greater pool of susceptible hosts, not
because of individually more severe infections.

The SIRS model also predicts that this increased pool of available hosts is depleted quickly
during just one season, bringing the size of the susceptible fraction back to its usual pre-NPI
level two seasons after the skipped season (Fig. 4a). The model thus predicts a relatively quick
shift back to the normal timing and severity for seasonal respiratory epidemics, which indeed
seems to be the case for influenza and RSV in Germany (Fig. 3).
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Since a greater fraction of susceptibles leads to a higher effective reproduction number ear-
lier in the season, the pathogen starts to spread earlier in its seasonal window and the predicted
shift in epidemic timing is generally towards earlier in the season. But if the pathogen has been
driven almost to extinction during the NPI season, even early-onset growth may not be enough
to lead to a noticeable increase in disease incidence during the next season. In this case, re-
peated cryptic spread over one or more seasons is necessary before a noticable epidemic occurs
again. This form of delayed resurgence has for example been described for bacterial respiratory
infections with Mycoplasma pneumoniae (44).

A shift of 2-3 months in the seasonal timing of major respiratory diseases has profound
practical implications. Doctors and hospitals may see a surge of cases when they do not usually
expect them, leading to staffing and resource shortages. This is exacerbated by the shifted peak-
ing of acute and severe respiratory cases during December in Germany, overlapping with the
seasonal holidays. It also highlights the need to anticipate an earlier start to seasonal vaccina-
tion campaigns, such as against influenza, if the preceding season was unusually mild or entirely
skipped. And epidemiologists and public health practitioners need to be aware that comparing
epidemiological data from the current season to the same time point in previous seasons is not
meaningful if a major disruption of the usual seasonal pattern has occurred.

One epidemic season has passed since the WHO declared the global COVID-19 pandemic
over in May 2023. As we have seen from the data on the incidences of respiratory infections,
the overall seasonal dynamics of respiratory infections is returning back to its pre-pandemic
pattern. Seasonal forcing of transmission also plays a role for SARS-CoV-2 (45), but here the
situation remains more complicated due to newly arising variants, rapidly waning immunity and
very high effective reproduction number.

Despite almost the entire population of Germany having been in contact with either SARS-
CoV-2 or a vaccine by mid-2022 (46), the inherently much larger transmissibility of SARS-
CoV-2 makes it prone to spread earlier in the season than other respiratory diseases (cf. Fig S5e).
This is especially true for the later variants of SARS-CoV-2 and for the time being we should
thus expect a succession of early seasonal onset of COVID-19 in fall, followed by seasonal
influenza and RSV closer to their usual time windows of late winter and early spring. This
seasonal timing suggests that a combined vaccination campaign may not be ideal to reduce the
number of cases.

While we have focused on the epidemiology in Germany, repeatable and consistent timing
is a hallmark of seasonal respiratory disease epidemics in many temperate regions (47). At
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the same time there is evidence for shifts in epidemic timing worldwide, suggesting that our
observations hold more generally.

The minimal SIRS model neglects evolutionary aspects of seasonal epidemics arising from
the intertwined processes of waning immunity on the host side and antigenic variation on the
pathogen side (48,49). But the very repeatable timing of seasonal epidemics suggests that such
processes do not generally lead to large-scale shifts in the timing and peak of epidemics. This
either requires the emergence of a novel pathogen into largely immune-naive population or a
major disruption of the usual seasonal dynamics, for example through widespread implementa-
tion of sufficiently strict NPIs.

Our analyis of epidemiological data and an SIRS model highlights that disruptions to the
usual seasonal dynamics of respiratory infections not only affect the severity, but even more
so the otherwise very consistent timing of seasonal epidemics. A simple SIRS model repro-
duces this shift across a wide range of scenarios, showing that such large scale patterns can be
explained by the population level epidemiology of shifting susceptible and infective subpopula-
tions. Beyond explaining the seasonal shift following the SARS-CoV-2 pandemic our analysis
shows more generally that, within the exogenously determined window of epidemic potential,
endogenous variables such as the availability of susceptibles are key for the exact timing of
epidemics.

References

1. Micaela Elvira Martinez. The calendar of epidemics: Seasonal cycles of infectious diseases.
PLoS Pathogens, 14(11):e1007327, 2018.

2. You Li, Rachel M Reeves, Xin Wang, Quique Bassat, W Abdullah Brooks, Cheryl Cohen,
David P Moore, Marta Nunes, Barbara Rath, Harry Campbell, Harish Nair, and on behalf
of the RSV Global Epidemiology Network and RESCEU investigators. Global patterns
in monthly activity of influenza virus, respiratory syncytial virus, parainfluenza virus, and
metapneumovirus: a systematic analysis. The Lancet Global Health, 7(8):e1031–e1045,
2019.

3. Miyu Moriyama, Walter J Hugentobler, and Akiko Iwasaki. Seasonality of respiratory viral
infections. Annual Review of Virology, 7(1):83–101, 2020.

14

 . CC-BY 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 18, 2024. ; https://doi.org/10.1101/2024.12.17.24319104doi: medRxiv preprint 

https://doi.org/10.1101/2024.12.17.24319104
http://creativecommons.org/licenses/by/4.0/


4. Gabriele Neumann and Yoshihiro Kawaoka. Seasonality of influenza and other respiratory
viruses. EMBO Molecular Medicine, 14(4):e15352, 2022.
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Data and materials availability: The epidemiological data is available from the Robert-
Koch-Institut, http://github.com/robert-koch-institut, (50,51). Mortality data
is available from the Federal Statistics Office of Germany, http://www-genesis.destatis.
de, (35). A snapshot of the specific data used in our analysis together with the code used for the
analysis of the data and the SIRS model is available at https://github.com/misieber.
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(a) self-reported respiratory infections, age group 0-4
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(b) acute respiratory infections, age group 0-4
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(c) severe acute respiratory infections, age group 0-4
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(d) all-cause mortality, age group 0-29
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Figure S1 Weekly incidences of respiratory infections in Germany, young age group. Time-
series on the left and same data in a polar plot on the right to show the shift in peak respiratory
infection season. (a) Self-reported, symptomatic respiratory infections (SRI). (b) Acute respira-
tory infections (ARI). (c) Hospitalized severe acute respiratory infections (SARI). (d) All-cause
mortality as number of deaths per 100.000 per week.
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(a) self-reported respiratory infections, age group 35-59
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(b) acute respiratory infections, age group 35-59
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(c) severe acute respiratory infections, age group 35-59
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(d) all-cause mortality, age group 45-49
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Figure S2 Weekly incidences of respiratory infections in Germany, intermediate age group.
Timeseries on the left and same data in a polar plot on the right to show the shift in peak
respiratory infection season. (a) Self-reported, symptomatic respiratory infections (SRI). (b)
Acute respiratory infections (ARI). (c) Hospitalized severe acute respiratory infections (SARI).
(d) All-cause mortality as number of deaths per 100.000 per week.
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(a) self-reported respiratory infections, age group >60
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(b) acute respiratory infections, age group >60

2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024
time (weeks)

200

400

600

800

1000

1200

1400

in
cid

en
ce

 (c
as

es
/1

00
00

0)

Jan

Feb

Mar

Apr

May

JunJul

Aug

Sep

Oct

Nov

Dec

500

1000

2012/13
2013/14
2014/15
2015/16
2016/17
2017/18
2018/19
2019/20
2020/21
2021/22
2022/23
2023/24

(c) severe acute respiratory infections, age group >80
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(d) all-cause mortality, age group 80-84
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Figure S3 Weekly incidences of respiratory infections in Germany, old age group. Timeseries
on the left and same data in a polar plot on the right to show the shift in peak respiratory
infection season. (a) Self-reported, symptomatic respiratory infections (SRI). (b) Acute respira-
tory infections (ARI). (c) Hospitalized severe acute respiratory infections (SARI). (d) All-cause
mortality as number of deaths per 100.000 per week.
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Figure S4 Timeline of major SARS-CoV-2 variants in Germany. Shown are only variants
which reached a proportion of at least 25% at some point. Data source: European Centre
for Disease Prevention and Control, http://github.com/EU-ECDC/Respiratory_
viruses_weekly_data.
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(a) βmax = 4
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(b) βmin = 0.8
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(c) βmax = 5
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(d) βmin = 1
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(e) βmax = 6
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(f) βmin = 1.2

O N D J F M A M J J A S O N D J F M A M J J A S O N D J F M A M J J A S O N D J F M A M J
0%

25%

50%

75%

100%

NP
I e

ffi
ca

cy
 d

ur
in

g 
NP

I s
ea

so
n 

(p
) normal timing (p =0)

normal season NPI season NPI season + 1 NPI season + 2

0.05

0.10

0.15

0.20

pr
ev

al
en

ce
, I

Figure S5 (a),(c),(e) In the absence of NPIs (p = 0), increasing the maximum transmission
rate βmax moves the seasonal peaks to an earlier timepoint, from late February for βmax = 3 to
November for βmax = 6. An NPI season causes a similar disruption as described in the main
text for βmax = 3, but the effect is diminished at higher transmission rates as the usual seasonal
peak gets closer to its earliest possible timing. (b),(d),(f) Increasing the minimum transmission
rate βmin also overall moves the seasonal peak forward, and exacerbates the effect of an NPI
season.
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Figure S6 Duration of immunity ω−1 = 10 weeks
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Figure S7 If immune waning happens much faster than the period of the underlying seasonal
forcing (52 weeks), buildup of susceptibles is so fast that disruptions of the usual cycle have
little effect, other than delaying the next season at very high NPI efficacies due to the disease
being almost driven to extinction.
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