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ABSTRACT 

Background – Cancers show heterogeneity at various levels, from genome to radiological 

imaging. This study aimed to explore the interplay between genomic, transcriptomic, and 

radiophenotypic data in pediatric low-grade glioma (pLGG), the most common group of 

brain tumors in children. 

Methods – We analyzed data from 201 pLGG patients in the Children’s Brain Tumor 

Network (CBTN), using principal component analysis and K-Means clustering on 881 

radiomic features, along with clinical variables (age, sex, tumor location), to identify 

imaging clusters and examine their association with 2021 WHO pLGG classifications. To 

determine the transcriptome pathways linked to imaging clusters, we employed a 

supervised machine learning model with elastic net logistic regression based on the 

pathways identified through gene set enrichment and gene co-expression network 

analyses. 

Results – Three imaging clusters with distinct radiomic characteristics were identified. 

BRAF V600E mutations were primarily found in imaging cluster 3, while KIAA1549::BRAF 

fusion occurred in subtype 1. The model's predictive accuracy (AUC) was 0.77 for subtype 

1, 0.78 for subtype 2, and 0.70 for subtype 3. Each imaging cluster exhibited unique 

molecular mechanisms: subtype 1 was linked to oxidative phosphorylation, PDGFRB, and 

interleukin signaling, whereas subtype 3 was associated with histone acetylation and DNA 

methylation pathways, related to BRAF V600E pLGGs. 

Conclusions – Our radiogenomics study indicates that the intrinsic molecular 

characteristics of tumors correlate with distinct imaging subgroups in pLGG, paving the 
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way for future multi-modal investigations that may enhance understanding of disease 

progression and targetability. 

Keywords: Pediatric low-grade glioma, MRI, Transcriptomic, Genomic, Radiogenomic 

INTRODUCTION 

Cancer is a complex biological system influenced by a tumor’s evolutionary environmental 

forces. Tumor phenotypes are shaped by a combination of interconnected molecular 

events across the genome, transcriptome, epigenome, and proteome among other 

cellular contexts, which collectively converge to dysregulate cellular biological functions 

in ways that promote oncogenesis and cancer progression 1. Exploring the relationships 

between radiophenotypes—tumor traits beyond conventional analysis quantified from 

radiological imaging that reflect characteristics at genomic and transcriptomic levels—can 

enhance our understanding of tumor dynamics and the variability in therapeutic 

responses across similar histologies 2. 

Pediatric low-grade gliomas (pLGGs), the most common brain tumors in children, 

account for one-third of all pediatric brain cancers 3, 4. While complete resection improves 

survival, deeply-seated or infiltrative tumors often necessitate chemotherapy post-partial 

resection, leading to a 10-year event-free survival (EFS) of around 50% 5, 6. Treatments 

can also impact cognitive and neurological outcomes in longer term, affecting quality of 

life and survivorship 7.   

PLGGs encompass a wide array of molecular subtypes, each associated with 

different prognoses and responses to treatment, underscoring the need for treatments 
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targeted to specific subtypes. The introduction of targeted treatments, including RAF or 

MEK inhibitors, has expanded treatment options for patients with pLGG, paving the way 

for improved patient outcomes 8, 9. However, understanding the biological and molecular 

basis of pLGG tumors beyond single gene mutation is critical for the success of these 

targeted therapies and may be helpful to address current challenges of tumor recurrence, 

rebound, and developing resistance in the era of molecularly targeted agents 8, 10.  

Radiomics – a high throughput approach for extracting quantitative features from 

radiological images – offers the potential to provide non-invasive biomarkers for 

characterizing the molecular underpinnings of tumors 11, 12. However, most existing 

studies on the radiogenomic analysis of pLGGs focus on predicting individual gene 

alterations, such as KIAA1549::BRAF fusion or BRAF V600E mutation 13-16. As WHO CNS 

5 classification recommends the inclusion of driver molecular alterations in standard 

diagnosis, predicting a single mutation or fusion using imaging alone may not be useful 

or sufficient to fully understand the tumor biology. Moreover, focusing on a single pathway 

or gene mutation limits our understanding of the complex interactions between different 

pathways that drive patient-specific responses to targeted treatments. 

We have formerly explored the association of imaging clusters, referred to as 

imaging subtypes, derived through an unsupervised machine learning approach based 

on radiomic features, with key genomic characteristics in pLGG 17. Unsupervised 

clustering based on imaging characteristics aims to uncover distinct and relatively 

homogeneous subgroups or subtypes within a patient population. This approach 

facilitates the identification of patterns and associations that may not be apparent through 

traditional analysis methods 18. Our hypothesis is that radiological patterns - quantified 
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using radiomic features - integrated with machine learning, can uncover molecular 

aspects of the tumor and potential treatment targets, beyond molecular subtypes. In this 

radiogenomic study, we intend to elucidate how information from genomic and 

transcriptomic scales translates into radiophenotypic characteristics.   

METHODS 

The overall workflow of the analysis is illustrated in the graphical representation shown in 

Figure 1. 

Overview of the Data  

In this study, we analyzed retrospectively-collected data from the Children’s Brain Tumor 

Network (CBTN) 19 repository (cbtn.org), which includes specimens and longitudinal 

clinical and imaging data, facilitating the sharing of de-identified samples for research. 

The study complied with HIPAA guidelines and received IRB approval from the Children’s 

Hospital of Philadelphia (CHOP) through the CBTN protocol, with informed consent 

obtained for patient enrollment.  

We focused on patients histopathologically diagnosed with de novo pLGG from 

2006 to 2018. Standard multiparametric MRI (mpMRI) sequences, including pre- and 

post-Gadolinium T1-weighted (T1w, T1w-Gd), T2-weighted (T2w), and T2 fluid- 

attenuated inversion recovery (T2-FLAIR), were collected from 258 pLGG subjects. 

Exclusion criteria included patients older than 18 years at the time of imaging, imaging 

conducted post-surgery or treatment, tumors outside the brain, leptomeningeal 

dissemination, missing MRI sequences, or low-quality imaging. After exclusions, 201 

 . CC-BY 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 16, 2024. ; https://doi.org/10.1101/2024.12.16.24319099doi: medRxiv preprint 

https://doi.org/10.1101/2024.12.16.24319099
http://creativecommons.org/licenses/by/4.0/


subjects with complete mpMRI sequences were included for analysis. Molecular data 

from 165 intersecting subjects were compiled from CBTN records and the Open Pediatric 

Cancer (OpenPedCan) project repository (version 15 data release; DOI: 

10.5281/zenodo.6473912) 20. Patient characteristics are summarized in Supplementary 

Table 1. 

Imaging Data Analysis 

Details on image preprocessing are provided in Supplementary Material SI1. Images 

underwent skull stripping 21 and intensity normalization to a scale of [0, 255] after 

removing outliers to facilitate radiomic feature extraction. We generated Whole Tumor 

(WT) masks by combining all four tumor components generated using our in-house 

automatic pediatric brain tumor segmentation tool (https://github.com/d3b-center/peds-

brain-auto-seg-public) 21, 22, followed by manual revisions when necessary. An extensive 

array of radiomic features (n = 881), including metrics of shape, volume, intensity, and 

texture were extracted. The texture analyses included techniques such as gray-level co-

occurrence matrix (GLCM), gray-level run-length matrix (GLRLM), gray-level size zone 

matrix (GLSZM), neighborhood gray tone difference matrix (NGTDM), local binary pattern 

(LBP), and Collage 23 features, using the WT masks on the multiparametric MRI images. 

We randomly split the dataset into a discovery group (80% of the cohort; n = 160) 

for model training, and a replication group (20% of the cohort; n = 41) for testing, and 

conducted a pairwise Pearson’s correlation analysis on the radiomic features within the 

discovery group, eliminating one feature from each pair that had a correlation coefficient 

(r) exceeding 0.90, reducing the number of features to 438. These features were 
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normalized via z-scoring. Tumor location, a categorical variable, was normalized through 

count encoding, and age at diagnosis was standardized using z-scoring based on the 

mean and standard deviation of continuous features from the discovery group, which was 

then applied to normalize the features in the replication group. We produced histograms 

that display the distribution of signal intensities within specific sequences (x-axis) against 

their frequency (y-axis) across the entire dataset, providing insights into the characteristic 

distribution of these features among different pLGG imaging clusters. 

Imaging-Based pLGG Clusters 

We applied a multi-step clustering approach to a feature set comprising 441 variables, 

including 438 radiomic features, along with age, sex, and tumor location. To reduce the 

dimensionality of the feature space, we utilized principal component analysis (PCA) and 

retained 78 principal components (PCs), capturing over 95% of the total variance and 

preserving the essential information required for accurate modeling and analysis. To 

determine the optimal number of imaging-based pLGG clusters, we used the “elbow 

method”, which analyzes the “within-cluster sum of squares” across the number of 

clusters ranging from 1 to 160, identifying the point of diminishing returns. To ensure 

robust cluster determination, we supplemented the elbow method with the “silhouette 

coefficient”, calculated for cluster counts from 2 to 15. This metric, ranging from -1 to 1, 

validated the optimal cluster number by maximizing inter-cluster separation and intra-

cluster cohesion.  

After identifying the optimal number of clusters, we used the “Greedy K-means++” 

algorithm to cluster the PCs from the discovery cohort. This method, which is less 
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sensitive to initial centroid selection, improves clustering reliability and stability. To 

mitigate any potential biases from random initialization and ensure reproducibility, the 

model was trained 1,000 times in a single run. The finalized model was then used to 

predict cluster membership for the replication cohort (n = 41), to evaluate generalizability. 

Differential Gene and Pathway Expression Analyses 

We analyzed clinical and RNA-Seq data from the CBTN 19 repository using the STAR-

RSEM RNASeq pipeline of the OpenPBTA 20. Details on gene set enrichment analysis 

(GSEA) can be found in Supplementary Material SI2.  To identify pathway expressions 

that are most predictive of imaging cluster assignment, using the glmnet R package, we 

trained an ElasticNet logistic regression classifier using a one-versus-rest strategy for 

each imaging cluster, leveraging 70% of the low-grade glioma cohort in this study to train 

– validate the model and leaving 30% as an independent test set, and used 10-fold cross 

validation to tune the alpha and lambda model parameters. We selected the top 100 most 

variable differentially expressed/co-expressed pathways along with molecular subtype as 

described by Ryall et al 6, 20, the anatomical region of the tumor, age at diagnosis, reported 

sex, and race as predictors. We evaluated the area under the receiver operating curve 

(AUC-ROC) of the training – validation and independent testing sets to evaluate the 

degree of overfitting for each model and retained pathways with non-zero generalized 

linear model (GLM) coefficients for further evaluation. 

Association Analysis between Imaging and pLGG WHO 2021 Classification  

PLGG tumor entities described by the 2021 World Health Organization (WHO) 

classification of central nervous system (CNS) tumors 4 were compiled based on 
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molecular and pathological information from the OpenPedCan v15 data repository 

(described before), which annotates pLGG with well-defined genomic lesions, including 

single nucleotide (SNVs), insertion-deletion (indel), and structural variants (SVs) 

occurring in MAPK pathway-related and non-MAPK pathway-related genes. The 

association between imaging and WHO 2021 classifications was evaluated using a 

likelihood ratio test (LRT) between a saturated Poisson GLM and a nested Poisson model 

excluding the interaction term. A correspondence analysis was then performed on the 

Pearson residuals derived from the Poisson saturated model to visualize the associations 

between imaging and pLGG WHO CNS tumor classifications.   

Analysis of KIAA1549::BRAF Fusion Breakpoints 

All high-confidence, in-frame KIAA1549::BRAF STAR-fusion and/or Arriba fusion calls in 

pLGG tumors were annotated with exon number in canonical transcripts (NM_001164665 

for KIAA1549 and NM_004333 for BRAF) using biomaRt and GenomicRanges R 

packages 24-26. Common breakpoints included those involving exons 15:09 (exon 15 in 

KIAA1549 and exon 9 in BRAF), 16:09, 16:11, and 18:10 6, 27. All other breakpoint 

combinations were classified as rare/novel. 

Data and Code Availability 

The processed data and the codes utilized for the analysis of genomic, transcriptomic, 

and radiomic data in conjunction with patient clinical characteristics is accessible at 

https://github.com/d3b-center/pLGG_imaging_clustering_genomic. All image processing 

tools employed in this study are publicly available and free to use, including CaPTk 

 . CC-BY 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 16, 2024. ; https://doi.org/10.1101/2024.12.16.24319099doi: medRxiv preprint 

https://github.com/d3b-center/pLGG_imaging_clustering_genomic
https://doi.org/10.1101/2024.12.16.24319099
http://creativecommons.org/licenses/by/4.0/


(https://www.cbica.upenn.edu/captk) and the in-house automated tumor segmentation 

model (https://github.com/d3b-center/peds-brain-auto-seg-public).  

RESULTS 

Our clustering model stratified patients into three imaging clusters (Figure 2A, 

Supplementary Figure 1) and was applied to the replication set. Histograms 

(Supplementary Figure 2), presenting variations in imaging characteristics across the 

three imaging clusters, showed cluster 2 had moderate contrast enhancement based on 

the location of the peak of histogram falling around intermediate intensity values. This 

cluster also shows higher peak of T2-FLAIR intensity values within peritumoral edema in 

the higher range of intensity values. Additionally, reduced T2 intensity values were 

observed in the non-enhancing tumor regions for imaging cluster 2 compared to the other 

clusters, which might suggest a denser tumor cell population. 

Top radiomic features influencing PCs (Figure 2B) mainly included the texture 

features that reflect tumor heterogeneity, such as GLCM contrast and homogeneity 

features and the coefficient of variation and skewness from the first-order histogram 

feature family. Additionally, a morphologic feature was also identified as a key contributor 

to the composition of the PCs. 

We examined the relationship between imaging clusters and 2021 pLGG WHO 

CNS tumor classifications 4. Correspondence analysis of Pearson residuals from a 

Poisson GLM revealed pilocytic astrocytomas were over-represented in cluster 1 (Figure 

3A), while cluster 2 was enriched with diffuse low-grade glioma, MAPK-altered tumors 

(IRR = 4.67, p<0.001), and gangliogliomas (IRR = 11.2, p = 0.022), but under-represented 
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pilocytic astrocytomas (IRR = 0.6, p = 0.034). Cluster 3 also under-represented pilocytic 

astrocytomas (IRR = 0.5, p<0.001), and included MAPK-altered diffuse low-grade glioma 

tumors (IRR = 2.85, p<0.001) and pediatric-type diffuse low-grade gliomas, NOS (Figure 

3A). The alluvial plot in Figure 3B shows the association between imaging clusters and 

tumor location. In tandem with Figure 3A, cluster 1 predominantly included cerebellar 

pilocytic astrocytomas with KIAA1549::BRAF fusions, as observed in other studies 9, 28, 

while cluster 3 was linked to diffuse low-grade gliomas with BRAF V600E mutations 

across various brain regions.  

Transcriptomic analysis of imaging clusters using GSEA (Figures 4A-C) revealed 

distinct pathway expressions. Cluster 1 showed lower expression of fatty acid metabolism 

pathway, critical for glioma growth 29, 30, and rhodopsin-like G-Protein coupled receptor 

(GPCR) signaling 31, and higher expression of PDGFRB-related and oxidative 

phosphorylation pathways compared to cluster 2 5, 32. Compared to cluster 3, cluster 1 

also showed reduced expression of rhodopsin-like receptors and FGFR1 signaling, 

frequently mutated in midline low grade gliomas 33, 34, fewer FGFR1 mutations and a 

cerebellar location. Pathways with higher expression in cluster 1 versus cluster 3 included 

oxidative phosphorylation and immune regulatory pathways (complement cascade, MHC 

class I antigen presentation). Comparing clusters 2 and 3, higher expression in adhesion-

related and extracellular matrix remodeling pathways were found, suggesting differences 

in migratory potential.  

Gene co-expression analysis identified seven differentially expressed modules 

across imaging clusters (CEMITool, see Supplementary Material SI2; Figure 4D). 

Consistent with GSEA, lower expression of rhodopsin-like GPCRs and potassium 
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channel signaling was observed in cluster 1 relative to clusters 2 and 3 for module M1, 

along with GABA signaling and synaptic neurotransmission. Module M2 showed higher 

activity in cluster 3 for histone acetylation and DNA methylation pathways. Module M3 

showed decreased activity in cluster 2 for potassium signaling, largely non-overlapping 

with those of Module M1, and glucose homeostatic pathways involving glucagon and 

secretin hormones. Module M4 displayed lower interleukin (ILs 4, 6, 10, 13) and PD-1 

signaling levels in cluster 2. Module M6 demonstrated lower extracellular matrix 

remodeling and integrin-related pathway expression in clusters 2 and 3, with cluster 3 

exhibiting the lowest expression, consistent with GSEA findings. Non-correlated genes 

were enriched in tumor-promoting interleukin pathways (ILs 4, 10, and 13 35-38), 

particularly in cluster 1. Module M5 showed no significant differences or biological 

enrichment across clusters. 

Leveraging a machine learning-based approach to compare differentially 

expressed/co-expressed signaling pathways, molecular subtypes, and clinical variables 

across imaging clusters resulted in an average AUC-ROC of 0.83 | 0.77 (training balanced 

accuracy: 0.79) when predicting cluster 1, 0.94 | 0.78 when predicting cluster 2 (training 

balanced accuracy: 0.84), and 0.84 | 0.70 for training-validation | testing sets respectively 

when predicting cluster 3 (training balanced accuracy: 0.8; ROC curves are depicted in 

Supplementary Figure 3). Figure 5A-C illustrates GLM coefficients for each classifier. 

Tumor anatomical location significantly influenced cluster 1 classification (Figure 5A). 

Collagen degradation pathways and protein-protein interactions at neuronal synapses 

were the most positively and negatively influential pathways associated with cluster 1, 

respectively. For cluster 2 (Figure 5B, in line with Figure 3A-B), diverse molecular 
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subtypes were identified, including deleterious alterations in BRAF that were negatively 

predictive. In contrast to cluster 1, protein-protein interactions at neuronal synapses were 

positively associated with cluster 2 (Figure 5B); transcriptional regulation by the 

hematopoiesis regulator RUNX1 and non-integrin ECM interactions were positively 

associated with cluster 2. In addition to BRAF-associated subtypes, we identified GPCR 

signaling positively associated with cluster 3 and notably non-homologous end joining-

based DNA repair negatively associated (Figure 5C). 

Kaplan-Meier survival analysis and log-rank tests did not show significant survival 

differences across clusters (p > 0.05). However, Cox regression analysis (Figure 6A), 

adjusting for extent of tumor resection, molecular subgroups, and imaging clusters as 

covariates, revealed a significantly better prognosis for cluster 3 compared to cluster 1 

(used as the reference group). Interestingly, an interaction analysis between tumors 

exhibiting KIAA1549::BRAF fusion and imaging cluster 3 suggested a less favorable 

prognosis for this subtype of tumors in cluster 3 (HR = 47, p = 0.012) (Figure 6A). We 

observed BRAF-fusion status-dependent differences in patient survival in cluster 3 

(Supplementary Figures 4-7). Among patients with non-BRAF fusion tumors, those in 

cluster 3 exhibited significantly better EFS relative to cluster 1 in a Cox regression model 

that included covariates for extent of tumor resection (HR = 0.22, p = 0.002; 

Supplementary Figure 5). However, there was no survival benefit for patients in cluster 3 

relative to cluster 1 among patients with BRAF-fusion tumors (HR = 1.3, p = 0.573; 

Supplementary Figure 7).  

We identified KIAA1549::BRAF fusion breakpoint exons to determine their 

distribution in each imaging cluster. Following previous work 27, we defined common exon 
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breakpoints as those involving exons 15:09 (exon 15 in KIAA1549 and exon 9 in BRAF), 

16:09, 16:11, and 18:10, while all other breakpoint combinations were classified as rare. 

Breakpoint types (common vs. rare) were significantly associated with imaging cluster 

(Fisher exact p = 2.0e-03), with rare KIAA1549::BRAF fusion breakpoint tumors found 

solely in imaging cluster 3 (Figure 6B, Supplementary Figure 8). Patients with 

KIAA1549::BRAF rare breakpoint tumors have previously been shown to exhibit worse 

EFS relative to those with common breakpoints. We recapitulated this finding in our cohort 

in a log-rank test (p = 0.03, Figure 6C). However, there was no significant difference in 

EFS between patients with rare vs. common breakpoints in a Cox regression model that 

included covariates for extent of tumor resection and imaging cluster (HR = 1.7, p = 0.48; 

Supplementary Figure 9).  

DISCUSSION 

In this manuscript, we presented an imaging-based clustering method for pLGGs and 

identified three subgroups with different molecular characteristics, beyond what is 

captured via characterization of classic molecular subtypes. Our analysis revealed distinct 

transcriptomic profiles across different imaging clusters, providing deeper insights into the 

molecular underpinnings of glioma behavior and potential future therapeutic targets. 

Imaging cluster 1 showed unique mechanisms that may drive tumor growth, including up-

regulation of oxidative phosphorylation, PDGFRB, and tumor-promoting interleukin 4, 10, 

and 13 signaling 35, 39, 40. Notably, microglia have been found to induce PDGFRB 

expression in low-grade glioma to enhance migratory capacity 5, 32. KIAA1549::BRAF 

pilocytic astrocytomas enriched in cluster 1 have been found to aberrantly activate 

oxidative phosphorylation in part through deleterious mitochondrial DNA mutations 41, 42. 
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Elevated IL10 levels, typically found in invasive higher grade gliomas that suppress anti-

tumor immune activity, highlight potential for targeted therapies with direct inhibitors or 

neutralizing antibodies 35. Cluster 2 showed higher class A rhodopsin-like receptor 

signaling and fatty acid oxidation, features associated with metabolic plasticity and glioma 

stem cell maintenance, common in higher-grade gliomas 31. These findings highlight the 

therapeutic potential of inhibiting glycolytic and fatty acid oxidation pathways 29, 30, 43.  

Differential expression in adhesion and extracellular matrix remodeling pathways 

between clusters 2 and 3 suggests variations in microenvironmental remodeling, 

potentially influencing tumor spread, invasiveness, immune escape, and response to 

immune checkpoint blockade 44. A particularly intriguing finding was the up-regulation of 

pathways related to histone acetylation and DNA methylation in cluster 3, which may be 

tied to the enrichment of BRAF V600E low grade gliomas 45.  Epigenetic reprogramming, 

observed in BRAF V600E-driven melanomas and colorectal cancers, enables resistance 

to BRAF inhibitors overcomes BRAF dependency, counters oncogene-induced 

senescence, and overcomes BRAF dependency, highlighting the need for combination 

therapies targeting BET proteins or histone deacetylases alongside the oncogenic BRAF 

mutation 45-47. Additionally, compared to cluster 1, cluster 3 exhibited elevated FGFR1 

signaling, underscoring its distinct molecular features. 

In our analysis of KIAA1549::BRAF fusion breakpoints across the three imaging 

clusters, the novel/rare breakpoints (KIAA1549::BRAF 15:11) in pLGGs were all classified 

into cluster 3, indicating similar imaging characteristics among these patients. Consistent 

with previous studies 6, 27, tumors with rare/novel KIAA1549::BRAF fusion breakpoints, 

which are highly enriched in recurrent/progressive pLGGs, exhibit a poorer prognosis. 
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However, these patients with poorer survival outcomes were among those in imaging 

cluster 3, which is associated with a more favorable prognosis. Furthermore, in cluster 3, 

we observed a higher hazard ratio for KIAA1549::BRAF tumors compared to tumors with 

BRAF V600E mutation. Although the BRAF V600E mutation did not yield a significant 

hazard in Cox regression analysis (p = 0.13), this finding contrasts with the established 

poorer prognosis of pLGGs with the BRAF V600E mutation compared to those with 

KIAA1549::BRAF fusion 48. This discrepancy may be due to the inclusion of rare or novel 

KIAA1549::BRAF fusion breakpoints in cluster 3, and the fact that 8 out of 12 tumors with 

the BRAF V600E mutation in this group had not progressed during the time period of this 

study. These findings highlight the need for a larger study to identify more granular 

clusters with better differentiation across higher and lower risk tumors.  

The current literature on radiomic analysis pLGG is limited, primarily focusing on 

predicting single genetic mutations or alterations, such as the BRAF V600E mutation and 

KIAA1549::BRAF fusion, using MRI 13-16. However, as the 2021 WHO CNS 5th Edition 

recommends incorporating driver molecular alterations into diagnostics 4, predicting a 

single mutation or fusion using imaging alone may have limited clinical utility. 

Furthermore, these studies have not explored associations between imaging phenotypes 

and underlying genomic or transcriptomic pathways. 

Our study offers the first comprehensive radiogenomic analysis investigating 

genomic alterations and pathways underlying specific imaging characteristics in a group 

of patients. While this approach is unexplored in pediatric neuro-oncology, identifying 

imaging-based subgroups through unsupervised clustering and linking them to clinical 
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symptoms, treatment responsiveness, and genomic factors has been applied in 

neurodegenerative diseases and adult glioblastoma 18.  

For instance, one study 49 identified three glioblastoma (GBM) subtypes through 

unsupervised clustering, revealing differences in outcomes and molecular features such 

as IDH1 status, MGMT promoter methylation, EGFRvIII expression, and transcriptomic 

subtypes. Another study 50 utilized a radiomic-genomic joint learning approach to define 

three GBM imaging subtypes with distinct survival probabilities and gene mutation 

patterns. 

Our study faced challenges due to the limited availability of imaging and genomic 

data (WGS and RNA-Seq), compounded by the rarity of pediatric brain tumors and a 

small cohort size, particularly for non-pilocytic astrocytomas in specific brain sites. 

Survival analysis relied on subjective progression assessments from clinical notes and 

MRI reviews. Supervised machine learning models (ElasticNet logistic regression) 

showed higher performance on the training set than the test set, likely due to the small 

sample size and variability in tumor location and molecular subtypes between the training 

and test sets. The expression data, representing a localized tumor portion may not fully 

reflect the tumor’s broader molecular heterogeneity, limiting its correlation with radiomic 

features.  

Additionally, other critical data layers, such as methylation profiling, metabolomics, 

proteomics, and pathomics, were unavailable for most patients. Future efforts should 

focus on larger cohorts and integrating additional data types to capture the complex 
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interplay between these layers, enhance tumor subtype differentiation, and identify 

potential therapeutic targets for personalized treatment.  

In conclusion, our work showed that unsupervised analysis of treatment-naïve 

imaging and clinical tumor data available at diagnosis can identify potential candidates 

for targeted drug selection, extending beyond the WHO-recognized molecular subtypes. 

This approach enables customization of treatments to match the unique characteristics 

and needs of each patient, thereby improving the quality and effectiveness of care for 

patients with pLGGs. Integration of multi-modal data aligns with the advancements in 

personalized medicine, providing a comprehensive view of each patient's tumor. This 

supports molecular tumor boards on pLGGs in developing more targeted treatment 

strategies, moving beyond conventional methods.  
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FIGURES 

 

 

 

Figure 1. Graphical representation of the analysis steps. 
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Figure 2. (A) Three-dimensional visualization of imaging clusters in the discovery set; (B) Heatmap plot of 

the radiomic features contributing to the top 10 principal components (PCs). 
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Figure 3. (A) correspondence analysis plot of Pearson residuals depicting the association between imaging 

clusters and pLGG 2021 WHO CNS Tumor Classifications. (B) Alluvial plot indicating associations of 

imaging clusters with pLGG 2021 WHO CNS Tumor Classifications, pLGG molecular subtypes by Ryall et. 

al, and tumor locations. 
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Figure 4. Molecular pathways associated with imaging clusters: (A-C) Top GSEA pathways differentially 

up-regulated or down-regulated between pairs of imaging clusters; (D) matrix of Pearson’s residuals for co-

expression modules (defined by CEMITool) across the three imaging clusters. 
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Figure 5. (A-C) Plots of generalized linear model (GLM) coefficients indicating the top pathways selected 

in the elastic net classification approach for prediction of each imaging cluster vs the rest of the tumor 

cohort. 
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Figure 6. Event-free survival (EFS) by imaging cluster. (A) Cox regression model forest plot of EFS, 

including covariates for extent of tumor resection, molecular subtype, imaging cluster, and subtype-imaging 

cluster interaction terms. Gray points indicate reference levels (Biopsy only, LGG/GNG wildtype, and 

imaging cluster 1), and black points indicate terms with statistically significant hazard ratios relative to 

reference levels. (B) Distribution of KIAA1549::BRAF fusion tumor breakpoint types and corresponding 

enrichment odds ratios in parentheses. *p<0.05.  (C) Kaplan-Meier plot of EFS among patients with 

KIAA1549::BRAF fusion tumors by KIAA1549::BRAF breakpoint type.  
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