Abstract
Cardiomyopathy presents significant medical burden due to frequent hospitalizations and invasive interventions. While cardiomyopathy is considered a rare monogenic disorder caused by rare pathogenic variants in a few genes, emerging evidence suggests that common genetic modifiers influence disease penetrance and clinical variability. Quantifying the interplay between common genetic modifiers and rare pathogenic variants is challenging due to the rarity of cardiomyopathy cases and pathogenic variant carriers. In this study, we utilized large-scale genetic and phenotypic data from the UK Biobank to refine the genetic architecture of hypertrophic and dilated cardiomyopathies. Using ClinVar annotations and variant effect prediction tools, we first identified known and predicted pathogenic variants and demonstrated their robust association with disease risk, age of diagnosis, and quantitative cardiac phenotypes that reflect disease progression. We next examined the impact of polygenic risk scores on disease in the combined sets of known and predicted pathogenic variant carriers. Indeed, the polygenic risk scores were significantly associated with increased disease risk, with rare pathogenic variant carriers in the top 20% polygenic risk having 2.6 and 2.4 times higher risk than those in the bottom 20% for hypertrophic and dilated cardiomyopathy, respectively. We observed stronger associations in the carrier sets that included predicted pathogenic variant carriers, suggesting improved statistical power. In summary, our study adds to the evidence that common genetic modifiers influence the cardiomyopathy disease risk among rare pathogenic variant carriers and illustrates the benefit of incorporating variant effect predictions to examine the polygenic influence in rare disease variant carriers.
Competing Interest Statement
All authors are current or former employees and/or stockholders of Pfizer. J.B. is a current employee of the National Institutes of Health, but work was conducted at Pfizer. The authors declare no other competing interests.
Funding Statement
This study did not receive any external funding
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
The details of the IRB/oversight body that provided approval or exemption for the research described are given below:
The Research Ethics Committee of the North West Multi-centre gave approval for this work
I confirm that all necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived, and that any patient/participant/sample identifiers included were not known to anyone (e.g., hospital staff, patients or participants themselves) outside the research group so cannot be used to identify individuals.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines, such as any relevant EQUATOR Network research reporting checklist(s) and other pertinent material, if applicable.
Yes
The Chan Zuckerberg Initiative, Cold Spring Harbor Laboratory, the Sergey Brin Family Foundation, California Institute of Technology, Centre National de la Recherche Scientifique, Fred Hutchinson Cancer Center, Imperial College London, Massachusetts Institute of Technology, Stanford University, University of Washington, and Vrije Universiteit Amsterdam.